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We prove several removable singularity theorems for sin-
gular Yang–Mills connections on bundles over Riemannian
manifolds of dimensions greater than four. We obtain the
local and global removability of singularities for Yang–Mills
connections with L∞ or L

n
2 bounds on their curvature ten-

sors, with weaker assumptions in the L∞ case and stronger as-
sumptions in the L

n
2 case. With the global gauge construction

methods we developed, we also obtain a ‘stability’ result which
asserts that the existence of a connection with uniformly small
curvature tensor implies that the underlying bundle must be
isomorphic to a flat bundle.

1. Introduction.

Uhlenbeck’s original paper [11] on removing isolated singularities of Yang-
Mills connections on four manifolds is important not only in its applications
in the compactification of the moduli space of self-dual connections on Rie-
mannian four manifolds, but also in the analytic techniques introduced in
it. Later on, there has been much work on the removable singularities for
Yang-Mills connections. Some of these work focused on the case of isolated
singularities for connections in different dimensions and possibly coupled
with a section (a Higgs field), such as [1], [4], [6] and [7]. Some other works
treated more general singularities, such as [5], [3], [8] and [10]. The fun-
damental work of Tian in [10] on the analysis of Yang-Mills connections in
higher dimensions gave some guidance on what we should expect about the
singularities of Yang-Mills connections on manifolds of dimensions greater
than 4. It turns out that if we are considering connections within the com-
pactification of smooth Yang-Mills connections on an n-dimensional mani-
fold, then the most general type of singularities to start with is probably an
Hn−4-rectifiable closed set. While the most general removable singularity
theorem in higher dimensions has not been proved yet, this paper is an effort
to understand the removable singularities and the related gauge problems
in higher dimensions.

We shall assume that all the vector bundles in this paper have a compact
structure group G and all connections and gauge transformations refer to
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G-objects. We fix a metric on G by embedding G into some orthogonal
group and denote by Id the unit element of G.

Before stating our main results in this paper, we shall first clarify the
meaning of removable singularities we are going to use here. Because of
the technical difficulty of defining suitable concepts of weak solutions to
the Yang-Mills equations, instead of considering regularity theories for weak
solutions (as in the case of harmonic maps and some other nonlinear PDE
problems), people usually consider removable singularity theorems in the
following (or similar and slightly different) context: We shall usually consider
a Yang-Mills connection A on a vector bundle E on a manifold M with a
closed singular set S, that is, A is defined and smooth on M \ S and A
satisfies the Yang-Mills equation on M \S. We say that the singularity of A
is removable if there exists a vector bundle E′ on M such that φ : E|M\S →
E′ gives an embedding of vector bundles preserving the G-structures, and
there exists a gauge transformation g of E , defined and smooth on M \ S
such that the connection g(A) is identified under φ with a connection on
E′|M\S , which is the restriction of a smooth connection on E′ over M . We
note that if the original connection A is singular on S, then the smoothing
gauge transformation g must be discontinuous on S, hence in general E′

and E may not be topologically isomorphic as vector bundles. Under a
local trivialization of E, the connection A may be identified with a G-valued
1-form, where G is the Lie algebra of G. Then locally the removability of
the singularity of A is equivalent to the existence of a G-valued function g
(which is smooth away from S) such that g(A) = gAg−1 − dg · g−1 can be
extended to a smooth G-valued 1-form.

In [10, 2.3], an admissible Yang-Mills connection is defined as a Yang-Mills
connection A with a closed singular set S such that the (n− 4)-dimensional
Hausdorff measure of S is locally finite and YM(A) =

∫
M |FA|2 < ∞. The

connections we considered in this work are within the class of admissible
Yang-Mills connections. Another important notion is the stationarity of
a connection, which in particular implies the monotonicity formula for the
scaling-invariant Yang-Mills functional, see [10, 2.1]. Since we assume L∞ or
L

n
2 boundedness of the curvature in this paper, the connections we consider

satisfy the monotonicity for L
n
2 norm of the curvature trivially, hence we

don’t need to assume stationarity here.
Our first result is the following local removable singularity theorem for

singular connections with L∞ bounds on their curvatures.

Theorem 1. Let E be the trivial bundle over the Euclidean unit cube U =
(0, 1)n ⊂ Rn with the standard product metric. Assume that A is an ad-
missible Yang-Mills connection on E with singular set S. Then there exists
ε1 = ε1(n,G) > 0, such that if

‖FA‖L∞(U) ≤ ε1,(1)

then the singularity of A is removable over U .
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We note that there is no extra assumption about the singularity set S ex-
cept closedness and the dimensional requirement. With some global gauge
patching arguments, we have the following global version of the above the-
orem:

Theorem 2. We assume that M is a compact Riemannian manifold such
that all representations π1(M) → G are the trivial one and E is the trivial
smooth bundle over M with a smooth G-structure. Assume that A is a
Yang-Mills connection on E with singularity set S. Then there exists ε2 =
ε2(M,G) > 0, such that if

‖FA‖L∞(M) ≤ ε2,(2)

then the singularity of A is globally removable.

We should mention that without the triviality of the bundle E, there
might not be global smoothing gauges for A even if the singularity of A is
locally removable (see the remark at the end of Section 4). Our global patch-
ing arguments also yield some ‘stability’ results which roughly mean that a
bundle close to a flat bundle (in some sense) must be flat. In particular, we
have:

Theorem 3 (Corollary 2). Assume that M is a compact n-dimensional Rie-
mannian manifold and E is a smooth vector bundle over M with a smooth
connection A on it. Then there exists a constant ε9 = ε9(M) > 0, such that
if

‖FA‖L∞(M) ≤ ε9,(3)

then E is smoothly isomorphic to a flat bundle.

It might be possible to improve the L∞ norm bounds in the above theorem
to some Lp (p <∞) bounds. In the next two theorems, we use the L

n
2 norm

instead of the L∞ norm of the curvature of the connection. We also assume
the singularity set to be a manifold.

Assume that 4 ≤ k ≤ n is an integer. Let Bk
1 be the open unit k-ball in Rk,

and D1 = Bn−k
1 ×Bk

1 ⊂ Rn be the Cartesian product of two balls. Assume
that E is a trivial vector bundle on D1 \ (Bn−k

1 × {0}). We shall consider
connections with singularity Bn−k

1 × {0} ⊂ D1. This is the standard local
model for connections with singularities being manifolds of codimension at
least 4.

Theorem 4. Assume that Ã is a Yang-Mills connection on E with the sin-
gularity Bn−k

1 ×{0} ⊂ D1. Then there exists a constant ε3 = ε3(n, k,G) > 0,
such that if

‖F eA‖L
n
2 (D1\(Bn−k

1 ×{0}) ≤ ε3,(4)

then the singularity of A is removable over D 1
2

= Bn−k
1
2

×Bn−k
1
2

.
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The following global version is a corollary of Theorem 2 and Theorem 4:

Theorem 5. We assume that M is a compact Riemannian manifold such
that all representations π1(M) → G are the trivial one and E is the trivial
smooth bundle over M with a smooth G-structure. Assume that A is a Yang-
Mills connection on E such that the singularity set S of A is a closed smooth
submanifold of codimension ≥ 4. Then there exists ε4 = ε4(M,G) > 0, such
that if

‖FA‖L
n
2 (M)

≤ ε4, ∀x ∈M,

then the singularity of A is removable.

We make the assumption that S is a submanifold because we need the
good product local model to prove Theorem 4. It is conceivable that this as-
sumption may be relaxed. A conjecture is that we don’t need any additional
assumption on S.

We remark here also that if we allow the constant ε4 in Theorem 5 to de-
pend also on the singularity set S, then the conclusion of Theorem 5 follows
from the local theorem, Theorem 4 directly without the need of Theorem 2.
We also would like to point out that a similar result to Theorem 4 for cou-
pled Yang-Mills-Higgs fields has been proved in Thomas Otway’s paper [3].
Our proof of Theorem 4 here is based on the work of R̊ado [5] on singu-
lar connections on four manifolds with codimension two singularities. After
we finished this work, we learned that in a recent work [9], Tao and Tian
proved the local removability of singularities for stationary admissible Yang-
Mills connections with singularities being manifolds. That will be a stronger
result than Theorem 4 here.

In Section 2 we prove Theorem 4 and Theorem 5. In Section 3 we use
some local gauge patching techniques to prove Theorem 1. In Section 4, we
develop some global gauge patching results, including Theorem 3 and finally
prove Theorem 2.

2. Removable singularities with L
n
2 norm bounds of curvatures.

Assume that 3 ≤ k ≤ n is an integer. Let Bk
1 be the open unit k-disk in

Rk, and D1 = Bn−k
1 × Bk

1 ⊂ Rn. Assume that E → D1 \ (Bn−k
1 × {0}) is a

trivial vector bundle.

Theorem 6. There exist constants ε5 = ε5(n, k,G) > 0 and C = C(n, k,G)
> 0, such that if ∇+A is a connection on E with the singularity Bn−k

1 ×{0},
A ∈ L

n
2
1,loc(D1 \ (Bn−k

1 × {0})), and FA ∈ L
n
2 (D1), and

‖FA‖L
n
2 (D1)

≤ ε5,(5)
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then ∇ + A is gauge equivalent, by a gauge transformation in L
n
2
2,loc(D1 \

(Bn−k
1 × {0})) to a connection of the form ∇+ Ã, Ã ∈ L

n
2
1 (D1), and

‖Ã‖
L

n
2
1 (D1)

≤ C‖FA‖L
n
2 (D1)

.

Proof. This theorem is a higher dimensional generalization of Theorem 2.1
in Johan R̊ade [5]. Actually the setting of the theorem in [5] is even more
complicated because R̊ade considered the possibility of nontrivial holonomy
around a codimension 2 singularity. Since the codimension of the singularity
here is at least 3, the complement of the singular set, D1 \ (Bn−k

1 × {0}),
is simply connected and we can follow the proof in [5] omitting the part
involving holonomy to prove the theorem. Of course, since we are in the
n-dimensional setting, we need to modify the statements of the lemmas and
results in [5] (stated in 4-dimensional setting there) accordingly. Mainly we
just need to adjust the indices of the various objects and norms. It is not
hard to check that the proofs there still work out with these changes and
we shall not reproduce the details here. �

Proposition 1. An admissible Yang-Mills connection A on a vector bundle
E over M is a weak solution of the Yang-Mills equation, i.e.,

∫
M
〈dAω, FA〉 = 0,(6)

for any ω ∈ C∞
c (M,T ∗M ⊗AdE).

Proof. This type of results are well-known to analysts. For completeness,
we give a proof here. Since the question is local, we may assume that M
and the singular set S of A are compact. Assume that Hn−4(M) = m <∞.
For any δ > 0, we may find finitely many (geodesic) open balls Bri(xi) of
radii ri < δ, such that xi ∈ S, S ⊂ ∪Bi and

∑
rn−4
i ≤ Cm. Choose cutoff

functions φi such that φi = 0 on Bri(xi), φi = 1 on M \B2ri(xi), 0 ≤ φi ≤ 1
on M and |∇φi| ≤ Cr−1

i on M . Let φ = φδ = infi φi on M . Then φ(x) is
supported away from S and if we let N2δ(S) = {y ∈ M : dist(y, S) ≤ 2δ},
then φ(x) = 1 if x ∈M \N2δS. We have

|∇φ(x)| ≤ sup
i
|∇φi(x)|, ∀x ∈M.

Now we have, for any ω ∈ Ω(AdE),
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∫
M
φ〈dAω, FA〉

= −
∫

M
φ tr(dAω ∧ ∗FA)

= −
∫

M
d(φ tr(ω ∧ ∗FA)) +

∫
M
dφ ∧ tr(ω ∧ ∗FA) + (−1)

∫
M
φ tr(ω ∧ dA ∗ FA)

=
∫

M
dφ ∧ tr(ω ∧ ∗FA), because A is smooth Yang-Mills away from S.

Now∣∣∣∣∫
M
dφ ∧ tr(ω ∧ ∗FA)

∣∣∣∣ ≤ C

∫
M
|∇φ||FA|

≤ C

(∫
N2δ(S)

|∇φ|2
) 1

2
(∫

N2δ(S)
|FA|2

) 1
2

≤ C

(∑
i

∫
N2δ(S)

|∇φi|2
) 1

2
(∫

N2δ(S)
|FA|2

) 1
2

= C

(∑
i

∫
B2ri

(xi)
|∇φi|2

) 1
2
(∫

N2δ(S)
|FA|2

) 1
2

≤ C

(∑
i

rn−2
i

)(∫
N2δ(S)

|FA|2
) 1

2

≤ C

(∫
N2δ(S)

|FA|2
) 1

2

.

If we let δ → 0, then the last right-hand side goes to 0 by the L2 integrability
of FA. On the other hand∫

M
φδ〈dAω, FA〉 →

∫
M
〈dAω, FA〉.

This gives the weak Equation (6). �

Remark. We note here that if A ∈ L
n
2
1 and A satisfies the Yang-Mills

equation weakly, then for any gauge transformation g ∈ L
n
2
2 , g(A) = gAg−1−

dgg−1 is still a weak solution of the Yang-Mills equation. The reason is
as follows: We have d∗g(A)Fg(A) = g(d∗AFA)g−1. By Sobolev embedding

theorems, g, g−1 ∈ L
n
2
2 and d∗AFA = 0 in L

n
2
−1 imply that g(d∗AFA)g−1 is
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well-defined in Lp
−1, for any p < n

2 . Hence d∗g(A)Fg(A) = 0 in Lp
−1. That

implies g(A) satisfies the Yang-Mills equation weakly.

Now we are ready to prove Theorem 4 — the ε-regularity theorem for
admissible Yang-Mills connections with L

n
2 bounds on the curvature.

Proof of Theorem 4. Assume that ε3 < ε5. Then the connection satisfies the
assumption of Theorem 6. We first apply Theorem 6 to the given connection
to obtain a L

n
2
2 gauge in which the connection, still denoted A, is in L

n
2
1 .

Now we may apply the existence theorem of Hodge gauges, Theorem 1.3 in
Uhlenleck [12] to see that if ε3 is sufficiently small, then after a further L

n
2
2

gauge transformation, we can make the resulting connection, again denoted
A, to be in the Hodge gauge, i.e.,

d∗A = 0,(7)

and with the following elliptic boundary condition:

∗A = 0, on ∂D1.(8)

Since the original admissible Yang-Mills connection is a weak solution of the
Yang-Mills equation by Prop. 1, and the gauges we have used are all in L

n
2
2 ,

it follows from the previous remark that we have the weak equation,

d∗AFA = 0.(9)

Now (7), (8) and (9) form a uniform elliptic system with A ∈ L
n
2
1 (D1).

Therefore, by standard elliptic theory, we may obtain higher regularities
and the smoothness of A in D1. This removes the singularity. �

Proof of Theorem 5. If ε4 is sufficiently small, then the assumptions of The-
orem 4 are satisfied locally and we have that locally the singularity of A is
removable. Since |FA| is gauge-invariant, we have in particular that |FA|2 is
a smooth function on M . However, |FA|2 satisfies a Bochner-Weitzenböck
formula and hence the following a priori estimates (by Uhlenbeck, see also
[2]):

|FA|2(x) ≤ C

(
ρ−n

∫
Bρ(x)

|FA|
n
2 dv

) 4
n

, ∀x ∈M.(10)

We remark here that although the a priori estimates are usually stated for
smooth (or stationary) Yang-Mills connections and for scaling invariant L2

energies ρ4−n
∫
Bρ(x) |FA|2dv, we have here the bounds on the L

n
2 energy

which is itself scaling invariant. Corresponding to the monotonicity formula
used in the proof of the usual a priori estimates, we have trivially that∫

Bρ(x)
|FA|

n
2 dv ≤

∫
Bσ(x)

|FA|
n
2 dv, if ρ ≤ σ.



388 BAOZHONG YANG

Hence the proof of the usual a priori estimates (see [2] or [10, 2.2.1]) can be
adapted (almost word by word) to give our version (10). We shall not give
the details and refer the reader to the references.

By (10), if ε4 is small enough, we have

‖FA‖L∞(M) ≤ ε2,

and hence Theorem 2 applies to give the global removability of the singu-
larity of A. �

3. Removable singularities with L∞ norm bounds of curvatures.

The essence of the Proof of Theorem 1 is a construction of a smoothing
gauge transformation. The method we shall use here is a refinement of
Uhlenbeck’s method to construct global gauges on compact manifolds used
in §3 of [12]. The idea of this argument is to modify and glue suitable gauges
on different patches inductively to obtain a global gauge. Here because we
have infinitely many patches, we have to keep a careful track of the gluing
procedure to make sure the gauges we obtained are always suitably bounded,
thus amenable for further gluing in the induction.

Before giving the proofs, we introduce the following definitions to make
the statements simpler. Let M be a Riemannian manifold and let the index
set I be either the set of natural numbers or the set {1, 2, . . . , n} for some
integer n.

Definition. Let c > 0 be a constant and K > 0 be an integer. We call a
countable collection of open subsets of M , {U i

α}α∈I,1≤i≤K , a (c,K)-uniform
nested covering of M if the following conditions are satisfied:

1) U i+1
α ⊂ U i

α, for 1 ≤ i ≤ K − 1.
2) M ⊂

⋃
α∈I U

K
α .

3) #{α : x ∈ U1
α} ≤ K, ∀x ∈M .

4) The diameters rα = diam(U1
α) satisfy,

rα ≤ crβ , if U1
α ∩ U1

β 6= ∅.

This definition of nested open sets is natural because we shall see that in
the gluing procedure, we need to shrink the open sets each time we try to glue
gauges on overlapping open patches. Let {U i

α}α∈I,1≤i≤K be a (c,K)-uniform
covering of M . We shall define integers iαβ for all pairs (α, β) satisfying
α ≥ β. First we define for any α ∈ I, iαα = 1. Then we define inductively
for α > β that

iαβ =

{
iα−1
β + 1, if U

iα−1
β

β ∩ U1
α 6= ∅,

iα−1
β , otherwise.

(11)
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Note that because of 3) in the definition, for any α ∈ I, 1 = iαα ≤ iα+1
α ≤

· · · ≤ K, and the increasing sequence stabilizes to an integer, which we will
denote by iα.

Definition. We call a (c,K)-uniform nested covering {U i
α}α∈I,1≤i≤K of M

a good (c,K)-uniform nested covering if there exist functions ψα ∈ C∞(U1
α)

such that for each α ∈ I,

ψα ≡ 1, on U1
α ∩

⋃
β<α

U
iαβ
β

 ,(12)

ψα ≡ 0, on U1
α \

⋃
β<α

U
iα−1
β

β

 ,(13)

0 ≤ ψα ≤ 1, rα|∇ψα| ≤ c, on U1
α, where rα = diam(U1

α).(14)

We recall that a collection of transition functions {gαβ} with respect to
an open covering {Uα} of M consist of functions gαβ : Uα ∩ Uβ → G on
Uα ∩ Uβ 6= ∅ such that:

1) gαβgβα = Id, on Uα ∩ Uβ,
2) gαβgβγgγα = Id, on Uα ∩ Uβ ∩ Uγ .

Definition. We call a collection of transition functions gαβ ∈ C1(Uα ∩
Uβ, G) a collection of δ-small transition functions with respect to a covering
{Uα}α∈I with length scales {rα}α∈I if, setting rα = diam(Uα), we have

|gαβ − Id |+ rα|∇gαβ | ≤ δrα, on Uα ∩ Uβ.(15)

The above technical definitions will enable us to track the bounds effec-
tively in the gluing procedure.

Lemma 1. For any c0 > 0 and K a positive integer, there exists δ0 =
δ0(c0,K,diam(M), G) > 0 such that if δ < δ0, {U i

α}α∈I,1≤i≤K is a good
(c0,K)-uniform nested covering of M and gαβ is a collection of δ-small
transition functions with respect to the covering {U1

α}α∈I , then there exist a
collection of functions hα ∈ C1(U1

α, G) and a constant C = C(c0, n,K,G) >
0 such that

gαβ = h−1
α hβ , on U iα

α ∩ U iβ
β ,(16)

|hα − Id |+ rα|∇hα| ≤ Cδrα, on U1
α.(17)

Proof. For simplicity, we use Uα to denote U1
α in the proof. We shall prove

by induction on α ∈ I that there exist hα ∈ C1(Uα, G) and constants C(k) =
C(k, n, c0, G) > 0 for 1 ≤ k ≤ K such that for any α ∈ I,

gβγ = h−1
β hγ , on U

iαβ
β ∩ U iαγ

γ , β, γ ≤ α,(18)

|hα(x)− Id |+ rα|∇hα(x)| ≤ C(lαx )δ, ∀x ∈ Uα,(19)
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where lαx = #{β ≤ α : x ∈ Uβ} ≤ K. We note that if (18) and (19) hold
for all α ∈ I, then by taking C = max1≤k≤K C(k), (16) and (17) will follow
immediately.

Let α0 be the smallest element of I, we define hα0(x) = Id ∈ G for
x ∈ Uα0 . Then (18) and (19) are trivially satisfied for α = α0 (for any value
of C(1) > 0). Now suppose that we have defined hβ ∈ C1(Uβ, G) for all
β < α such that (18) and (19) hold for indices < α.

We define

hα(x) = exp(ψα(x) exp−1(hβ(x)gβα(x))), ∀x ∈ Uα ∩ U
iα−1
β

β ,∀β < α,(20)

hα(x) = Id, ∀x ∈ Uα \

⋃
β<α

U
iα−1
β

β

 .(21)

We note that by the induction hypothesis, if β < α, then |hβ(x)gβα(x)−
Id | ≤ Cδrβ ≤ Cδ and |φα(x)| ≤ 1 by (14). Hence if δ is sufficiently small,
then the expression in (20) involving exp and exp−1 in (20) is meaningful.
The definition in (20) is unambiguous for different choices of β because of
the induction hypothesis (18) for indices β, γ < α and the assumption that
{gαβ} are transition functions. We note that the definition (20) and (21)
determine a well-defined hα ∈ C1(Uα, G) because of (12) and (13). It follows
easily by (12) and (20), and the fact that gβγ are transition functions that
(18) holds for all β, γ ≤ α.

If x ∈ Uα ∩ U
iα−1
β

β with β < α, then by (14), (15), (20), (21) and the
induction hypothesis, there exists a constant C1 = C1(n, c0) > 0, such that,

|hα(x)− Id | ≤ C1|hβ(x)gβα(x)− Id | ≤ C1(1 + C(lα−1))δrα,

rα|∇hα(x)| ≤ C1rα(|∇ψα(x)||hβ(x)gβα(x)− Id |+ |∇hβ(x)|+ |∇gβα(x)|)
≤ C1(1 + C(lα−1

x ))δrα.

It follows that if at the beginning we define C(1) = C1 and inductively define
C(k + 1) = C1(1 + C(k)) (these definitions only depend on n, K and c0),
then (19) will be true for α. This finishes the induction step and the proof
of the lemma. �

Proof of Theorem 1. We shall choose a collection F̃ of disjoint open dyadic
cubes in U\S step by step in the following way (the Whitney decomposition):
At the first step, we divide U into 2n congruent disjoint open cubes with
edges of length 1/2. For k ≥ 2, in the k-th step, we consider dyadic cubes
with edges of length 1/2k−1 which (or a cube containing it) have not been put
in F̃ in the previous steps; if such a cube C satisfies the following condition:

dist(C,S) ≥ diam(C),
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then we put C in the collection F̃ ; otherwise, we subdivide C into 2n con-
gruent disjoint smaller open cubes with edges of length 1/2k. It is easy to
see that we obtain a collection of disjoint open cubes F̃ = {Cα : α ∈ I} this
way and we have

U ∩
⋃
α∈I

Cα = U \ S.

We then let

F =
{
Uα =

(
9
8
Cα

)
∩ U : α ∈ I

}
,

where 9
8Cα is the dilation of Cα at the center of Cα with a factor 9

8 . The
collection F = {Uα}α∈I of open sets now satisfies:

1)
⋃

α∈I Uα = U \ S.
2) If Uα ∈ F , then dist(Uα, S) ≥ 1

2 diam(Uα).
3) If Uα, Uβ ∈ F , and Uα ∩ Uβ 6= ∅, then diamUβ ≤ 3 diam(Uα).
4) There exists a number K = K(n), such that #{α : x ∈ Uα ∈ F} ≤ K.

Let λ(i) = exp(K+1−i
K log 9

8) for 1 ≤ i ≤ K and define U i
α = λ(i)Cα∩U for

α ∈ I and 1 ≤ i ≤ K. We note that U1
α = Uα and Cα ⊂ UK

α , U i+1
α ⊂ U i

α for
1 ≤ i ≤ K−1. It is then easy to check that there exists a constant c0 = c0(n)
such that {U i

α}α∈I,1≤i≤K is a good (c0,K)-uniform nested covering.
Under the trivialization of the bundle on U , the connection may be identi-

fied as a matrix valued 1-form A and a gauge transformation can be viewed
simply as a function from U to G. We fix a point x0 ∈ U \ S. Let xα be
the center of the cube Cα. For any point x ∈ Uα, we let γx

α be the shortest
geodesic from xα to x inside Uα and define µα(x) ∈ G to be the parallel
transport of the bundle from xα to x along γx

α, using the trivialization of
the bundle.

Note that µα(xα) = Id. We regard µ−1
α as gauge transformations on

Uα, and denote µ−1
α (A) by Ãα. We use the normal spherical coordinates

{r, θi}i=1,...,n−1 centered at xα, where r is the distance to xα. Assume that

Ãα = Ãα,rdr + Ãα,idθ
i, on Uα

and

F eAα
= Fα,ridr ∧ dθi + Fα,ijdθ

i ∧ dθj , on Uα.

Then by the definition of µα, we have Ãα,r ≡ 0 on Uα. Hence

∂r(Ãα,i) = Fα,ri, i = 1, . . . , n− 1.(22)
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By integrating (22) and using that Ãα(0) = 0, we have

|Ãα|(x) ≤ C|x| ·
∫ 1

0
|F eAα

|(tx)dt(23)

= C|x|
∫ 1

0
|FA|(tx)dt ≤ C|x|ε1 ≤ Cε1rα.

Remark. The above gauge coming from the parallel transport along a ge-
odesic leading from a central point was introduced by Uhlenbeck in [11]. It
may be called the radially flat gauge at xα. Properties (22) and (23) were
also given in [11].

Since dimS < n− 2, we may perturb the geodesic from xα to x0 slightly
to be disjoint from S and denote the perturbed curve by lα. We define
σα(0) ∈ G to be the parallel transport of the bundle from x0 to xα along
the curve lα and let

σα(x) = µα(x)σα(0), ∀x ∈ Uα.

If Uα ∩Uβ 6= ∅, we denote the difference between the gauge transformations
σα and σβ by

gαβ = σ−1
α σβ = σ−1

a (0)µ−1
α (x)µβ(x)σβ(0).(24)

Now assume that x ∈ Uα ∩ Uβ. Consider the closed curve

γ = l−1
α (γx

α)−1γx
β lβ .

We notice that gαβ(x) ∈ G represents the parallel transport of the bundle
along the closed curve γ. Because dim(S) < n − 2, by perturbation, there
exists a triangle ∆ spanning γ with Area(∆) ≤ crα for some constant c =
c(n) and ∆ ∩ S = ∅. By a well-known relation between holonomy and
curvature, we have

|gαβ(x)− Id | ≤
∫

∆
|FAα(y)|dy ≤ crαε1.(25)

Now we use σα as gauge transformations on Uα and define

Aα = σ−1
α (A) = σα(0)−1(Ãα) = σα(0)−1 ◦ Ãα ◦ σα(0).

Then (23) and the compactness of G imply that

|Aα|(x) ≤ Cε1rα, ∀x ∈ Uα.(26)

We have by the definition of gαβ that

dgαβ = gαβAβ −Aαgαβ .(27)

It follows from (26) and (27) that

|∇gαβ(x)| ≤ Cε1rα.(28)
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Given any δ > 0, if we take ε1 = δ/C, then (25) and (28) imply that {gαβ}
is a δ-small collection of transition functions with respect to the covering
{Uα} of U \ S with length scales {rα}. Therefore Lemma 1 applies and
gives the correction term hα on each Uα. Let Vα = U iα

α . The new gauges
ρα = hασ

−1
α on Vα given by the correction of hα now satisfy ρα = ρβ on

Vα ∩ Vβ (because of (16) and (24)). Hence the ρα’s define a global gauge ρ
on U \ S. We have

|ρ(A)(x)| = |hα(Aα(x))| = |hαAαh
−1
α − dhα h

−1
α |(29)

≤ C(|Aα|+ |∇hα|) ≤ Cε1, ∀x ∈ Vα.

By inspecting our gluing procedure, we know that we can actually require
ρ(A) to be smooth away from S, which implies that ρ(A) is admissible and
a weak solution of the Yang-Mills equation. (29) and the assumption that
‖FA‖ ≤ ε1 implies that

‖A‖Lp
1
≤ Cε1, ∀p ≤ ∞

because FA = dA+A∧A. Fix n
2 < p <∞, if ε1 is sufficiently small, we may

apply the implicit function theorem (see Theorem 2.7 in [11]) to obtain
an Lp

2 gauge transformation g on U so that the connection A′ = g(ρ(A))
satisfies

d∗A′ = 0, on U, ∗A′ = 0, on ∂U(30)

(as (7) and (8) in Theorem 4’s proof). In the new gauge, we have A′ ∈ Lp
1.

A′ is also the weak solution of

d∗A′FA′ = 0, on U,

by the remark following the proof of Proposition 1. Therefore we obtain the
smoothness of the connection by elliptic regularity and finishes the proof of
the theorem. �

4. Global removable singularity theorems.

Before we carry out the Proof of Theorem 2, we shall first prove the following
theorem, which is also of independent interest:

Theorem 7. Assume that M is a compact n-dimensional manifold. Let
U = {Uα}α∈I be a finite open covering of M and {gαβ}, gαβ : Uαβ = Uα ∩
Uβ → G, be a set of smooth transition functions with respect to U . Then
there exist constants ε6 = ε6(M,U) > 0 and C = C(M,U) > 0, such that if

sup
x,y∈Uαβ

α,β∈I

|gαβ(x)− gαβ(y)| = δ ≤ ε6,(31)
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then there exist a collection of constant transition functions {g0
αβ}, a smaller

covering V = {Vα} of M , with Vα ⊂ Uα and M ⊂ ∪V, and a set of smooth
functions ρα : Vα → G, such that

ραgαβρ
−1
β = g0

αβ , on Vα ∩ Vβ(32)

and

sup
x∈Vα
α∈I

|ρα(x)− Id | ≤ Cδ.(33)

In particular, the bundle defined by {gαβ} is isomorphic to a flat bundle
(defined by {g0

αβ}).

Proof. We first claim that there exists an increasing continuous function
µ : [0,∞) → [0,∞) with µ(0) = 0, depending only on M and U , such that
if δ is defined by the left-hand side of (31), then there exists a collection of
constant transition functions {g0

αβ} with respect to the covering U such that

sup
x∈Uα∩Uβ

α,β∈I

|gαβ − g0
αβ(x)| ≤ µ(δ).(34)

We let J = {(α, β)|α < β ∈ I, Uα∩Uβ 6= ∅} and K = {(α, β, γ)|α < β < γ ∈
I, Uα ∩ Uβ ∩ Uγ 6= ∅}. Denote by GJ be the Cartesian product of |J | copies
of G indexed by J , with a general element a = (aαβ), (α, β) ∈ J . Define GK

similarly. We then define a map Φ : GJ → GK by

Φ((aαβ)) = (aαβaβγa
−1
αγ ) ∈ GK , for any a = (aαβ) ∈ GJ .

Φ is clearly a continuous map. We note that an element a = (aαβ) of GK

gives a collection of constant transition functions with respect to U if and
only if Φ(a) = (Id, . . . , Id) := 1 ∈ GK , i.e., if and only if a ∈ Φ−1(1).
Assume that there doesn’t exist such a function µ as claimed above, then
there exists ε > 0, a sequence δi decreasing to 0 and a sequence of sets of
transition functions {gi

αβ} with respect to U , such that

sup
x,y∈Uαβ

α,β∈I

|gi
αβ(x)− gi

αβ(y)| = δi,(35)

and

sup
x∈Uα∩Uβ

α,β∈I

|gi
αβ(x)− aαβ | ≥ ε, ∀(aαβ) ∈ Φ−1(1), ∀i.(36)

We fix points xαβ ∈ Uα ∩ Uβ. Because GJ is compact, we know that the
sequence (gi

αβ(xαβ)) ∈ GJ contains a subsequence converging to an element
(g0

αβ) ∈ GJ . Now the fact that {gi
αβ} are sets of transition functions imply
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that {g0
αβ} is also a set of transition functions with respect to U , i.e., (g0

αβ) ∈
Φ−1(1). The fact that gi

αβ(xαβ) → g0
αβ together with (35) imply that

sup
x∈Uα∩Uβ

α,β∈I

|gi
αβ(x)− g0

αβ | → 0, as i→∞.

This clearly contradicts (36) when i. Thus the claim is verified.
Now we recall the following proposition by Uhlenbeck (Prop. 3.2 in [12]):

Proposition 2. Let {gαβ} and {hαβ} be two sets of smooth transition func-
tions with respect to a covering U = {Uα}α∈I of a compact manifold M .
There exist constants ε7 = ε7(M,U) > 0 and C = C(M,U) > 0, such that if

sup
x∈Uα∩Uβ

α,β∈I

|gαβ(x)− hαβ(x)| ≤ ε7,(37)

then there exists a smaller covering V = {Vα} of M , with Vα ⊂ Uα and
M ⊂ ∪V, and a set of smooth functions ρα : Vα → G, such that

ραgαβρ
−1
β = hαβ , on Vα ∩ Vβ(38)

and

sup
x∈Vα
α∈I

|ρα(x)− Id | ≤ Cδ.(39)

In particular, the bundle defined by {gαβ} is smoothly isomorphic to the
bundle defined by {hαβ}.

We apply Proposition 2 to {gαβ} and {g0
αβ} (found by the claim) and

immediately see that the theorem holds. �

There are some corollaries of Theorem 7 in the following:

Corollary 1. Assume that M is a compact Riemannian n-dimensional ma-
nifold. Let U = {Uα}α∈I be a finite open covering of M such that any two
points x, y in a nonempty intersection Uα ∩ Uβ can be connected by a C1

curve within Uα ∩ Uβ with length ≤ l, a uniform constant, and let {gαβ}
be a set of smooth transition functions with respect to U . Then there exist
constants ε8 = ε8(M, l,U) > 0 and C = C(M,U) > 0, such that if

sup
x∈Uαβ

α,β∈I

|∇gαβ(x)| = δ ≤ ε8,(40)

then we have the same conclusions as in Theorem 7. In particular, the
bundle defined by {gαβ} is smoothly isomorphic to a flat bundle.

Proof. We may easily deduce from (40) and the assumptions that the in-
equality (31) holds if we take ε8 = ε6/l. Then we can apply Theorem 7
here. �
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Corollary 2. Assume that M is a compact n-dimensional Riemannian ma-
nifold and E is a smooth vector bundle over M with a smooth connection A
on it. Then there exists ε9 = ε9(M) > 0, such that if

‖FA‖L∞(M) ≤ ε9,(41)

then E is smoothly isomorphic to a flat bundle.

Proof. We cover M with coordinate balls {Uα}, such that any two points
x, y in a nonempty intersection Uα ∩ Uβ can be connected by a C1 curve
within Uα ∩ Uβ with length ≤ diam(M). Let φα : E|Uα → B1(0) × Rl be
trivializations on Uα and Aα be the G-valued 1-form on Uα corresponding
to A under φα. We use the radially flat gauge of A on Uα, i.e., we find
hα : Uα → G such that hα(Aα)(0) = 0 and hα(∂r) = 0 under the local
coordinates Uα

∼= B1(0) ⊂ Rn. We have from (23) that

|hα(Aα)(x)| ≤ C||FA||L∞(M) ≤ Cε9, ∀x ∈ Uα.(42)

We define hαβ = hαφαφ
−1
β h−1

β on Uα ∩Uβ and we can check that {hαβ} is a
set of transition functions. Now we have

dhαβ = hα(Aα) ◦ hαβ − hαβ ◦ (hβ(Aα))

and hence from (42), we have

|∇hαβ | ≤ Cε9, on Uα ∩ Uβ .

Now by taking ε9 sufficiently small we may apply Corollary 1 to establish
the theorem. �

Proof of Theorem 2. We choose a covering U = {Uα} of M such that each
Uα is a coordinate cube and the metrics of E and M on Uα can be uniformly
compared with the product metric and the Euclidean metric. We also require
that any two points x, y in a nonempty intersection Uα∩Uβ can be connected
by a C1 curve within Uα ∩Uβ with length ≤ diam(M). If ε2 is taken small,
we can now apply Theorem 1 for the connection A on each Uα to obtain
local gauge transformations hα : Uα → G such that hα(A) are smooth on
Uα and furthermore, from the Proof of Theorem 1, we may require that

|hα(A)| ≤ C‖FA‖L∞(M) ≤ Cε2,

for some uniform constant C. Now we define hαβ = hαh
−1
β . hαβ must

be smooth because it intertwines smooth connections hα(A) and hβ(A) on
Uα ∩Uβ . We can then follow the lines of the last part in the proof of Cor. 2
to establish that there exist a refinement V = {Vα} of the covering U , a
collection of smooth functions ρα : Vα → G and a collection of constant
transition functions g0

αβ such that

ραhαβρ
−1
β = g0

αβ , on Uα ∩ Uβ .
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Because every representation of π1(M) → G is the trivial one, every flat
bundle over M is trivial. Hence there exists constants λα ∈ G such that
g0
αβ = λ−1

α λβ for any α, β. It follows that

λαραhα = λβρβhβ, on Uα ∩ Uβ .

Hence we may define a global gauge transformation g by letting g = λαραhα,
on Uα. g(A) is smooth on M and hence g gives the desired smoothing
gauge. �

Remark. We remark that in Theorem 2 if the original bundle E is not triv-
ial, then although locally the singularity of the connection A is removable,
there may not exist a global gauge transformation which makes A smooth
on M . The following is a simple example of this lack of global smoothing
gauge. In fact, this example has something to do with the lack of global
smooth gauge transformations on certain bundles. Let M = S2 = CP 1 with
the covering given by U1 = {z : z ∈ C} and U2 = {w : w ∈ C} with the
coordinate change given by z = 1/w on U12 = U1 ∩U2. We give a transition
function for a line bundle g12 : U12 → C∗ via

g12(z) =
z

|z|
∈ C∗.

Let E be the smooth line bundle determined by g12. It is easy to see that
E has the same smooth structure as the hyperplane bundle on P1. We then
define a connection A on E by letting its local forms be A1 = −idθ on U1

and A2 = 0 on U2, where θ is the usual angle coordinate on C. We can
check that g12(A1) = A2 and hence A is a well-defined connection on E
with singularity p = {z = 0} ∈ U1. This singularity of A can be removed
on U1 as follows. We define ρ : U1 → C by ρ(z) = z/|z|. Then ρ(A1) = 0
gives the smoothing of A1 on U1. However, it is clear from homotopical
considerations that ρ cannot be extended to a global gauge transformation
smooth on M − {p}.

We may similarly construct an example of a nontrivial SU(2) bundle on
S4 with a flat connection A which is singular at one point but does not have
a global smoothing gauge. We note that in these examples the bundles don’t
allow global smooth gauge transformations.
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