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By means of three fundamental structures we can define,
in a general way, a sheaf A of differential algebras containing
most of the special cases met in the theory of generalized
functions.

A convenient choice of these structures permits us to study
Burgers’ equation with δ-Dirac measure as initial data, and we
can construct a generalized δ-shock wave as an approximate
solution, self-similar to the initial data.

1. Introduction.

It is not easy to pose and a fortiori to solve the Cauchy problem for Burgers’
equation

∂u

∂t
+ f(u)

∂u

∂x
= 0, t ≥ 0

with initial data as irregular as the δ-Dirac measure.
When the data are smooth enough or have weak singularities, the problem

has been studied in many classical or generalized ways, but when these
singularities become stronger, we first have to describe them.

In this paper, we do not consider solutions of entropy type satisfying the
Krushkov (or some other) criteria from the general theory of hyperbolic
conservation laws (e.g., [7]).

We try here to study traveling wave solutions self-similar to initial data
which can be as singular as δ or even powers of δ which do not exist in
classical distribution theory. So, we begin by giving a special family (δε)ε of
δ-approximations such that for each fixed ε > 0, p > 0, Burgers’ equation has
an exact weak self-similar solution corresponding to δpε as initial data. Then,
some models of tsunami or soliton are studied in the same way. However we
show that the distribution spaces are not convenient to solve our problem
by the help of a limit process.

To get out of this situation we define some other technics of approximation
thanks to association processes in (C,E ,P)-algebras (e.g., [11]) which contain
most of the special cases met in the literature. Let us give an idea of their
construction.
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K is the real or complex field and Λ a set of indices. C is the factor
ring A/I where I is an ideal of A, a given subring of KΛ. (E ,P) is a sheaf
of topological K-algebras on a topological space X. A sheaf of (C,E ,P)-
algebras on X is a sheaf A = H/J of factor algebras where J is a sheaf of
ideals of H, a subsheaf of EΛ. The sections of H (resp. J ) have to verify
some estimations given by means of P and A (resp. I). In such algebras
we have good tools to pose and solve many non-linear differential problems
with irregular data.

The sketch of the procedure is the following: We begin by choosing E
and P in relationship with the problem. Here, for Ω = R× R+, we define
E(Ω) as C∞(Ω) with its usual topology. Then, information about data
and equation are taken into account in the construction of C and finally
we can construct a (C,E ,P)-algebra adapted to our problem. It is solved by
means of a two-parametric family of special mollifiers with an approximation
depending itself upon data and equation peculiarities.

The same methods and technics solve the problem for our models of
tsunami or soliton.

2. The weak form of Burgers’ problem.

The Cauchy problem for Burgers’ equation in the following non-conservative
form equation:

∂u

∂t
+ f(u)

∂u

∂x
= 0, t ≥ 0, u|{t=0} = u0(1)

where f (u) = f ◦ u, and f a function of the real variable, has well-known
solutions if f and u0 are smooth enough and then (1) is equivalent to the
conservative form

∂u

∂t
+

∂

∂x
F(u) = 0, t ≥ 0, u|{t=0} = u0(2)

when taking F(u) = F ◦ u, with F ′ = f.

If v and F(v) belong to L1
loc (R× R+), we define

∼
v as

∼
v(x, t) = v (x, t) when t ≥ 0 and

∼
v(x, t) = 0 when t < 0

and then it is clear that
∼
v belongs to L1

loc

(
R2
)
∩D′

Γ

(
R2
)

and F(
∼
v) belongs

to L1
loc

(
R2
)
⊂ D′ (R2

)
with

D′
Γ

(
R2
)

=
{
T ∈ D′ (R2

)
, suppT ⊂ Γ = R× R+

}
.

If u0 is in L1
loc (R), to say that v is a weak (distribution) solution of the

Cauchy problem (2) means that this problem can be interpreted ([10]) as
the equation

∂u

∂t
+

∂

∂x
F(u) = u0 ⊗ δt(3)
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to be verified by
∼
v in the sense of distibution theory, or explicitly

−
∫∫

t>0

(
v
∂

∂t
ψ + F(v)

∂

∂x
ψ

)
(x, t)dxdt− F (0)

∫∫
t<0

∂

∂x
ψ(x, t)dxdt

=
∫
u0 (x)ψ (0, x) dx, ψ ∈ C∞0 (R2).

Then u0 will still be called initial data for (3).
If u0 has weak singularities, the problem has been studied in many clas-

sical or generalized ways ([1], [2], [4], [8], [18], [19] and many others).
For example, if F(u) = 1

2u
2 and u0 = Y , where Y is the Heaviside function,

the search of a self-similar solution, that is to say a solution of the form

u(x, t) = Y (t)u0(x− ϕ(t)), ϕ (0) = 0, ϕ′ > 0(4)

leads to the well-known Hugoniot-Renkin condition

ϕ′(t) =
1
2
.

But now, if u0 = δ ∈ D′(R), the research of a solution in the form (4) has
no sense for the Cauchy problem (3).

However, if we choose u0 = Y , and if we search a self-similar solution u of
(3) on the form (4) with an unknown strictly increasing function ϕ ∈ C∞ (R)
verifying ϕ (0) = 0, we can see from

F ◦ Y = F (0) + [F (1)− F (0)]Y

for any application F from R to R, that we have also

F (u) = F (0) + [F (1)− F (0)]u.(5)

Then, with classical technics in distribution theory, it is easy to compute

∂u

∂t
= −(1x ⊗ ϕ′)δ{x=ϕ(t),t≥0} + Yx ⊗ δt,

∂

∂x
F(u) = [F (1)− F (0)] δ{x=ϕ(t),t≥0}.

This leads to the necessary and sufficient condition for the existence and the
uniqueness of the required solution on the form

1x ⊗ ϕ′ = F (1)− F (0)

that is to say

ϕ(t) = [F (1)− F (0)] t.
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2.1. Exact weak solutions of Heaviside type. We can try now to search
a self-similar solution of (3) in D′Γ(R2) of the form

uh,l(x, t) = Y (t)u0,h,l(x− ϕ(t))(6)

by taking

u0,h,l(x) = h [Y (x+ l)− Y (x− l)]

where h and l are two strictly positive given constants, and then the following
holds:

Proposition 1. A necessary and sufficient condition to have an unique so-
lution of (3) in D′Γ(R2) with the form (6) is

∀t ≥ 0, ϕ(t) =
F (h)− F (0)

h
t(7)

and then we can explicit the required solution in the form

uh,l(x, t) = Y (t)h
[
Y

(
x+ l − F (h)−F (0)

h
t

)
− Y

(
x− l − F (h)−F (0)

h
t

)]
.

(8)

Proof. We begin to compute
∂uh,l
∂t

=−h(1x ⊗ ϕ′)
[
δ{x+l=ϕ(t),t≥0} − δ{x−l=ϕ(t),t≥0}

]
+ u0,h,l ⊗ δt

and we have, according to (5)

F(uh,l) = F (0) + [F (h)− F (0)]uh,l.

This gives, in distributional sense
∂

∂x
F(uh,l) = [F (h)− F (0)]

[
δ{x+l=ϕ(t),t≥0} − δ{x−l=ϕ(t),t≥0}

]
and then (6) is a solution of (3) if and only if

h(1x ⊗ ϕ′) = F (h)− F (0).

Hence we deduce the equalities (7) and (8) of the proposition. �

Corollary 2. Let

δε(x) = u(0, 1
2ε
,ε)(x) =

1
2ε

[Y (x+ ε)− Y (x− ε)] ,(9)

τε(x) = u(0, 1
2ε
,1) =

1
2ε

[Y (x+ 1)− Y (x− 1)] ,

σε(x) = u(0,1,ε) = Y (x+ ε)− Y (x− ε)

and p > 0 a given real number. Then:
(i) Solution (6) of (3) corresponding to δpε as initial data is given by

up,ε(x, t) = Y (t)
1

(2ε)p−1
δε(x− cp,εt).
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(ii) Solution (6) of (3) corresponding to τpε as initial data is given by

up,ε(x, t) = Y (t)
1

(2ε)p−1
τε(x− cp,εt).

(iii) Solution (6) of (3) corresponding to σpε as initial data is given by

up,ε(x, t) = Y (t)σε(x− ct)

with

cp,ε = (2ε)p
[
F

(
1

(2ε)p

)
− F (0)

]
, c = [F (1)− F (0)] .

Proof. As Y p = Y, we still have

δpε(x) =
1

(2ε)p
[Y (x+ ε)− Y (x− ε)] =

1
(2ε)p−1

δε(x),

τpε (x) =
1

(2ε)p
[Y (x+ 1)− Y (x− 1)] =

1
(2ε)p−1

τε(x),

σpε(x) = Y (x+ ε)− Y (x− ε) = σε(x),

and from (7) and (8), we obtain the results. �

2.2. Approximation in distribution spaces.

Proposition 3. For some real number p > 0, we give us δpε as initial data.
Then the generalized sequence of initial data (up,ε|{t=0})ε has no limit in
D′(R) except in the case p = 1 for which we have

lim
D′(R)
ε→0

(u1,ε|{t=0}) = δ.

Moreover:

a) Suppose that we have: lim
x→∞

F (x)
x

= L ≥ 0.
If p < 1, then we have: lim

D′(R2)
ε→0

up,ε = 0.

If p = 1, then we have: lim
D′(R2)

ε→0

up,ε = δ{x=Lt,t≥0}.

If p > 1, then up,ε has no limit in D′(R2).

b) Suppose that we have: lim
x→∞

F (x)
x

= ∞.

If p ≤ 1, then we have: lim
D′(R2)

ε→0

up,ε = 0.

If p > 1, and if: lim
x→∞

xp

F (xp)
1

x1−p = Mp ≥ 0, then: lim
D′(R2)

ε→0

up,ε =

MpYx ⊗ δt.
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If p > 1, with: lim
x→∞

xp

F (xp)
1

x1−p = ∞, then up,ε has no limit in

D′Γ(R2).

Proof. The conclusions about the limit in D′(R) of the sequence of initial
data are obvious. Now, from Part (i) of Corollary 2 we have, for any test
function ψ ∈ D(R2)

〈up,ε, ψ〉 =
1

(2ε)p−1

∫ ∫
Y (t)δε(x− cp,εt)ψ(x, t)dxdt

=
1

(2ε)p−1

∫ ∫
Y (t)δε(u)ψ(u+ cp,εt, t)dudt.

From the hypothesis of Part a), we have: lim
ε→0

cp,ε = L, from which we deduce

lim
ε→0

∫ ∫
Y (t)δε(u)ψ(u+ cp,εt, t)dudt =

∫
Y (t)ψ(Lt, t)dt

= 〈δ{x=Lt,t≥0}, ψ〉

which gives the result of Part a).
So, we can write now

〈up,ε, ψ〉 =
1
cp,ε

1
(2ε)p−1

∫ ∫
δε(u)Y (v)ψ

(
u+ v,

v

cp,ε

)
dvdu.

From the hypothesis of Part b), we have, for each p > 0: lim
ε→0

cp,ε = ∞, from
which we deduce

lim
ε→0

∫ ∫
δε(u)Y (v)ψ

(
u+ v,

v

cp,ε

)
dvdu =

∫
Y (v)ψ(v, 0)dv

= 〈δ{t=0}, ψ〉 = 〈Yx ⊗ δt, ψ〉

and we also have

lim
ε→0

1
cp,ε

1
(2ε)p−1

= lim
x→∞

xp

F (xp)
1

x1−p

which gives the result of Part b). �

Proposition 4. For some real number p > 0, we give us τpε as initial data.
Then the generalized sequence of initial data (up,ε|{t=0})ε has no limit in
D′(R).

Moreover:

a) Suppose that we have: lim
x→∞

F (x)
x

= L ≥ 0, then up,ε has no limit in

D′Γ(R2).

b) Suppose that we have: lim
x→∞

F (x)
x

= ∞.



NONLINEAR ALGEBRAIC ANALYSIS 171

If lim
x→∞

x2

F (x)
= M ≥ 0, then: lim

D′(R2)
ε→0

up,ε = M(θ ∗ Y )x ⊗ δt.

If lim
x→∞

x2

F (x)
= ∞, then up,ε has no limit in D′Γ(R2).

Proof. We can write

τε(x) =
1
2ε
θ(x), with θ (x) = Y (x+ 1)− Y (x− 1)

which proves the conclusion about the limit of the sequency of initial data.
Then from Part (ii) of Corollary 2 we can compute the corresponding solu-
tion as

up,ε(x, t) =
1

(2ε)p
Y (t)θ(x− cp,εt)

for each (x, t) ∈ R× R+. That is to say that, for any test function ψ ∈ D(R2)
we have

〈up,ε, ψ〉 =
1

(2ε)p

∫ ∫
Y (t)θ(x− cp,εt)ψ(x, t)dxdt

=
1

(2ε)p

∫ ∫
Y (t)θ(u)ψ(u+ cp,εt, t)dudt.

From the hypothesis of Part a), we have: lim
ε→0

cp,ε = L, from which we deduce

lim
ε→0

∫ ∫
Y (t)θ(u)ψ(u+ cp,εt, t)dudt =

∫ ∫
Y (t)θ(u)ψ(u+ Lt, t)dudt.

Then up,ε has no limit in D′Γ(R2).
Therefore we also have

〈up,ε, ψ〉 =
1
cp,ε

1
(2ε)p

∫ ∫
Y (v)θ(u)ψ

(
u+ v,

v

cp,ε

)
dudv.

From the hypothesis of Part b), we have, for each p > 0

lim
ε→0

cp,ε = ∞,

from which we deduce

lim
ε→0

∫ ∫
Y (v)θ(u)ψ

(
u+ v,

v

cp,ε

)
dudv =

∫ ∫
Y (v)θ(u)ψ(u+ v, 0)dudv

= 〈(θ ∗ Y )x ⊗ δt, ψ〉

and we also have

lim
ε→0

1
cp,ε

1
(2ε)p−1

= lim
x→∞

x2

F (x)

which gives the result of Part b). �
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Proposition 5. For some real number p > 0, we give us σpε as initial data.
Then the generalized sequence of initial data (up,ε|{t=0})ε tends to 0 in D′(R).

Moreover, the generalized sequence (up,ε)εtends to 0 in D′(R2).

Proof. We have here

σpε(x) = σε(x) = Y (x+ ε)− Y (x− ε)

which proves the conclusion about the limit of the sequency of initial data.
From Part (iii) of Corollary 2 we can compute the corresponding solution as

up,ε(x, t) = Y (t)σε(x− ct) = 2εY (t)δε(x− ct)

and we have, for any test function ψ ∈ D(R2)

〈up,ε, ψ〉 = 2ε
∫ ∫

Y (t)δε(x− ct)ψ(x, t)dxdt

= 2ε
∫ ∫

Y (t)δε(u)ψ(u+ ct, t)dudt

from which we deduce

lim
ε→0

∫ ∫
Y (t)δε(u)ψ(u+ ct, t)dudt =

∫
Y (t)ψ(ct, t)dt = 〈δ{x=ct,t≥0}, ψ〉

which gives the result. �

Remark 6. So, the distribution spaces are not convenient to describe the
above solutions of Burgers’ equation for at least two reasons. First, some of
these families of solutions have 0 as limit or no limit in D′(R2) and cannot be
distinguished, and secondly, except for only two cases, the family of initial
data has no limit in D′(R).

3. The sheaves of (C, E, P)-algebras.

In the theory of generalized functions, the following construction extends
many points of view met in the literature (e.g., [3], [9], [20]).

We give here a more general definition of the (C, E ,P)-algebra than the
first previous one [11], [13], [15]. In such algebras we have good tools to
pose and solve many non-linear (and even linear) problem with irregular
data [12], [14], [16], [17]. The topological aspects are studied in [5], [6].
And we will choose the algebraic structure adapted to our Burgers’ problem.

3.1. The algebraic structure.

a) It is given:
• A set Λ of indices,
• a subring A of the ring KΛ, (K = R or C),
• A+ = {(rλ)λ ∈ A : rλ ≥ 0} ,
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• the following stability by overestimation property for A: Whenever
(|sλ|)λ ≤ (rλ)λ (that is to say: For each λ we have: |sλ| ≤ rλ)
for any pair ((sλ)λ , (rλ)λ) ∈ KΛ × A+, it follows that we have:
(sλ)λ ∈ A,

• an ideal IA of A with the same stability by overestimation property,
• a sheaf E of K-algebra on a topological space X, such that, for

each open set Ω in X, the algebra E (Ω) is endowed with the family
P (Ω) = (pi)i∈I(Ω) of semi-norms verifying

∀i ∈ I (Ω) ,∃ (j, k, C) ∈ I (Ω)× I (Ω)× R∗
+ : pi (fg) ≤ Cpj (f) pk (g) ,

• the following property: For two open subsets of X such that Ω1 ⊂
Ω2, we have I (Ω1) ⊂ I (Ω2), and that for every i ∈ I (Ω1) and

u ∈ E (Ω2), we have pi

(
u |

Ω1

)
= pi (u) .

b) We put

H(A,E,P) (Ω) =
{

(uλ)λ ∈ [E (Ω)]Λ ,∀i ∈ I (Ω) : (pi (uλ))λ ∈ A
+
}
,(10)

J(IA,E,P) (Ω) =
{

(uλ)λ ∈ [E (Ω)]Λ ,∀i ∈ I (Ω) : (pi (uλ))λ ∈ I
+
A

}
,(11)

C = A/IA.(12)

It may be easily seen that A+ is not a subring of A, but is stable
under addition and product. It is the same for I+

A .

At the end, we suppose that the sets |A| =
{
(|rλ|)λ ∈ RΛ

+ : (rλ)λ ∈ A
}

and |IA| =
{
(|rλ|)λ ∈ RΛ

+ : (rλ)λ ∈ IA
}

are respectively subsets of A and IA.
Then we have: |A| = A+ and |IA| = I+

A .
c) From [11] it follows that under the above hypothesis, we obtain:

Proposition 7.
(i) H(A,E,P) is a sheaf of subalgebras of the sheaf EΛ;
(ii) J(IA,E,P) is a sheaf of ideals of H(A,E,P);
(iii) the constant factor sheaf H(A,K,|.|)/J(IA,K,|.|) is exactly the factor ring

C = A/IA.

d) Now, we can give the following definition:

Definition 8. We call (C, E ,P)-algebra every factor algebra

A = H(A,E,P)/J(IA,E,P)(13)

and we denote by [uλ] the class defined by the representative (uλ)λ∈Λ.

By a convenient choice of C, E and P as parameters, we can describe many
algebras of generalized functions [11] and define some other operations than
algebraic ones such as differentiation, restriction and sheaf embeddings. We
also can define local or microlocal analysis. The association or weak equality
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previously defined by Colombeau [3] is a very useful process to study some
differential equation in non-conservative form as Burgers’ one.

3.2. Operations, processes and properties.

3.2.1. Nonlinear functions. If f is a sheaf mapping: E → E , we can define
∼
f = f: A → A as a sheaf extension mapping by putting f(u) = [f(uλ)] , for
any u ∈ A, defined by the representative (uλ)λ∈Λ ∈ H(A,E,P) (Ω) . Of course,
such an extension needs the following conditions:

If (uλ)λ∈Λ belongs to H(A,E,P) (Ω), then (f(uλ))λ belongs to H(A,E,P).
If (iλ)λ∈Λ belongs to I(A,E,P) (Ω), then (f(uλ + iλ)− f(uλ))λ belongs to

I(A,E,P).

If P =
n∑
k=0

fkU
k is a polynomial with given coefficients in K, or in E (X) ,

it is easy to see that the above conditions are fulfilled for the sheaf mapping
denoted by P : E → E and defined by

PΩ (e) =
n∑
k=0

fke
k with e ∈ E (Ω) .

So, P has an extension P̃ = P: A → A which is the sheaf mapping defined
by

PΩ (u) =

[
n∑
k=0

fku
k
λ

]
with u = [uλ] ∈ A (Ω) .

Remark 9. Therefore we always have polynomials as non-linear functions
in any (C, E ,P)-algebra.

3.2.2. Overgenerated rings. In view of applications, it is interesting to
define rings generated by some given elements. More precisely, let

Bp =
{
(rn,λ)λ ∈ (R∗

+)Λ, n = 1, 2, . . . , p
}

and B = spanBp be the set of elements of (R∗
+)Λ obtained as products,

quotients and linear combinations with coefficients in R∗
+, of elements in

Bp.
Define

A =
{
(aλ)λ ∈ KΛ,∃ (bλ)λ ∈ B : |aλ| ≤ bλ

}
.(14)

It is easy to see that A is a subring of KΛ with the stability by overestimation
property. Then, we set the following definition:

Definition 10. A is overgenerated by Bp. And if IA is some ideal of A with
the same stability by overestimation property, we can also say that C = A/IA
is overgenerated by Bp.
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Example 11. As an ideal IA of A, we can take

IA =
{
(aλ)λ ∈ KΛ ∀ (bλ)λ ∈ B : |aλ| ≤ bλ

}
.

3.2.3. Relationship with distribution theory. We can adapt the
(C, E ,P)-algebras to the multiplication of the distributions in A. So we
have first to embed D′ in A. If (ϕε)ε∈]0,1] is some given family of mollifiers

ϕε (x) =
1
εn
ϕ
(x
ε

)
, x ∈ Rn,

∫
ϕ (x) dx = 1,

we can prove that if one has: T ∈ D′ (Rn), the convolution product family
(T ∗ ϕε)ε is a slowly increasing in 1

ε family of smooth functions of C∞ (Rn).
So we can choose the subring A such that it is overgenerated by some subset
Bp of R]0,1]

+ containing the family (ε)ε.

Example 12. If Bp contains only that family, it is easy to prove that we
have

A =
{

(rε)ε ∈ R]0,1],∃p ∈ N,∃C > 0 : (|rε|)ε ≤
(
C

εp

)
ε

}
,(15)

and we can take

IA =
{

(rε)ε ∈ R]0,1],∀q ∈ N,∃D > 0 : (|rε|)ε ≤ (Dεq)ε
}
.(16)

Example 13. Now, for each open set Ω in X = Rn, let us take E(Ω) =
C∞(Ω) with the usual P (Ω) topology of uniform convergency of all the
derivatives on the compact subset of Ω. So, we have then:

H(A,E,P)(Ω) =
{

(uε)ε ∈ [C∞ (Ω)]]0,1] ,∀K ⊂⊂ Ω,∀α ∈ Nn,∃p ∈ N,

∃C > 0 :
(

sup
x∈K

|Dα uε (x)|
)
ε

≤
(
C

εp

)
ε

}
,

J(IA,E,P)(Ω) =
{

(uε)ε ∈ [C∞ (Ω)]]0,1] ,∀K ⊂⊂ Ω,∀α ∈ Nn,∀q ∈ N,

∃D > 0 :
(

sup
x∈K

|Dα uε (x)|
)
ε

≤ (Dεq)ε

}
.

Then, in this case, the algebra A (Ω) = H(A,E,P) (Ω) /J(IA,E,P) (Ω) is ex-
actly the Colombeau’s simplified one, [3], and we can embed D′ (Rn) into
A (Rn) by the mapping

T → [T ∗ ϕε](17)

because (T ∗ ϕε)ε belongs to H(A,E,P) (Rn) .
In the same way, with the help of a cutoff function, we can define, for

each open set Ω in Rn, an embedding of D′ (Ω) into A (Ω), and finally a
sheaf embedding: D′ → A.
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This embedding depends on the choice of the mollifier ϕε. And it is easy
to define a canonical embedding from C∞ into A. But we can have a Ck

embedding only through the D′ one.
3.2.4. On some embeddings. In a more general way, if E is a given sheaf
of K-vector spaces with a linear sheaf embedding: l : E → E, some problems
about existence of embeddings from E to A and from E to A are solved by
the following results:

Lemma 14.
(a) There exists a canonical sheaf morphism

j : E → A, i.e., jΩ : E (Ω) → A (Ω) for each open set Ω ⊂ X

such that

∀f ⊂ E (Ω) : jΩ (f) = [(f)λ](18)

if and only if we have

(1)λ ∈ A.(19)

(b) There exists a linear sheaf morphism

k : E → A, i.e., kΩ : E (Ω) → A (Ω) for each open set Ω ⊂ X(20)

if and only if, for each λ ∈ Λ and each open set Ω ⊂ X, there exists a
linear embedding kλ,Ω : E (Ω) → E (Ω), such that we have

∀u ⊂ E (Ω) : (kλ,Ω (u))λ ∈ H(A,E,P) (Ω) .(21)

Proof. (a) Suppose (18) holds, and suppose f 6= 0. There exists i ∈ I (Ω)
such that pi (f) = a > 0. Then (pi (f))λ = (a)λ ∈ A. But we have also(

1
a

)
λ
∈ A, and (19) holds. Reciprocally, if (19) holds, we have obviously:

(pi (f))λ ∈ A for each f ⊂ E (Ω) . So, (18) defines a mapping jΩ from E (Ω)
to A (Ω) which is obviously a morphism of algebras.

(b) Suppose (20) holds. For each u ∈ E (Ω), we have kΩ (u) = [uλ] for
some (uλ)λ ∈ H(A,E,P) (Ω) . Then, for each λ ∈ Λ, we can put kλ,Ω (u) = uλ
and (21) is fulfilled. Conversely, if there exists a linear embedding kλ,Ω :
E (Ω) → E (Ω), such that (21) holds, when putting kΩ (u) = [kλ,Ω (u)], for
each u ∈ E (Ω) , we define a linear sheaf morphism which verifies (20). �

Proposition 15. We suppose that the mappings j and k verify the condi-
tions of the previous lemma and moreover there exists a linear sheaf embed-
ding

l : E → E i.e., lΩ : E (Ω) → A (Ω) for each open set Ω ⊂ X.

Then the subsheaf Im l can be canonically equipped with an algebraic struc-
ture for which k is an algebra sheaf morphism from Im l to A if, for each
open set Ω ⊂ X

∀u ⊂ Im lΩ :
(
(kλ,Ω − l−1)(u)

)
λ
∈ I(A,E,P) (Ω) .(22)
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Proof. For u = l−1(f) and v = l−1(g) in Im lΩ, we can define the product
uv by putting

uv = l(fg)

which gives Im lΩ an algebraic structure.
Now, if (22) is fulfilled, for u = l(f), we have

∀f ⊂ E(Ω) : (kλ,Ω(l(f))− f)λ ∈ I(A,E,P) (Ω) ,

which is a necessary and sufficient condition to have

j = k ◦ l.

As j and l are sheaf morphisms of algebras (from E to A and E to Im lΩ), it
is the same for k (from Im lΩ to A). �

Remark 16. This result summarizes some questions posed in [20] about
the construction of A from given E and E. For example, let us put λ =
(ϕ, ε) ∈ Λ = {ϕ} × ]0, 1], with E =C∞ and E = D′, with a given special
mollifier ϕ ∈ S (Rn) such that

∫
ϕ(x)xαdx = 0 (resp. 1) for α ∈ Nn-{0}

(resp. α = 0). In this case, it is proved in [3] that for f =C∞ (Ω) and
〈l(f), ψ〉 =

∫
f(x)ψ(x)dx when ψ ∈ D (Ω) , we have

(kλ,Ω(l(f))− f)λ = (ϕε ∗ (χεf)− f)ε ∈ I(A,E,P) (Ω)

with ϕε (x) = 1
εnϕ

(
x
ε

)
and χε ∈ D (Ω) such that χε(x) = 1 if d(x, ∂Ω) < ε

and d(x, 0) > 1
ε .

Then, the sheaf embedding D′ → A defined, for T ∈ D′(Ω) by

kΩ (T ) = [ϕε ∗ (χεT )](23)

is an algebra sheaf morphism from Im l = E to A.

3.2.5. The restriction. When E = C∞, the restriction to the submanifold

{x = (x1, x2, . . . , xj , . . . , xn) : xj = 0} ⊂ Rn

of the generalized function u = [uλ] ∈ A (Rn) is the generalized one:

Definition 17.

u |{xj=0}= [x→ uλ (x1, x2, . . . , xj−1,xj+1, . . . , xn)] .

That restriction belongs to a subalgebra of A (Rn) which is canonically
identified with A

(
Rn−1

)
and agrees with the similar process met in the

literature.
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3.2.6. The derivation. When E =C∞, the derivation is defined for each
u = [uλ] ∈ A (Ω), by:

Dαu = [Dαuλ]

where Dα is the classical derivation. Naturally the restriction of Dα to C∞

or D′ agrees with the classical derivation.
Let be E a sheaf on X, with a “derivation operator”, that is to say a sheaf

endomorphism Dα such that:
• Dα+β = Dα ◦Dβ = Dβ ◦Dα,
• ∀f, g ∈ E (Ω) : Dα (fg) =

∑
β≤α

α!
β!(α−β)!D

βfDα−βg.

Then it is possible to define a sheaf endomorphism Dα on A, with the
same properties as Dα under the only condition:

If (uλ)λ ∈ J(IA,E,P) (Ω) , then: (Dαuλ)λ ∈ J(IA,E,P).

In this case, we can give as above the following definition:

Definition 18. If u = [uλ] ∈ A (Ω), then, the Dα-derivation is given by

Dαu = [Dαuλ] .

3.3. The association process. We suppose that Λ is left-filtering for the
given (partial) order relation ≺ .

Let us denote by:
• Ω every open set in X,
• E a given sheaf of topogical K-vector spaces containing E as a subsheaf,
• Φ a given application from Λ to K such that (Φ (λ))λ = (Φλ)λ ∈ A.

We also suppose that we have

J(IA,E,P) (Ω) ⊂

(uλ)λ ∈ H(A,E,P) (Ω) : lim
E(Ω)

Λ

uλ = 0

 .(24)

Then, for u = [uλ] and v = [vλ] ∈ E (Ω), we define the Φ-E association.

Definition 19. We denote by

u
Φ
≈
E(Ω)

v

the Φ-E association between u and v defined by

lim
E(Ω)

Λ

Φλ(uλ − vλ) = 0.(25)

That is to say that for each neighbourhood V of 0 for the E-topology,
there exists λ0 ∈ Λ such that

λ ≺ λ0 ⇒ Φλ(uλ − vλ) ∈ V.
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To be sure that the above condition is independant of the representatives
of u and v, we have to verify that if lim

E(Ω)
Λ

Φλ(wλ) = 0 holds, for some (wλ)λ ∈

H(A,E,P) (Ω), then, for any (iλ)λ ∈ J(IA,E,P) (Ω), lim
E(Ω)

Λ

Φλ(wλ + iλ) = 0 also

holds. To prove the last condition, it is sufficient to show that

(Φλiλ)λ ∈ J(IA,E,P) (Ω) .

But for each i ∈ I (Ω), we have pi (Φλiλ) = |Φλ| pi (iλ) . And, according
to the definitions and the stability properties given in Section 3.1, we have
(|Φλ|)λ ∈ A+ and (pi (iλ))λ ∈ I+

A . Then we also have (|Φλ| pi (iλ))λ ∈ I+
A ,

which proves the required above condition.

Remark 20. When we have Φ = 1, it is clear that the above association
is weaker than equality. And when taking E = D′, E = C∞, Λ = ]0, 1] ,
and Φ = 1, we find again the association process defined by Colombeau
[3] or Egorov [9] who works in the (C, E ,P)-algebra defined by choosing
C = C]0,1]/IC]0,1] where IC]0,1] is the ring of complex numbers families (zε)ε
such that zε = 0 if ε is small enough, and where E is the sheaf of C∞-
complex valued functions. However it is possible to give stronger forms of
association, as in the following definition:

Definition 21. Let be A and IA respectively given by (15) and (16).
The E-association u u

E(Ω)
v, between two elements u and v ∈ A(Ω) is

defined by: For each p ∈ N we have

lim
E(Ω)
ε7→0

1
εp

(uε − vε) = 0.

Then, by taking E = E , we obtain:

Proposition 22. The E-association is equivalent to the equality in A(Ω).

Proof. If one has u u
E(Ω)

v, then for each i∈I(Ω) and p∈Nm, pi
(

1
εp (uε − vε)

)
is bounded, that is to say: (uε − vε)ε is in the set:{
(uε)ε ∈ [E (Ω)]]0,1] ,∀i ∈ I (Ω) ,∀ε ∈ ]0, 1] : (pi (uε))e ∈ I

+
A

}
= J(IA,E,P) (Ω) .

�

4. The Burgers problem in (C, E, P)-algebras.

The first step is to choose the algebra A(R) and the initial data by means
of convenient parameters. The second is to give an as good as possible
approximation of corresponding self-similar solutions of the Cauchy problem
(1) in a convenient algebra A

(
Ω
)

with Ω = R× R+.
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4.1. The algebra A(R) and the initial data. We choose E = E =C∞.
We define E(R) as C∞(R), with the usual P (R) topology of uniform conver-
gency of all the derivatives on the compact subset of R and we define E(R)
as D′ (R) . According to (13), we have here

A (R) = H(A,E,P)/J(IA,E,P) (R) .

We choose Λ = ]0, 1]× ]0, 1] , left-filtering for the partial order ≺ defined
by

(ε1, η1) ≺ (ε2, η2) if ε1 ≤ ε2 and η1 ≤ η2.(26)

Now, for a given ϕ ∈ D (R), with suppϕ = [−1, 1], 0 ≤ ϕ ≤ 1, ϕ (0) = 1,
and ϕ(k) (0) = 0 for each k ∈ IN∗, let us consider, for x ∈ R

ϕ(ε,η) (x) =
1
2ε
ϕ

(
x

η

)
.

Then, we define δ(ε,η), τ(ε,η), σ(ε,η) ∈ D(R) in the following way:

δ(ε,η) (x) =


ϕ(ε,η) (x+ ε) = 1

2εϕ
(
x+ε
η

)
for x ∈ ]−∞,−ε[

1
2ε for x ∈ [−ε, ε]
ϕ(ε,η) (x− ε) = 1

2εϕ
(
x−ε
η

)
for x ∈ ]ε,+∞[

(27)

τ(ε,η) (x) =


ϕ(ε,η) (x+ 1) = 1

2εϕ
(
x+1
η

)
for x ∈ ]−∞,−1[

1
2ε for x ∈ [−1, 1]
ϕ(ε,η) (x− 1) = 1

2εϕ
(
x−1
η

)
for x ∈ ]1,+∞[

(28)

σ(ε,η) (x) =


ϕ(ε,η) (x+ ε) = ϕ

(
x+ε
η

)
for x ∈ ]−∞,−ε[

1 for x ∈ [−ε, ε]
ϕ(ε,η) (x− ε) = ϕ

(
x−ε
η

)
for x ∈ ]ε,+∞[ .

(29)

It is easy to see that these functions belong to D(R) and we have:

supp δ(ε,η) = suppσ(ε,η) = [−η − ε, ε+ η] and supp τ(ε,η) = [−η − 1, 1 + η] .

Proposition 23. If A is the subring of R]0,1]×]0,1] overgenerated by the set

B2 =
{
(ε)(ε,η), (η)(ε,η)

}
then, for any real number p > 0, ∆p =

[
δp(ε,η)

]
, Υp =

[
τp(ε,η)

]
, and Ξp =[

σp(ε,η)

]
belong to A (R).
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Proof. First, we can see that, for each compact K b R and each α ∈ N

sup
x∈K

∣∣∣Dαδp(ε,η) (x)
∣∣∣ ≤ 1

(2ε)p

1
ηα

sup
x∈[−1,1]

|Dαϕp (x)|

and then for each seminorm pK,l of the P (R) topology of E(R) = C∞(R),
one has: pK,l (δε,η) ∈ A+, that is to say: δε,η belongs to H(A,E,P) (R) .
The same proof holds for τ(ε,η) because we have the same estimation for
sup
x∈K

|Dατpε,η (x)| . Then, from

sup
x∈K

∣∣Dασ(ε,η) (x)
∣∣ ≤ 1

ηα
sup

x∈[−1,1]
|Dαϕp (x)|

we can easily prove the result for Ξ. In this last case, the result holds if A
is overgenerated by

{
(η)(ε,η)

}
, and a fortiori by B2. �

4.2. The algebra A
(
Ω
)

and the delta shock wave solutions. For
Ω = R× R+, we define E(Ω) as C∞(Ω) with the usual P

(
Ω
)

topology of
uniform convergency of all the derivatives on the compact subset of Ω. And
we define E(Ω) as C∞(Ω), with the (pψ)ψ∈D(R2)-topology, such as

pψ (f) =
∣∣∣∣∫

Ω
f (x)ψ (x) dx

∣∣∣∣(30)

for each f ∈C∞(Ω). It is clear that the (pψ)ψ∈D(R2)-topology is weaker that
the P

(
Ω
)

one.
Then the algebra A

(
Ω
)

is defined as

A
(
Ω
)

= H(A,E,P)/J(IA,E,P)

(
Ω
)
.

The main results are the two following propositions:

Proposition 24. We suppose that F is a polynomial function with real co-
efficients and increasing with F (0) = 0, we suppose that A is overgenerated
by B2, we take Φp(ε, η) = ε

ηF
“

1
(2ε)p

” , and we put respectively ∆p or Υp as

initial data.Then,

cp =
[
cp,(ε,η)

] Φp

≈
D′(R)

[
(2ε)p F

(
1

(2ε)p

)]
is a necessary and sufficient condition to have in A

(
Ω
)

a Φp-E approximate
solution of the Cauchy problem (1) with the respective self-similar form

∆p(x− cpt) =
[
(x, t) → δp(ε,η)

(
x− cp(ε,η)t

)]
or

Υp(x− cpt) =
[
(x, t) → τp(ε,η)

(
x− cp(ε,η)t

)]
.
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Proof. To simplify the proof, we suppose that p = 1. As F is polynomial,(
F
(

1
2ε

))
(ε,η)

, and
(

ε
ηF( 1

2ε)

)
(ε,η)

belong to A. Let be F the sheaf mapping

E → E induced by F , and F: A → A the sheaf mapping extension of F . As
F
(
δ(ε,η)

)
belongs to H(A,E,P) (R), according to the hypothesis on F , we can

consider the difference

F
(
δ(ε,η)

)
− 2εF

(
1
2ε

)
δ(ε,η).

Then, if x ∈ [−ε, ε], we have[
F
(
δ(ε,η)

)]
(x) = 2εF

(
1
2ε

)
δ(ε,η) (x) .

For ψ ∈ D (R), we compute〈(
F
(
δ(ε,η)

)
− 2εF

(
1
2ε

)
δ(ε,η)

)
, ψ

〉
= A(ε,η) +B(ε,η)

with

A(ε,η) =
∫ −ε

−ε−η

(
F
[
δ(ε,η) (x)

]
− F

(
1
2ε

)
ϕ

(
x+ ε

η

))
ψ(x)dx,

B(ε,η) =
∫ ε+η

ε

(
F
[
δ(ε,η) (x)

]
− F

(
1
2ε

)
ϕ

(
x− ε

η

))
ψ(x)dx.

As F is increasing, we have when x ∈ [−ε− η,−ε]∣∣∣∣F ( 1
2ε

)
ϕ

(
x+ ε

η

)
− F

[
δ(ε,η) (x)

]∣∣∣∣ ≤ F

(
1
2ε

)
and then ∣∣A(ε,η)

∣∣ ≤ F

(
1
2ε

)∫ −ε

−ε−η
|ψ(x)| dx.

Therefore, we have finally∣∣A(ε,η)

∣∣ ≤ CηF

(
1
2ε

)
for some positive constant C, with a similar estimation for B(ε,η). Then we
have

lim
D′(R)
(ε,η)→0

ε

ηF
(

1
2ε

) (F (δ(ε,η))− 2εF
(

1
2ε

)
δ(ε,η)

)
= 0.(31)

From the hypothesis on F and A we can see that
(
F
(
δ(ε,η)

))
(ε,η)

and(
2εF

(
1
2ε

)
δ(ε,η)

)
(ε,η)

belong to H(A,E,P) and

(
ε

ηF
(

1
2ε

))
(ε,η)

belongs to A.
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That is to say [
F
(
δ(ε,η)

)] Φ
≈

D′(R)

[
2εF

(
1
2ε

)
δ(ε,η)

]
according to our definition of association process, with Φ1(ε, η) =

ε

ηF
(

1
2ε

) .
And that is a good approximation because if p is given as large as we

want, we can have

Φ1(ε, η) >
1
εp

by choosing η <
εp+1

F
(

1
2ε

) .
Now, if we put ∆ =

[
δ(ε,η)

]
∈ A (R), we can write

F (∆)
Φ1≈

D′(R)

[
2εF

(
1
2ε

)]
∆.(32)

Let be f: A → A the sheaf mapping defined from F : E → E and F by

the derivation F ′ = f . It is easy to see that if one has: F (u)
Φ1≈

D′(R)
v, with

u and v in A (R), then we have: f (u)u′
Φ
≈

D′(R)
v′ in the sense of generalized

functions. And then we have also

f (∆) ∆′ Φ1≈
D′(R)

[
2εF

(
1
2ε

)]
∆′.

Now, for (x, t) ∈ Ω, for each compact K b R and each (k1, k2) ∈IN×IN
we have

sup
x∈K

∣∣∣D(k1,k2)δ(ε,η)
(
x− c1,(ε,η)t

)∣∣∣ ≤ 1
2ε

1
ηk1+k2

∣∣c1,(ε,η)∣∣k2 sup
x∈[−1,1]

∣∣∣Dk1+k2ϕ (x)
∣∣∣

from which it is easy to prove that the family
(
(x, t)→δ(ε,η)(x−c1(ε,η)t)

)
(ε,η)

belongs to H(A,E,P)

(
Ω
)
. Then, with c1 =

[
c1(ε,η)

]
, we can put

∆(x− c1t) =
[
(x, t) → δ(ε,η)

(
x− c1,(ε,η)t

)]
and prove, from (32) that we have

F (∆(x− c1t))
Φ1≈
E(Ω)

[
2εF

(
1
2ε

)]
∆(x− c1t).(33)

To do that, we first have to compute

D(ε,η) = pψ
(
Φ1(ε, η)G(ε,η)

)
with

G(ε,η) (x, t) =
(
F
(
δ(ε,η)

(
x− c1(ε,η)t

))
− 2εF

(
1
2ε

)
δ(ε,η)

(
x− c1,(ε,η)t

))
.



184 J.-A. MARTI

Thus we can write

D(ε,η) =
∣∣∣∣∫ ∫ Y (t)Φ1(ε, η)G(ε,η) (x, t)ψ(x, t)dxdt

∣∣∣∣ = ∫ H(ε,η)(t)dt

where

H(ε,η)(t) =
∫
Y (t)Φ1(ε, η)

[
F
(
δ(ε,η) (u)

)
(34)

− 2εF
(

1
2ε

)
δ(ε,η) (u)

]
ψ(u+ c1(ε,η)t, t)du.

From (31), we can see that for each t ∈ R: lim
(ε,η)→0

Hε,η(t) = 0. Moreover,

if A > 0 is chosen such that suppψ ⊂ [−A,A] × [−A,A], we can see from
(34) that we have ∣∣H(ε,η)(t)

∣∣ ≤ Cχ[0,A]

for some constant C, χ[0,A] being the characteristic function of [0, A], and so,
by the Lebesgue majorant convergence theorem, we obtain: lim

(ε,η)→0
D(ε,η) =

0, which proves (33).
Now we can compute

∂

∂t
∆(x− c1t) =

[
(x, t) → −c1,(ε,η)δ′(ε,η)

(
x− c1,(ε,η)t

)]
= −

[
c1,(ε,η)

]
∆′(x− c1t)

and from (33)

∂

∂x
F (∆(x− ct)) = f (∆(x− c1t))∆′(x− c1t)

Φ1≈
E(Ω)

[
2εF

(
1
2ε

)]
∆′(x− c1t).

So, we have proved that the condition is necessary. And it is obviously
sufficient. Particularly, we can take c1,(ε,η) = 2εF

(
1
2ε

)
.

Instead of F
(
δ(ε,η)

)
− 2εF

(
1
2ε

)
δ(ε,η) = 0 on [−ε, ε] we have: F

(
τ(ε,η)

)
−

F
(

1
2ε

)
τ(ε,η) = 0 on [−1, 1] . But on [−η − 1,−1], F

(
τ(ε,η)

)
− F

(
1
2ε

)
τ(ε,η)

is deduced by translation from F
(
δ(ε,η)

)
− 2εF

(
1
2ε

)
δ(ε,η). So, the same

estimations, computations and conclusions holds for Υ(x − c1t) as well as
for ∆(x− c1t).

The case p > 0 follows with slight modifications. �

Proposition 25. We suppose that F is a polynomial function with real co-
efficients and increasing with F (0) = 0, we suppose that A is overgenerated
by

B2 =
{
(ε)(ε,η), (η)(ε,η)

}
,
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we take Ψ(ε, η) =
ε

ηF (1)
, and for any integer p ≥ 1, we put Σp as initial

data. Then,

d =
[
d(ε,η)

] Ψ
≈

]0,1]×]0,1]
[F (1)](35)

is a necessary and sufficient condition to have in A
(
Ω
)

a Ψ-E approximate
solution of the Cauchy problem (1) with the self-similar form

Σp(x− dt) =
[
(x, t) → σp(ε,η)

(
x− d(ε,η)t

)]
.(36)

Proof. We can consider the difference

F
(
σp(ε,η)

)
− F (1)σp(ε,η).

Then if x ∈ [−ε, ε] , we have[
F
(
σp(ε,η)

)]
(x) = F (1)σp(ε,η) (x) .

For ψ ∈ D (R), we compute〈(
F
(
σp(ε,η)

)
− F (1)σp(ε,η)

)
, ψ
〉

=
∫ −ε

−ε−η

(
F
(
σp(ε,η)

)
− F (1)σp(ε,η)

)
(x)ψ(x)dx

+
∫ ε+η

ε

(
F
(
σp(ε,η)

)
− F (1)σp(ε,η)

)
(x)ψ(x)dx

= A′(ε,η) +B′
(ε,η).

We can compute

A′(ε,η) =
∫ −ε

−ε−η

(
F
[
σp(ε,η) (x)

]
− F (1)ϕp

(
x+ ε

η

))
ψ(x)dx.

As F is increasing, we have when x ∈ [−ε− η,−ε]∣∣∣∣F (1)ϕp
(
x+ ε

η

)
− F

[
σp(ε,η) (x)

]∣∣∣∣ ≤ F (1)

and then ∣∣∣A′(ε,η)∣∣∣ ≤ F (1)
∫ −ε

−ε−η
|ψ(x)| dx.

Therefore, we have finally∣∣∣A′(ε,η)∣∣∣ ≤ CηF (1)

for some positive constant C, with a similar estimation for B′
(ε,η). Then we

have
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lim
D′(R)
(ε,η)→0

ε

ηF (1)

(
F
(
σp(ε,η)

)
− F (1)σp(ε,η)

)
= 0.(37)

From the hypothesis on F and A it follows that
(
F
(
σp(ε,η)

))
(ε,η)

and(
F (1)σp(ε,η)

)
(ε,η)

belong to H(A,E,P) (R), with
(

ε

ηF (1)

)
(ε,η)

in A. That is

to say [
F
(
σp(ε,η)

)]
Ψ
≈

D′(R)

[
F (1)σp(ε,η)

]
.

The next steps can be easily deduce from the previous proof, with slight
modifications, and we can choose F (1) as the speed of propagation of the
Ψ-approximate solution. �

Conclusion 26. For any p > 0, one can say that ∆p(x− cpt), Υp(x− cpt),
Σp(x − dt) are some modelizations of p-power of delta-waves, tsunamis, or
solitons and approximate self-similar solutions of Burgers’ equation. The
generalized function Σp(x − dt) propagates approximatively with a finite
speed d = F (1), but ∆p(x− cpt) and Υp(x− cpt) have the same generalized

speed cp ≈
[
(2ε)p F

(
1

(2ε)p

)]
depending only upon the generalized height

(and not thickness) of the initial data ∆p and Υp. And in each case, the
solution lies in an algebra adapted to the problem by the choice of the al-
gebra E(Ω) and the ring C of generalized numbers. Indeed E ]0,1]×]0,1](Ω)
contains the representatives of our expected approximate solutions and C is
overgenerated by some elements connected to equation and data singulari-
ties. Moreover, these singularities also are connected to the required (Φp-E
or Ψ-E) approximation processes.
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Département de Mathématiques et Informatique
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