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We describe the set of explosive orbits in the region of at-
traction of an unstable attractor which is isolated in the sense
of C.C. Conley. Sufficient conditions are given for the exis-
tence of explosions in certain parts of the region of attraction
and for an unstable attractor to have finitely generated inte-
gral Alexander-Spanier cohomology groups. Finally, we study
the case of singularities that are unstable attractors in flows
on the 2-sphere.

1. Introduction.

One of the most studied parts of the phase space of a continuous flow on a
separable, locally compact, metrizable space M is the region of attraction
W of an asymptotically stable compact invariant set A, that is a Lyapunov
stable attractor. It is well-known (see [2, Section 10], [3, Theorem V.2.9],
[8]) that there exists a strictly decreasing along the orbits in W \A uniformly
unbounded Lyapunov function f : W → R+ with f−1(0) = A. For any
c > 0, the level set f−1(c) is a compact global section to the restricted flow
in W \A, which is therefore parallelizable. If M is a locally compact ANR, A
has the shape of the compact ANR f−1([0, c]), which has the homotopy type
of a compact polyhedron, and which is a strong deformation retract of W .
Thus, A and W have isomorphic and finitely generated Alexander-Spanier
cohomology (see [9]).

On the other hand, not much is known about the structure of the flow in
the region of attraction of an unstable attractor. In this case there might
be orbits in W \ A whose positive prolongational limit set is not contained
in A, and so the flow explodes at these orbits. In general we say that the
flow expodes at an orbit if the positive limit set of the orbit is not equal to
its positive prolongational limit set.

This work has two parts. In the first part we study the explosions of the
flow in the region of attraction of an unstable attractor, under the additional
assumption that it is an isolated invariant set in the sense of C.C. Conley.
First we show in Theorem 3.4 that if A is an invariant continuum and an
isolated unstable attractor such that W \ A is connected, then there exist
explosions in W \D+(A) or D+(A) = M , where D+(A) is the positive first
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prolongation of A. The set of orbits in W \A at which the flow explodes is
completely determined by a suitable compact subset of the boundary of an
isolating block of A.

The positive first prolongation D+(A) of an unstable attractor A is an
asymptotically stable compact invariant set with the same region of attrac-
tion as A (see [2, Theorem 8.20]). Simple examples show that the flow may
or may not explode at some orbit in D+(A) \ A. In Theorem 3.5 we give a
sufficient topological condition on the region of attraction in order the flow
to explode at some orbit in D+(A) \ A. We derive also some topological
properties of a connected isolated unstable attractor in case there is essen-
tially no explosion in D+(A) \ A and D+(A) \ A is topologically not too
bad. More precisely, we prove in Theorem 3.7 that if D+(A) \A is an ANR
and the first positive prolongational limit set of every point in D+(A) \A is
contained in A then the integral Alexander-Spanier cohomology groups of
A are finitely generated. The assumption that D+(A) \ A is an ANR is of
course resrtictive in general.

In the second part we study the case where A is a fixed point of a flow on
a 2-manifold M , which is an isolated unstable attractor. In this case the set
of orbits in W \A at which the flow explodes is finite, as we prove in Corol-
lary 4.3. If M is the 2-sphere, then we prove in Theorem 4.5 that D+(A)\A
has finitely many connected components and each one of them is either
an orbit homeomorphic to R or a noncompact 2-manifold with nonempty
and noncompact boundary, and with finitely many boundary components.
Hence D+(A) \ A is an ANR. Moreover, as we prove in Theorem 4.7 the
restricted flow in D+(A) \ A is completely unstable. These are not local
results, as global properties of the flow have to be taken into account.

2. Explosions and isolated invariant sets.

Let φ be a continuous flow on a separable, locally compact, metrizable space
M . We shall denote by φ(t, x) = tx the translation of the point x ∈M along
its orbit in time t ∈ R. We shall also write φ(I × A) = IA, for I ⊂ R and
A ⊂ M . The orbit of x will be denoted by C(x), its positive semiorbit by
C+(x) and the negative by C−(x). The positive limit set of x ∈ M is the
closed, invariant set

L+(x) = {y ∈M : tnx→ y for some tn → +∞}
and describes the behavior at infinity of C+(x). The behavior of the flow
at infinity near the point x ∈ M is described through its (first) positive
prolongational limit set

J+(x) = {y ∈M : tnxn → y for some xn → x and tn → +∞}
which is also closed and invariant. The positive first prolongation of x is
the positively invariant closed set D+(x) = C+(x) ∪ J+(x). The negative
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versions are defined by reversing time. Obviously, L+(x) ⊂ J+(x). We say
that the flow explodes at the orbit of the point x ∈ M in positive time if
J+(x) 6= L+(x).

A compact invariant set A ⊂ M is called isolated if it has a compact
neighbourhood V such that A is the maximal invariant set in V . Each
such V is called an isolating neighbourhood of A. It is known (see [4],
[5]) that every isolating neighbourhood of A contains a smaller isolating
neighbourhood N of A such that there are compact sets N+, N− ⊂ ∂N
with the following properties:

(i) ∂N = N+ ∪N−.
(ii) For every x ∈ N+ there exists ε > 0 such that [−ε, 0)x ⊂ M \N and

for every y ∈ N− there exists δ > 0 such that (0, δ]y ⊂M \N .
(iii) For every x ∈ ∂N \ N+ there exists ε > 0 such that [−ε, 0)x ⊂ intN

and for every y ∈ ∂N \N− there exists δ > 0 such that (0, δ]y ⊂ intN .

The triad (N,N+, N−) is called an isolating block of A. The set N+ is
the entrance set and N− is the exit set of the isolating block. The sets A± =
{x ∈ N : C±(x) ⊂ N} and α± = ∂N ∩ A± are compact and A = A+ ∩ A−.
Moreover, ∅ 6= L+(x) ⊂ A for every x ∈ A+ and α+ ⊂ N+ \N−.

If M is a smooth n-manifold and the flow is smooth, then every neigh-
bourhood of an isolated invariant set A contains a smooth isolating block
(N,N+, N−) of A. This means that N is a smooth compact n-manifold
with boundary ∂N = N+ ∪N−, the sets N+ and N− are smooth compact
(n − 1)-manifolds with common boundary N+ ∩ N−, which is a smooth
compact (n− 2)-manifold (without boundary) and on which the flow is ex-
ternally tangent to N . Moreover, the flow is transverse to N+ \N− into N
and transverse to N− \N+ out of N (see [6]).

Lemma 2.1. Let A be an isolated invariant set in M and (N,N+, N−) be
an isolating block of A.

(a) If x ∈ int∂Nα
+, then ∅ 6= J+(x) ⊂ A.

(b) If x ∈ ∂∂Nα
+, then J+(x) ∩ α− 6= ∅.

Proof. (a) Let W be an open neighbourhood of x in M such that W ∩∂N ⊂
α+. Let y ∈ J+(x) and suppose that y /∈ A. There are open sets U
and Y in M such that A ⊂ U ⊂ intN , y ∈ Y and U ∩ Y = ∅. Since
∅ 6= L+(x) ⊂ A, there exists t > 0 such that C+(tx) ⊂ U . There are tn > t,
xn ∈W ∩ ∂N , n ∈ N, such that tn → +∞, xn → x and tnxn → y. So, there
are sn > tn such that snxn ∈ ∂U , n ∈ N. By compactness, the sequence
{snxn : n ∈ N} has a limit point z ∈ ∂U . For every s ∈ R we have eventually
(s + sn)xn ∈ C+(xn). Therefore, sz ∈ N for every s ∈ R. This contradicts
our hypothesis that A is isolated.

(b) There is a sequence {xn : n ∈ N} of points in N+ \ α+ converging to
x. Let σ+(xn) be the time C+(xn) exits N . Then σ+(xn)xn ∈ N− \α− and
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σ+(xn) → +∞, because x ∈ α+. By compactness, the sequence {σ+(xn)xn :
n ∈ N} has a limit point y ∈ J−(x)∩N−. For each s < 0 we have eventually
0 < σ+(xn)+ s < σ+(xn) and therefore (σ+(xn)+ s)xn ∈ N . It follows that
sy ∈ N for every s < 0, that is y ∈ J+(x) ∩ α−.

Remark 2.2. Let A be an isolated invariant set and let x ∈ M . Let
(Ni, N

+
i , N

−
i ), i = 1, 2, be two isolating blocks of A such that N1 ⊂ N2.

Then, J+(x)∩α−2 is homeomorphic to J+(x)∩α−1 . Indeed, for every x ∈ α−2
there is a unique τ(x) ≤ 0 such that τ(x)x ∈ α−1 . It is easy to see that the
function τ : α−2 → R is continuous. Define now the continuous injection
h : α−2 → α−1 by h(x) = τ(x)x. This is also onto, because for every z ∈ α−1
we have C+(z) * N2. Thus h is a homeomorphism, by compactness. It is
now obvious that h(J+(x) ∩ α−2 ) = J+(x) ∩ α−1 . If we have two isolating
blocks of the isolated invariant set A, then we can always find a smaller iso-
lating block. So, the homeomorphism type of J+(x) ∩ α− does not depend
on the choice of the isolating block. If x ∈M is such that ∅ 6= L+(x) ⊂ A,
it is contained in J+(x)\L+(x) and its size and topological complexity may
give information on the explosion of the flow at x. However, it seems to be
difficult to deal with the set J+(x) ∩ α−.

3. Isolated unstable attractors.

Let again φ be a continuous flow on a separable, locally compact, metrizable
space M and A ⊂M be a compact invariant set. The invariant set

W+(A) = {x ∈M : ∅ 6= L+(x) ⊂ A}

is the region of attraction (or stable manifold) of A. If W+(A) is an open
neighbourhood of A, then A is called an attractor.

A compact invariant set A ⊂M is called stable (in the sense of Lyapunov)
if every neighbourhood of A contains a positively invariant neighbourhood
of A. This is equivalent to saying that ∅ 6= J+(x) ⊂ A for every x ∈ A (see
[3, Theorem 1.12]). A stable attractor A is also called asymptotically stable.
In this case ∅ 6= J+(x) ⊂ A for every x ∈W+(A) and the restricted flow in
W+(A) \ A is particularly simple, since it is parallelizable with a compact
global section (see [3, p. 83]). If A is an attractor in M , it is well-known
that the positive first prolongation

D+(A) =
⋃
x∈A

D+(x)

of A is compact invariant and asymptotically stable with W+(D+(A)) =
W+(A) (see [2, Theorem 8.20]). Note that D+(A) = {x ∈M : L−(x)∩A 6=
∅}, if A is an attractor.

Let A ⊂M be an isolated compact invariant set and let (N,N+, N−) be
an isolating block of A. The final entrance time function f : W+(A)\A→ R
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defined by
f(x) = sup{t ∈ R : tx ∈M \N}

is lower semicontinuous. This follows immediately from the definition and
the continuity of the flow. Obviously, f(x)x ∈ α+ and f(tx) = f(x)− t for
every t ∈ R.

Lemma 3.1. The final entrance time function f is discontinuous at x ∈
W+(A) \A if and only if there are xn → x such that f(xn) → +∞.

Proof. If f is discontinuous at x, there are xn → x, xn ∈ W+(A) \ A, and
ε > 0 such that f(xn) > f(x) + ε, for every n ∈ N. By the continuity of the
flow and passing to a subsequence if necessary, there are sn → f(x) such that
snxn ∈ N+\N−, since f(x)x ∈ α+. Thus, eventually f(xn) > f(x)+ε > sn.
This means that C+(snxn) exits N eventually for all large enough n ∈ N.
The exit time function σ+ : N → [0,+∞] defined by σ+(x) = 0, if x ∈ N−,
and

σ+(x) = sup{t > 0 : [0, t]x ∈ N \N−},
if x ∈ N \N−, is continuous. Hence, f(xn) > sn + σ+(snxn) → +∞, since
σ+(f(x)x) = +∞. The converse is obvious.

Proposition 3.2. Let A be an isolated invariant set of a flow φ on a separa-
ble, locally compact, metrizable space M and let (N,N+, N−) be an isolating
block of A. Then:

(i) φ maps R× int∂Nα
+ homeomorphically onto Rint∂Nα

+, and
(ii) φ maps R× ∂∂Nα

+ homeomorphically onto R∂∂Nα
+.

Proof. It is clear that φ maps R× α+ in a one-to-one manner onto Rα+. If
now f : W+(A) \ A→ R is the final entrance time function of the isolating
block, then f |Rint∂Nα

+ is continuous, by Lemmas 2.1 and 3.1. The inverse
of φ|Rα+ is the map h : Rα+ → R× α+ defined by h(x) = (−f(x), f(x)x),
which is therefore continuous on Rint∂Nα

+. To prove the second assertion,
suppose that φ does not map R× ∂∂Nα

+ homeomorphically onto R∂∂Nα
+.

This means that there are t, tn ∈ R and x, xn ∈ ∂∂Nα
+, n ∈ N, such that

tnxn → tx, but the sequence {(tn, xn) : n ∈ N} does not converge to (t, x).
Suppose first that {tn : n ∈ N} is bounded. If s ∈ R is any limit point
of {tn : n ∈ N} and y ∈ ∂∂Nα

+ is any limit point of {xn : n ∈ N}, then
tx = sy and therefore t = s and x = y. Since α+ is compact, it follows
that tn → t and xn → x, contradiction. So {tn : n ∈ N} is unbounded and
passing to a subsequence if necessary we may assume that tn → +∞. For
every s ∈ R we have eventually tn − t+ s > 0 for large values of n ∈ N. So,
(tn − t+ s)xn ∈ N and (tn − t+ s)xn → sx. Hence sx ∈ N for every s ∈ R,
which contradicts the fact that A is isolated.

Corollary 3.3. Let φ be a continuous flow on a separable, locally compact,
metrizable space M and let A ⊂ M be an invariant continuum which is an
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isolated unstable attractor with region of attraction W+(A). Let (N,N+,
N−) be an isolating block of A such that N ⊂W+(A). Then,

R∂∂Nα
+ = {x ∈W+(A) \A : J+(x) * A}

and is homeomorphic image of R× ∂∂Nα
+ under φ.

Concerning the existence of explosions in the region of attraction of an
isolated unstable attractor, we have the following:

Theorem 3.4. Let A be an invariant continuum which is an isolated unsta-
ble attractor of a continuous flow on a connected, locally compact, metrizable
space M . If W+(A)\A is connected, then either D+(A) = M or there exists
a point x ∈W+(A) \D+(A) such that ∅ 6= J+(x) * A.

Proof. Suppose that the conclusion is not true. Since D+(A) 6= M , we
have D+(A) 6= W+(A), because A is an attractor and M is assumed to be
connected. The restricted flow in W+(A) \D+(A) is parallelizable and has
a compact global section S. Let (N,N+, N−) be an isolating block of A
such that N ⊂ D+(A) ∪ (0,+∞)S. By Lemma 3.1 and since we suppose
that ∅ 6= J+(x) ⊂ A for every x ∈W+(A) \D+(A), the final entrance time
function f is continuous on W+(A) \ D+(A) and hence bounded on S. If
W+(A) \D+(A) is closed in W+(A) \A, then we arrive at a contradiction,
since it is already open and W+(A) \ A is connected by assumption, which
implies thatD+(A) = A, that is A would be stable. SoW+(A)\D+(A) is not
closed in W+(A)\A, which means that there exists a sequence {xn : n ∈ N}
of points of W+(A) \ D+(A) converging to some point x ∈ D+(A) \ A.
There are eventually tn < 0 such that tnxn ∈ S, for every n ∈ N, and
since S is compact, we may assume that tnxn → y for some y ∈ S, passing
to a subsequence. Obviously, f(tnxn) = f(xn) − tn. If {tn : n ∈ N} had a
bounded subsequence, and hence some convergent, we would have y ∈ C(x),
contradiction. So, we must have tn → −∞. But then x ∈ J+(y), which
contradicts our assumption in the beginning that the conclusion is not true.

The case D+(A) = M may occur as the example of the flow on S1 with a
single singular point shows. Moreover, in this example there is no explosion
in M \A. As an illustration of Theorem 3.4 consider the smooth flow on R2

defined by the differential equation (in polar coordinates)

r′ = r(1− r) and θ′ = sin2

(
θ

2

)
.(1)

Then, {(1, 0)} is an isolated unstable attractor with W+(1, 0) = R2 \ {(0, 0}
and D+(1, 0) = S1. For 0 < s < 1 or s > 1 the orbit of the point (s, 0) ∈
W+(1, 0) \ D+(1, 0) explodes, because J+(s, 0) = S1 = D+(1, 0). By the
way, the closed disc of radius 1/2 centered at (1, 0) is an isolating block and
the flow does not map R× α+ homeomorphically onto Rα+.
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If A is an isolated unstable attractor the question arises whether the
flow explodes at orbits in D+(A) \ A. In the example on R2 of differential
Equation (1) we have A = {(1, 0)}, D+(A) = J+(1, 0) = S1 and the disc N
of radius 1/2 centered at (1, 0) is an isolating block. In this case the flow does
not explode at the points of D+(A) \ A, because D+(A) ∩ α+ ⊂ int∂Nα

+.
On the other hand, there is a flow on the 2-torus with a single fixed point
x0, which is an isolated unstable attractor with D+(x0) = T 2 and the flow
explodes at two orbits. This flow is induced on T 2 from the differential
equation (in polar coordinates)

r′ = (r − 1)(2− r) and θ′ = sin2

(
θ

2

)
(2)

on the annulus 1 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π.

A sufficient condition for explosion in D+(A)\A is given by the following:

Theorem 3.5. Let A be an invariant continuum which is an isolated un-
stable attractor of a flow on a locally compact, metrizable space M . If the
first integral Alexander-Spanier cohomology group H1(W+(A); Z) is trivial,
then there is a point x ∈ D+(A) \A such that J+(x) * A and therefore the
flow explodes at some orbit in D+(A) \A.

Proof. Suppose that ∅ 6= J+(x) ⊂ A for every x ∈ D+(A) \A. Let χ : R →
(0, 1) be an increasing homeomorphism. Let (N,N+, N−) be an isolating
block of A such that N ⊂ W+(A) and let f : W+(A) \ A → R be the final
entrance time function. Let g : D+(A) → S1 be the function defined by

g(x) =

{
1, if x ∈ A,
exp(2πiχ(f(x))), if x ∈ D+(A) \A.

Our assumption combined with Lemma 3.1 implies that g is contin-
uous. Since D+(A) is an asymptotically stable invariant continuum with
W+(D+(A)) = W+(A), the restricted flow in W+(A) \D+(A) is paralleliz-
able with a compact global section S. The set W0 = D+(A) ∪ [0,+∞)S
is a positively invariant, compact, strong deformation retract of W+(A). If
Wn = D+(A) ∪ [n,+∞)S, n ∈ N, then Wn is a strong deformation retract
of Wm for n ≥ m, and so the inclusion Wn ⊂ Wm induces an isomorphism
in Alexander-Spanier cohomology. Since

D+(A) =
∞⋂

n=0

Wn,

it follows from the continuity property of the Alexander-Spanier cohomology
(see [12, p. 318]) that H1(W+(A); Z) ∼= H

1(D+(A); Z), and so the latter
is trivial. Recall that H1(D+(A); Z) is naturally isomorphic to the abelian
group of homotopy classes of continuous maps of D+(A) to S1 [7, Theorem
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8.1]. Thus, g must be homotopic to a constant, that is g = exp(2πih), for
some continuous function h : D+(A) → R. Since A is connected, h takes an
integer value, say k, on A. Moreover, for every x ∈ D+(A) \A, the function
ψ : C+(x) ∪ A → Z defined by ψ(tx) = h(tx) − χ(f(tx)), for t ≥ 0, and
ψ(A) = k, is continuous and hence constant, because ∅ 6= L+(x) ⊂ A. This
implies that h(x) = χ(f(x)) + k, for every x ∈ D+(A) \ A. On the other
hand, L−(x)∩A 6= ∅, for every x ∈ D+(A) \A, which means that there are
tn → −∞, such that the sequence {tnx : n ∈ N} converges to some point of
A. Consequently, f(tnx) → +∞ and k = h(A) = limn→+∞ h(tnx) = 1 + k,
contradiction.

If A is not isolated, Theorem 3.5 is not true. Consider for example the
extension to the 2-sphere S2 of the parallel flow on R2. The point at infinity
∞ is fixed and is an unstable attractor, but not isolated. Its region of
attraction is W+(∞) = S2 = D+(∞) and J+(x) = {∞} for every x ∈
S2 \ {∞}. A more interesting example is the following: In [1, Section 4]
a continuous flow on the 4-sphere S4 is constructed, in which the dyadic
solenoid Y = {(zn)n≥0 : zn ∈ S1 and zn = z2

n+1, n ≥ 0} embedds as an
isolated minimal invariant set. Considering S4 as the unreduced suspension
of the 3-sphere S3, that is the quotient space obtained from S3 × [−1, 1] by
identifying S3×{±1} to points, the poles of S4, Y embedds to {[y, 0] : y ∈ Y }
and the flow has the following properties:

(i) The poles of S4 are fixed points.
(ii) If y /∈ Y and s 6= ±1, then J+[y, s] is the north pole and J−[y, s] is

the south pole.
(iii) If y ∈ Y and 0 < s < 1, then J+[y, s] is the north pole and L−[y, s] =

Y , while if −1 < s < 0, then J−[y, s] is the south pole and L+[y, s] =
Y .

If y0 ∈ Y , the invariant continuum A = Y ∪ C[y0, 1/2] is a non-isolated
unstable attractor with D+(A) = Y ∪

⋃
y∈Y C[y, 1/2] and W+(A) = S4 \

{south pole}. So H1(W+(A); Z) is trivial but J+[y, s] = {north pole} ⊂ A

for every [y, s] ∈ D+(A) \ A. In this example H1(A; Z) ∼= H
1(Y ; Z) is also

not finitely generated.
We shall examine now topological properties of an isolated unstable at-

tractor A in case there is essentially no explosion inD+(A)\A andD+(A)\A
is not too bad.

Proposition 3.6. Let A be an invariant continuum which is an isolated
unstable attractor of a flow on a locally compact, metrizable space M . If
D+(A) \ A is locally connected, then it has a finite number of connected
components. If moreover ∅ 6= J+(x) ⊂ A for every x ∈ D+(A) \ A, then
the number of the connected components of D+(A) \ A is not greater than
rankH1(W+(A); Z).
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Proof. We shall prove first that D+(A) \ A has a finite number of con-
nected components. Every connected component of D+(A) \ A is open in
D+(A), since D+(A) \ A is assumed to be locally connected. Suppose that
D+(A) \ A has an infinite number of connected components Cn, n ∈ N.
Let (N,N+, N−) be an isolating block of A. Then, Cn ∩ ∂N 6= ∅ and
if we pick points xn ∈ Cn ∩ ∂N , n ∈ N, they have some limit point
x ∈ D+(A) ∩ ∂N ⊂ D+(A) \ A, which must threfore be in some connected
component C of D+(A) \ A. But then C is an open neighbouhood of x in
D+(A) and so we must have xn ∈ C for infinitely many values of n, con-
tradiction. Thus, D+(A) \A has a finite number of connected components,
say C1, . . . , Ck. To prove the second assertion, note first that Cj ∪ A is an
invariant continuum for all j = 1, 2, . . . , k. Let f : W+(A) \ A → R be the
final entrance time function of the isolating block. For each j = 1, 2, . . . , k
let gj : D+(A) → S1 be the function defined by

gj(x) =

{
1, if x ∈ D+(A) \ Cj ,
exp(2πiχ(f(x))), if x ∈ Cj ,

where χ : R → (0, 1) is an increasing homeomorphism. Since D+(A) \ A
has finitely many connected components and f is continuous on D+(A) \
A , gj is continuous. The argument in the proof of Theorem 3.5 shows
that gj |Cj ∪ A is not homotopic to a constant. Consequently, (gj |Cj ∪
A)m, for m 6= 0, defines a nonzero element of H1(Cj ∪ A; Z). We shall
prove that g1, . . . , gk define a set of linearly independent cohomology classes
in H

1(D+(A); Z). Indeed, let n1, . . . , nk ∈ Z be such that gn1
1 . . . gnk

k is
homotopic to a constant. There is a continuous function h : D+(A) →
R such that gn1

1 . . . gnk
k = exp(2πih). It follows from the definitions that

(gj |Cj ∪ A)nj = exp(2πi(h|Cj ∪ A)), and so it is homotopic to a constant.
Hence nj = 0, for every j = 1, 2, . . . , k. This completes the proof.

Theorem 3.7. Let A be an invariant continuum and an isolated unstable
attractor of a flow φ on a locally compact ANR M , such that:

(i) D+(A) \A is an ANR, and
(ii) ∅ 6= J+(x) ⊂ A for every x ∈ D+(A) \A.

Then H
q(A; Z) is finitely generated for all q.

Proof. We observe first that the restricted flow on the invariant locally com-
pact subspaceD+(A)\A ofM is parallelizable with a compact global section.
Actually, if (N,N+, N−) is an isolating block of A, such that N ⊂W+(A),
then S = D+(A) ∩ α+ ⊂ int∂Nα

+, by Assumption (ii) and Lemma 2.1, and
is a compact global section to the restricted flow on D+(A) \ A, by Propo-
sition 3.2. The assumption that D+(A) \ A is an ANR implies that S is
an ANR also. It follows that Hq(S; Z) is finitely generated for all q and we
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have the chain of isomorphisms

H
q+1(D+(A), A; Z) ∼= H

q+1
c (D+(A) \A; Z) ∼= H

q+1
c (R× S; Z)

∼= H
q(S; Z) ∼= Hq(S; Z),

where H∗
c denotes Alexander-Spanier cohomology with compact supports

(see [12, p. 320]). From the exact sequence of the pair (D+(A), A) we
deduce that Hq(A; Z) is finitely generated for all q.

4. Singular unstable attractors in the 2-sphere.

Let φ be a continuous flow on a connected 2-manifold M having a fixed point
x0, which we assume to be an isolated invariant set. Every neighbourhood of
x0 contains an isolating compact neighbourhood of x0, which is a compact 2-
manifold with boundary. The interior V of such a neighbourhood is an open
2-manifold of finite genus and with finitely many ends. We can reparametrize
the local flow in V to get a flow in V with respect to which {x0} is the only
invariant set in V , apart V itself. It follows from the Smoothing Theorem
of C. Gutierrez (see [10]) that the flow in V is topologically equivalent to a
smooth flow, that is there exists a homeomorphism h : V → V which maps
the oriented orbits in V onto the oriented orbits of some smooth flow in
V . Since {x0} is an isolated invariant set with respect to the smooth flow
also, it has a smooth isolating block (P, P+, P−) with respect to the smooth
flow. Clearly, (h−1(P ), h−1(P+), h−1(P−)) is an isolating block for {x0}
with respect to the initial flow φ, and h−1(P ) is a topological compact 2-
manifold with boundary h−1(P+) ∪ h−1(P−). The sets h−1(P+), h−1(P−)
are topological compact 1-manifolds with common boundary h−1(P+) ∩
h−1(P−), which is a finite set. If we start with a disc neighbourhood, then
V has genus zero and so does h−1(P ). Summarizing we have the following:

Lemma 4.1. Let φ be a continuous flow on a connected 2-manifold M and
let x0 ∈ M be a fixed point of the flow which is an isolated invariant set.
Then every neighbourhood of x0 contains an isolating block (N,N+, N−)
such that N is a genus zero compact 2-manifold with boundary, and N+,
N− are compact 1-manifolds with common boundary N+ ∩N−, which is a
finite set.

Proposition 4.2. The set ∂∂Nα
+ is finite and α+ has finitely many con-

nected components.

Proof. Suppose on the contrary that ∂∂Nα
+ has infinitely many points. By

compactness, there is a sequence {xn : n ∈ N} in ∂∂Nα
+ converging to

a point x ∈ ∂∂Nα
+. Let I be a small open interval in N+ \ N+ ∩ N−

containing x. Passing to a subsequence if necessary, we may assume that
xn ∈ I and if [xn, x] is the subinterval of I with endpoints xn and x, then
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[xn+1, x] ⊂ [xn, x], for every n ∈ N. Let U be a disc neighbourhood of x0

contained in intN . There is a T > 0 such that C+(Tx) ⊂ U . A similar
argument as in the proof of Lemma 2.1(a) shows that we must also have
C+(Txn) ⊂ U , for large n. Since the flow is transverse to N+ \ N+ ∩ N−

into N , some small closed interval J ⊂ I containing x in its interior is a local
section to the flow of extent T , by [11, Lemma VII.2.9]. This means that the
flow maps [−T, T ]×J homeomorphically onto its image. So, φ([0, T ]×J) is a
disc inN and J = φ([0, T ]×J)∩∂N . For large n we have xn ∈ J . The simple
closed curve T [xn, x]∪C+(Txn)∪C+(Tx)∪{x0} bounds a disc Vn in U , by
the Jordan-Schönflies theorem. It follows that the set Dn = φ([0, T ]×J)∪Vn

is a disc in N and ∂Dn = [xn, x] ∪ C+(xn) ∪ C+(x) ∪ {x0}. It is evident
that Dn is positively invariant, since the flow is transverse to [xn, x] into Dn

and no positive semiorbit starting on (xn, x) ∪ intDn can cross ∂Dn. This
implies that [xn, x] ⊂ α+ and hence xn+1 ∈ int∂Nα

+. This contradiction
proves the first assertion. The second follows from the first.

In Proposition 4.2 we have not assumed that the fixed point is an attrac-
tor. Combining it now with Corollary 3.3 we get the following:

Corollary 4.3. Let x0 be a fixed point of a continuous flow on a connected
2-manifold M . If x0 is an isolated unstable attractor, then the flow on
W+(x0) \ {x0} explodes at finitely many orbits.

In the rest of this section we shall be concerned with the structure of
the flow in the region of attraction of a fixed point of a flow on the 2-
sphere S2, which is an unstable attractor. We are mainly interested in the
topological structure of the positive first prolongation of the fixed point and
the dynamics of the flow in it. Most of the results will be proved without
the assumption that the fixed point is an isolated invariant set.

Proposition 4.4. Let x0 ∈ S2 be a fixed point of a continuous flow φ on
S2. If x0 is an unstable attractor, then L+(x) = L−(x) = {x0} for every
x ∈ D+(x0).

Proof. Since D+(x0) is a compact invariant set, we have ∅ 6= L−(x) ⊂
D+(x0) for every x ∈ D+(x0). If y ∈ L−(x), then x0 ∈ L+(y) ⊂ L−(x).
Suppose that L−(x) contains and some other point z 6= x0. Then, z ∈
D+(x0) and z is not fixed. Moreover, L+(z) = L−(z) = {x0}, because
x0 is the only fixed point in W+(x0) (see [11, Proposition 1.11]). Thus,
C(z) is a simple closed curve and S2 \ C(z) has two connected components
with common boundary C(z), whose closures are closed discs by the Jordan-
Schönflies theorem. Both are invariant and C(x) is contained in one of them,
call it B. Let S be a local section to the flow at z. That is, S is an open
arc passing through z and φ maps (−ε, ε) × S homeomorphically onto an
open neighbourhood of z for some ε > 0 (see [11, Corollary 2.6]). Since
z ∈ L−(x), there is some t < 0 such that tx ∈ S and we can choose t
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such that C+(tx) ∩ S = {tx}, because L+(x) = {x0}. Let J be the open
subarc in S with endpoints tx and z. The set K = C+(tx) ∪ J ∪ C+(z)
is a simple closed curve and S2 \ K has two connected components. One
of them is positively invariant and the other is negatively invariant. Let
D be the one that is negatively invariant. Then (−∞, 0)z ⊂ D. Since
z ∈ L−(x) and J ⊂ B, there is some s < t such that sx ∈ J . But then
tx ∈ (0,+∞)(sx) ⊂ S2 \D ⊂ S2 \ J , contradiction.

Theorem 4.5. Let x0 be a fixed point of a continuous flow φ on S2. If x0

is an unstable attractor, then every point x ∈ D+(x0) \ {x0} has an open
neighbourhood V such that (D+(x0)\{x0})∩V is homeomorphic to the open
interval (−1, 1) or the open rectangle (−1, 1)×(−1, 1) or to [−1, 1)×(−1, 1).

Proof. Let x ∈ D+(x0) \ {x0}. Since x is not fixed, there is a local section
to the flow through x. Thus there are an open arc S containing x and ε > 0
such that φ maps (−ε, ε)×S homeomorphically onto an open neighbourhood
of x. We can shrink S, if necessary, so that C(x) ∩ S = {x}, because
L+(x) = L−(x) = {x0}, by Proposition 4.4. The set S \ {x} is the disjoint
union of two open intervals S1, S2 in S with one common endpoint x. If there
are open intervals I ⊂ S1 and J ⊂ S2 with common endpoint x such that
I ∪J ⊂W+(x0) \D+(x0), or I ∪J ⊂ D+(x0), or I ⊂W+(x0) \D+(x0) and
J ⊂ D+(x0), or vice versa, then we are done. We shall prove that otherwise
we are led to a contadiction. Suppose that every open interval I ⊂ S1 with
one endpoint x contains points of D+(x0) and W+(x0) \ D+(x0). There
is a sequence {xn : n ∈ N} of points in D+(x0) ∩ S1, which converges
monotonically to x, such that [xn, xn+1] ∩ (W+(x0) \ D+(x0)) 6= ∅, where
[xn, xn+1] denotes the closed interval on S1 with endpoints xn and xn+1. The
monotonicity of convergence to x means that [x, xn+1] ⊂ [x, xn] for every
n ∈ N. From Proposition 4.4 we have L+(xn) = L−(xn) = {x0} for every
n ∈ N. Let D be the closed invariant disc in S2 bounded by the simple closed
curve C(x), such that [x, xn] ⊂ D for some (and hence for all) n ∈ N. Then,
C(xn) bounds a closed disc Dn ⊂ D such that [x, xn] ⊂ D \ intDn. The
monotonicity implies that Dn ⊂ Dm and [xn, xm] ⊂ Dm \ intDn for n < m.
If yn ∈ [xn, xn+1] ∩ (W+(x0) \D+(x0)), then C(yn) ⊂ intDn+1 \Dn and it
hits some connected component of a global section Σ of the parallelizable
restricted flow in W+(x0) \D+(x0), which is a compact 1-manifold, that is
Σ is finite union of disjoint simple closed curves Σ1,...,Σk. If C(yn)∩Σj 6= ∅,
then Σj ⊂ intDn+1 \Dn, because Σ ∩ C(xn+1) ∪ C(xn) = ∅. But the sets
intDn+1 \ Dn, n ∈ N are disjoint and infinitely many. This contradiction
completes the proof.

From Proposition 3.6 and Theorem 4.5 we have the following:

Corollary 4.6. If x0 ∈ S2 is a fixed point of a continuous flow on S2 and
is an isolated unstable attractor, then D+(x0) \ {x0} is an ANR and has
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finitely many connected components. Each connected component is either
an orbit homeomorphic to R or a noncompact 2-manifold with nonempty
and noncompact boundary, with finitely many boundary components.

The dynamics in the positive first prolongation of a fixed point of a contin-
uous flow on S2 which is an unstable attractor is described by the following:

Theorem 4.7. If x0 ∈ S2 is a fixed point of a continuous flow on S2 and is
an unstable attractor, then the restricted flow in D+(x0)\{x0} is completely
unstable.

Proof. Suppose on the contrary that there is some x ∈ D+(x0)\{x0}, which
is non-wandering with respect to the restricted flow in D+(x0) \ {x0}. This
means that there are a sequence {xn : n ∈ N} of points of D+(x0) \ {x0}
and tn → +∞ such that xn → x and tnxn → x. By Proposition 4.4, C(x) is
a simple closed curve and bounds an invariant closed disc D in S2 such that
C(xn) ⊂ intD for every n ∈ N, passing to a subsequence if necessary. Let S
be an open arc that is a local section to the flow at x of some extent ε > 0,
and such that C(x)∩S = {x}. Let I be the connected component of S \{x}
which lies in intD. For large enough values of n, there are |sn| < ε and
|rn| < ε such that snxn ∈ I and (tn +rn)xn ∈ I. Since tn → +∞, eventually
we have tn + rn > sn + ε. Let Tn > ε be the first time C+(snxn) hits I. If
[snxn, Tnxn] denotes the closed interval in I with endpoints snxn and Tnxn,
then K = [sn, Tn]xn ∪ [snxn, Tnxn] is a simple closed curve and bounds a
closed disc D′ ⊂ intD, which is positively or negatively invariant. But then
L−(xn) ⊂ D′ or L+(xn) ⊂ D′, which contradicts that xn ∈ D+(x0) \ {x0}.

Recall that a separatrix in a completely unstable flow is an orbit with
nonempty positive prolongational limit set. It follows from Corollary 4.3
that if x0 is a fixed point of a continuous flow on S2 which is an isolated
unstable attractor, then the restricted flow in D+(x0) \ {x0} is completely
unstable with finitely many separatrices.
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