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In this paper, we discuss the asymptotic behavior of the
positive solutions of the problem −∆u = au − bup, u|∂Ω = 0
as p → 1 + 0 and as p → ∞. We show that, for each case, the
behavior is determined by a limiting problem. Moreover, the
limiting problem is of free boundary nature when p → ∞.

1. Introduction and main results.

In this paper, we study the asymptotic behavior of positive solutions of the
problem

−∆u = au− b(x)up, x ∈ Ω; u = 0, x ∈ ∂Ω,(1.1)

for p near 1 and near ∞, respectively. Here Ω is a bounded smooth domain
in RN (N ≥ 1) and b(x) is a nonnegative function in C(Ω), a and p are
constants but the exponent p is always greater than 1.

Problem (1.1) arises from mathematical biology and Riemannian geome-
try, and has attracted considerable interests; see, for example, [AT], [AM],
[D], [dP], [DH], [FKLM], [KW], [M] and [O]. The dependence of the
positive solutions of (1.1) on the parameter a is well understood but little
is known about the dependence on p.

When b(x) is strictly positive on Ω, (1.1) is the steady-state logistic equa-
tion and it is well-known that for fixed p > 1 it has no positive solution if
a ≤ λΩ

1 and there is a unique positive solution u = ua when a > λΩ
1 , where

λΩ
1 denotes the first eigenvalue of the problem

−∆u = λu, u|∂Ω = 0.

Moreover, a → ua is continuous and strictly increasing as a function from
(λΩ

1 ,∞) to C(Ω) (with the natural order), and

lim
a→λΩ

1 +0
ua(x) = 0 uniformly in Ω;

lim
a→∞

ua(x) = ∞ uniformly on any compact subset of Ω.

When b−1(0) := {x ∈ Ω : b(x) = 0} is a proper subset of Ω, the behavior
of (1.1) is more complicated. Assume for simplicity that b−1(0) = Ω0 ⊂⊂ Ω,
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where Ω0 is open, connected and with smooth boundary. Then it is well-
known that (1.1) has no positive solution unless a ∈ (λΩ

1 , λ
Ω0
1 ), in which case

there is a unique positive solution ua which varies continuously with a and
is strictly increasing in a. Moreover, ua → 0 uniformly on Ω as a→ λΩ

1 + 0,
but as a→ λΩ0

1 , ua(x) →∞ uniformly on Ω0 and ua → U uniformly on any
compact subset of Ω \ Ω0, where U is the unique minimal positive solution
of the boundary blow-up problem

−∆u = au− b(x)up, x ∈ Ω \ Ω0; u|∂Ω = 0, u|∂Ω0 = ∞.

We refer to [DH] and the references therein for more details.
To understand the effect of the exponent p on the unique positive solution

of (1.1), we fix a and consider the extreme cases, that is when p→ 1+0 and
when p→∞. In each case, we obtain a limiting problem which determines
the asymptotical behavior of (1.1).

To describe our results, we need to recall several simple properties of the
first eigenvalue of the Laplacian operator. Let φ ∈ L∞(Ω) and denote by
λΩ

1 (φ) the first eigenvalue of the problem

−∆u+ φu = λu, u|∂Ω = 0.

Clearly, λΩ
1 (0) = λΩ

1 . It is well-known that λΩ
1 (φn) → λΩ

1 (φ) whenever
φn → φ in L∞(Ω), and when φ ≤ ψ but φ 6≡ ψ in Ω, then λΩ

1 (φ) < λΩ
1 (ψ).

It follows easily that, when b(x) ≥ δ > 0 on Ω, then λ(α) := λΩ
1 (αb) is

a strictly increasing function with λ(0) = λΩ
1 and λ(α) → ∞ as α → ∞.

Therefore, for any given a > λΩ
1 , there is a unique α > 0 such that

a = λΩ
1 (αb).(1.2)

We denote by Uα the corresponding positive normalized eigenfunction:

−∆Uα + αbUα = aUα, Uα > 0, Uα|∂Ω = 0, ‖Uα‖∞ = 1.(1.3)

Here and in what follows, we use the notation ‖ · ‖∞ = ‖ · ‖L∞(Ω).
When b−1(0) = Ω0 is not empty, we assume as before that Ω0 ⊂⊂ Ω is

open, connected and with smooth boundary. Then λ(α) = λΩ
1 (αb) is still

strictly increasing with λ(0) = λΩ
1 , but (see [D] and [FKLM])

lim
α→∞

λ(α) = λΩ0
1 .

Thus for any given a ∈ (λΩ
1 , λ

Ω0
1 ), there is a unique α > 0 satisfying (1.2)

which determines a unique Uα through (1.3).
We are now ready to state our main results.

Theorem 1.1. Suppose that b(x) > 0 on Ω and a > λΩ
1 . Let up denote the

unique positive solution of (1.1). Then the following results hold:
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(i) When a < λΩ
1 (b), we have up → 0 uniformly on Ω as p → 1 + 0.

Moreover, as p→ 1 + 0,

(p− 1) ln ‖up‖∞ → lnα, up/‖up‖∞ → Uα in C1(Ω),(1.4)

where α and Uα are determined by (1.2) and (1.3), respectively.
(ii) When a > λΩ

1 (b), we have up → ∞ uniformly on any compact subset
of Ω as p→ 1 + 0. Moreover, (1.4) holds.

(iii) When a = λ1(b,Ω), we have up → cU1 in C1(Ω) as p → 1 + 0, where
U1 is given by (1.3) with α = 1 and

c = exp
(∫

Ω
bU2

1 lnU1dx
/∫

Ω
bU2

1dx

)
.

To understand the case that p→∞, we need the following free boundary
problem:

−∆w = aχ{w<1}w, w > 0, w|∂Ω = 0, ‖w‖∞ = 1,(1.5)

which also arises as a limiting problem for the degenerate predator-prey
model (see [DD2]). The following result has been proved in [DD2]:

Proposition 1.2. For any a ≥ λΩ
1 , (1.5) has a unique weak solution, and

when a < λΩ
1 , (1.5) has no solution.

With the help of Proposition 1.2, we will prove the following:

Theorem 1.3. Suppose that b(x) > 0 on Ω and a > λΩ
1 . Let up denote the

unique positive solution of (1.1). Then up → v in C1(Ω) as p → ∞, where
v is the unique positive weak solution of (1.5).

When Ω0 := b−1(0) is a nontrivial subset of Ω, it turns out that the tech-
niques in proving Theorems 1.1 and 1.3 are not enough. One new ingredient
for dealing with this case is the following result obtained in [DD1, Lemma
2.2]:

Lemma 1.4. Suppose that {un} ⊂ C1(Ω) satisfies (in the weak sense) for
some positive constant λ,

−∆un ≤ λun, un ≥ 0 in Ω; un|∂Ω = 0, ‖un‖∞ = 1.

Then it has a subsequence converging weakly in H1
0 (Ω) and strongly in Lq(Ω)

for any q ≥ 1, to some u with ‖u‖∞ = 1.

Theorem 1.5. Suppose that Ω0 = b−1(0) has nonempty interior which is
connected with smooth boundary and Ω0 ⊂⊂ Ω. Let a ∈ (λΩ

1 , λ
Ω0
1 ) and denote

by up the unique positive solution of (1.1). Then the conclusions (i)-(iii) in
Theorem 1.1 hold.

As Theorem 1.5 concludes that when b−1(0) 6= ∅ and p→ 1, the behavior
of up is the same as when b−1(0) = ∅, it is tempting to think that this is
also the case when p→∞. It turns out, however, this is not true.
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Theorem 1.6. Suppose that Ω0 = b−1(0) has nonempty interior which is
connected with smooth boundary and Ω0 ⊂⊂ Ω. Let a ∈ (λΩ

1 , λ
Ω0
1 ) and

denote by up the unique positive solution of (1.1). Suppose pn → ∞ and
denote un = upn. Then, subject to a subsequence, un → u in Lq(Ω) for all
q ≥ 1, where u ∈ K is a nontrivial nonnegative solution of the following
variational inequality:∫

Ω
∇u · ∇(v − u)dx−

∫
Ω
au(v − u)dx ≥ 0, ∀v ∈ K,(1.6)

K := {w ∈ H1
0 (Ω) : w ≤ 1 a.e. in Ω \ Ω0}.

In a forthcoming paper ([DD3]), we will show that (1.6) has a unique
positive solution for a ∈ (λΩ

1 , λ
Ω0
1 ), and hence up → u as p → ∞ in Lq(Ω).

Let us note that (1.6) is different from (1.5). In fact, it has been shown in
[DD2] that (1.5) is equivalent to the variational inequality∫

Ω
∇u · ∇(v − u)dx−

∫
Ω
au(v − u)dx ≥ 0, ∀v ∈ K0,

K0 := {w ∈ H1
0 (Ω) : w ≤ 1 a.e. in Ω}.

Moreover, it is possible to show that for any given compact subset D of Ω,
there exists a large aD such that the unique solution of (1.5) satisfies w = 1
on D when a > aD. (More precise results are discussed briefly in [DD2].)
It is easily seen that for such a, and for those Ω0 ⊂ D satisfying λΩ0

1 > a,
if we let u = w on Ω \ Ω0; and on Ω0, let u equal the unique solution to
−∆u = au, u|∂Ω0 = 1, then u solves (1.6).

Remark 1.7. From our proofs, it is easy to see that our assumptions on
the smoothness of ∂Ω0 can be considerably weakened. For example, all our
main results hold if Ω0 only has Lipschitz boundary.

Remark 1.8. If b−1(0) consists of a single point in Ω, then Theorems 1.5
and 1.6 reduce to Theorems 1.1 and 1.3, respectively. This follows easily by
checking the proofs. We intend to further consider the case that b−1(0) has
measure zero in [DD3].

The rest of the paper consists of the proofs of our results given above.
Theorem 1.1 is proved in Section 2; Theorems 1.3 and 1.5 are proved in
Sections 3 and 4, respectively; Section 5 gives the proof of Theorem 1.6.
The main techniques involved are various elliptic estimates and comparison
principles. Several results and techniques from [DD2] will be used, including
fine properties of functions in Sobolev spaces and the use of variational
inequalities.
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2. Proof of Theorem 1.1.

Set Mp = ‖up‖∞ = maxΩ up. Then it is clear that the maximum is achieved
in the interior of the domain Ω, say at xp ∈ Ω. Using the equation for up at
the maximum point x = xp we have

aMp − b(xp)Mp
p ≥ 0.

Hence,

Mp−1
p ≤ a/min

Ω
b.(2.1)

To understand the asymptotic behaviour of up as p → 1 + 0, we choose
an arbitrary sequence pn → 1 + 0 and use the notation

un = upn , Mn = Mpn , αn = Mpn−1
pn

, wn = un/Mn.(2.2)

Clearly wn satisfies

−∆wn = awn − αnbw
pn
n , wn|∂Ω = 0.(2.3)

From (2.1) one sees that the right-hand side of (2.3) has a bound in L∞(Ω)
which is independent of n. Thus, by standard elliptic estimates, {wn} is
bounded in W 2,q(Ω) for any q > 1. By the Sobolev imbedding theorem,
this implies that this sequence is compact in C1(Ω). Therefore, subject to
a subsequence, wn → w in C1(Ω). We may also assume that αn → α. Then
from (2.3) we obtain, in the weak sense,

−∆w = (a− αb)w, w|∂Ω = 0.

As w is nonnegative with ‖w‖∞ = 1, we necessarily have a = λΩ
1 (αb) and

hence α is uniquely determined by (1.2) and w = Uα given by (1.3). This
implies that αn → α and wn → Uα hold for the entire original sequences.
Therefore, we have proved that Mp−1

p → α and up/Mp → Uα in C1(Ω) as
p→ 1 + 0. This shows the validity of (1.4).

When a < λΩ
1 (b), we must have α ∈ (0, 1) and it follows from

lim
p→1+0

(p− 1) lnMp = lnα(2.4)

that Mp → 0 as p→ 1 + 0. This proves Part (i) of Theorem 1.1.
When a > λΩ

1 (b), we must have α > 1 and it follows from (2.4) that
Mp → ∞ as p → 1 + 0. To prove Part (ii) of Theorem 1.1, it remains to
show that as p→ 1 + 0, up(x) →∞ uniformly on any compact subset of Ω.
To this end, for any given large number β, we define V = βUα and obtain

∆V + aV − bV p = b(αV − V p).

For those x where V (x) ≤ 1, αV − V p ≥ (α− 1)V ≥ 0; on the set {x ∈ Ω :
V (x) ≥ 1}, since V p → V uniformly as p→ 1, and since αV −V ≥ α−1 > 0,
we can find ε = ε(β) > 0 small enough such that αV − V p > 0 for all
p ∈ (1, 1 + ε). Thus, for p ∈ (1, 1 + ε), V is a lower solution to (1.1). As
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any large positive constant is an upper solution of (1.1), its unique positive
solution up must satisfy up ≥ V = βUα. This implies that as p → 1 + 0,
up →∞ uniformly on any compact subset of Ω and Part (ii) of Theorem 1.1
is proved.

We consider now the case that a = λΩ
1 (b). We have α = 1 and hence

cannot draw a conclusion for limp→1+0Mp from (2.4). Denote wp = up/Mp.
We have

−∆wp = awp − bMp−1
p wp

p, wp|∂Ω = 0.

Multiply this equation by U1, which is given by (1.3) with α = 1, and
integrate by parts. It results∫

Ω
(a− b)U1wpdx =

∫
Ω
(awp − bMp−1

p wp
p)U1dx.

Hence ∫
Ω
b(wp −Mp−1

p wp
p)U1dx = 0,

and ∫
Ω

Mp−1
p − 1
p− 1

bwp
pU1dx =

∫
Ω

1− wp−1
p

p− 1
bwpU1dx.(2.5)

Since wp → U1 as p → 1 + 0 in C1(Ω), and by the Hopf boundary lemma,
∂U1/∂ν < 0 on ∂Ω, we obtain wp/U1 → 1 uniformly on Ω. It follows that

‖ lnwp − lnU1‖L∞(Ω) = o(1)

as p→ 1 + 0. Therefore,

1− wp−1
p

p− 1
wp =

1− e(p−1)(ln U1+o(1))

p− 1
wp → U1 lnU1

uniformly on Ω as p → 1 + 0. From this, we see immediately that the
right-hand side of (2.5) converges to∫

Ω
bU2

1 lnU1dx.

Thus,

lim
p→1+0

∫
Ω

Mp−1
p − 1
p− 1

bwp
pU1dx =

∫
Ω
bU2

1 lnU1dx,

and

lim
p→1+0

Mp−1
p − 1
p− 1

=
∫

Ω
bU2

1 lnU1dx
/∫

Ω
bU2

1dx.(2.6)

We show next that

c := lim
p→1+0

Mp
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exists and is uniquely determined by

ln c =
∫

Ω
bU2

1 lnU1dx
/∫

Ω
bU2

1dx.

We first claim that

M∗ := limp→1+0Mp > 0, M∗ := limp→1+0Mp <∞.

Otherwise, we can find a sequence pn → 1 + 0 such that Mn := Mpn → 0 or
Mn →∞. In the former case, we deduce, for all large n,

Mpn−1
n − 1
pn − 1

≤ εpn−1 − 1
pn − 1

→ ln ε

as n → ∞, for any given ε > 0. This leads to a contradiction to (2.6). In
the latter case, we obtain, for all large n,

Mpn−1
n − 1
pn − 1

≥ Mpn−1 − 1
pn − 1

→ lnM

as n→∞, for any given M > 0. This also leads to a contradiction to (2.6).
Thus, 0 < M∗ ≤ M∗ < ∞. For any given small ε > 0, a similar argument
to the above leads to

ln(M∗ + ε) ≥
∫

Ω
bU2

1 lnU1dx
/∫

Ω
bU2

1dx,

ln(M∗ − ε) ≤
∫

Ω
bU2

1 lnU1dx
/∫

Ω
bU2

1dx.

Thus we necessarily have

M∗ = M∗ = c = exp
(∫

Ω
bU2

1 lnU1dx
/∫

Ω
bU2

1dx

)
,

and up → cU1 as p→ 1+0 in C1(Ω). This finishes the proof of Theorem 1.1.

3. Proof of Theorem 1.3.

We clearly still have (2.1). Let pn be a sequence converging to ∞ and use
the notations in (2.2). We find that wn satisfies (2.3) whose right-hand side
has a bound in L∞(Ω) which is independent of n. Thus, as in Section 2,
subject to a subsequence, wn → w in C1(Ω).

The equation satisfied by wn can also be written as

−∆wn = awn − bupn−1
n wn, wn|∂Ω = 0.(3.1)

From (2.1) we deduce

0 ≤ upn−1
n ≤ a/min

Ω
b.
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Hence, by passing to a subsequence, we may assume that bupn−1
n → ψ weakly

in L2(Ω). Clearly we must have 0 ≤ ψ ≤ ‖b‖∞a/minΩ b. Passing to the
weak limit in (3.1) we find that w is a nontrivial weak solution to the problem

−∆w = (a− ψ)w, w|∂Ω = 0.(3.2)

As a− ψ ∈ L∞(Ω), it follows from the Harnack inequality that w(x) > 0 in
Ω.

From (2.1) we obtain

Mn ≤
(
a/min

Ω
b
)1/(pn−1)

→ 1 as n→∞.

It follows that limn→∞Mn ≤ 1. If limn→∞Mn < 1, then by passing to a
subsequence, we may assume that Mn ≤ 1 − ε for all n and some ε > 0.
It follows then upn−1

n ≤ (1 − ε)pn−1 → 0 as n → ∞. Hence ψ = 0 and w
is a positive solution to −∆w = aw, w|∂Ω = 0. This implies that a = λΩ

1 ,
contradicting our assumption that a > λΩ

1 . Thus we have proved that
Mn → 1 as n→∞. It follows that un → w in C1(Ω).

Let Ω1 := {x ∈ Ω : w(x) < 1}. Then for any x ∈ Ω1, we can find δ > 0
such that un(x) < 1 − δ for all large n. It follows that 0 ≤ un(x)pn−1 ≤
(1 − δ)pn−1 → 0 as n → ∞. Thus we must have ψ = 0 a.e. on Ω1. On the
rest of Ω, w = 1 and we necessarily have ∆w = 0. (Here we regard w as
a member of W 2,q(Ω), q > 1.) Thus from (3.2), we deduce ψ = a a.e. on
Ω \ Ω1. Therefore, w satisfies

−∆w = aχ{w<1}w, w > 0, w|∂Ω = 0, ‖w‖∞ = 1.(3.3)

By Proposition 1.2, problem (3.3) has a unique solution v. Hence un → v
in C1(Ω) for the entire original sequence. This implies that up → v in C1(Ω)
as p→∞. The proof of Theorem 1.3 is complete.

4. Proof of Theorem 1.5.

We will mainly follow the lines of the proof of Theorem 1.1. The main
difficulty is that the estimate (2.1) is of no use anymore and therefore it is
unclear whether {αn} is still bounded. We will use Lemma 1.4 to overcome
this difficulty.

Let pn be an arbitrary sequence of numbers converging to 1+0. We employ
the notations in (2.2) and find that wn meets the conditions in Lemma 1.4.
Hence, by passing to a subsequence, we may assume that wn → w weakly
in H1

0 (Ω), strongly in Lq(Ω) for any q ≥ 1, and ‖w‖∞ = 1.
We claim that {αn} is bounded. Otherwise, by passing to a subsequence,

we may assume that αn →∞. Now we multiply (2.3), the equation satisfied
by wn, by φ/αn with φ ∈ C∞0 (Ω) and integrate by parts. We obtain

(αn)−1

∫
Ω
wn(−∆φ)dx = (αn)−1

∫
Ω
awnφdx−

∫
Ω
bwpn

n φdx.
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Letting n→∞, we deduce ∫
Ω
bwφdx = 0.

As φ is arbitrary, this implies that bw = 0 in Ω. Hence, w = 0 on Ω \ Ω0.
Since w ∈ H1

0 (Ω) and ∂Ω0 is smooth, this implies that w|Ω0 ∈ H1
0 (Ω0).

Multiplying the equation for wn by an arbitrary φ ∈ C∞0 (Ω0) and integrating
by parts, we obtain ∫

Ω0

∇wn · ∇φdx =
∫

Ω0

awnφdx.

Passing to n→∞ we obtain∫
Ω0

∇w · ∇φdx =
∫

Ω0

awφdx.

Thus w|Ω0 is a weak solution of the problem

−∆u = au, u|∂Ω0 = 0.

As w = 0 on Ω \Ω0 and ‖w‖∞ = 1, w|Ω0 is nonnegative and not identically
zero. Hence we must have a = λΩ0

1 , contradicting our assumption that
a < λΩ0

1 . This proves our claim that {αn} is bounded.
The rest of the proof follows that of Theorem 1.1 except that to prove

up ≥ βUα, we use Lemma 2.1 of [DM] (which holds for C1 functions).

5. Proof of Theorem 1.6.

It turns out that Lemma 1.4 is not enough for our proof of Theorem 1.6.
We will need some fine properties of the limiting function u in Lemma 1.4
and of functions in H1(RN ). These fine properties have already been used
in [DD2] and we simply collect them in the following lemma:

Lemma 5.1. Let u and un be as in Lemma 1.4. Then the following con-
clusions hold:

(i) ũ(x) = limr→0

∫
Br(x) u(y)dy/|Br(x)| exists for each x ∈ Ω, where

Br(x) denotes the ball with center x and radius r, and |Br(x)| stands
for the volume of Br(x). Moreover, u = ũ a.e. in Ω.

(ii) ũ is upper semi-continuous (u.s.c. for short) on Ω, and for each x0 ∈ Ω
and any given ε > 0, we can find a small ball Br(x0) ⊂ Ω such that
for all large n,

un(x) ≤ ũ(x0) + ε, ∀x ∈ Br(x0).

(iii) If v ∈ H1(RN ), then ṽ(x) = limr→0

∫
Br(x) v(y)dy/|Br(x)| exists for all

x ∈ RN except possibly for a set of (1, 2)-capacity 0. Moreover, ṽ = v
a.e. in RN and if ṽ vanishes on a closed set A in RN (except for a
subset of A of capacity zero), then there exists a sequence of functions
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φn ∈ H1(RN ) such that each φn vanishes in a neighbourhood of A and
φn → ṽ in H1(RN ).

Let us now come back to the proof of Theorem 1.6. Let pn be a se-
quence converging to ∞ and use the notations in (2.2). Then as before,
by Lemma 1.4, subject to a subsequence, wn → w weakly in H1

0 (Ω) and
strongly in Lq(Ω) for any q ≥ 1, and ‖w‖∞ = 1.

Claim 1. {Mn} is bounded.

Proof. Since a < λΩ0
1 , we can find a small δ-neighborhood Ωδ of Ω0 such that

a < λΩδ
1 . Let φδ denote the normalized positive eigenfunction corresponding

to λΩδ
1 :

−∆φδ = λΩδ
1 φδ, φδ|∂Ωδ

= 0, ‖φδ‖∞ = 1,

and let ψ ∈ C2(Ω) be an extension of φδ|Ωδ/2
to Ω such that η := minΩ ψ > 0.

We find, for any positive constant Q,

∆(Qψ) + a(Qψ)− b(Qψ)p ≤ (a− λΩδ
1 )Qψ < 0, ∀x ∈ Ωδ/2,

∆(Qψ) + a(Qψ)− b(Qψ)p = Q(∆ψ + aψ)− bQpψp, ∀x ∈ Ω \ Ωδ/2.

Let ξ = infΩ\Ωδ/2
b and

Qp :=
[
ξ−1 sup

Ω
(∆ψ + aψ)η−p

]1/(p−1)
.

We easily see that for Q = Qp,

∆(Qψ) + a(Qψ)− b(Qψ)p ≤ 0, ∀x ∈ Ω.

Therefore Qpψ is an upper solution of (1.1). As (1.1) has arbitrarily small
positive lower solutions, its unique positive solution up must satisfy up ≤
Qpψ. Clearly Qp → 1/η as p → ∞. Thus, for any p0 > 1, {Mp : p ≥ p0} is
bounded. In particular, {Mn} is bounded. This proves Claim 1.

By passing to a subsequence, we may assume that Mn → c ∈ [0,∞) as
n→∞.

Claim 2. c ≥ 1.

Proof. Let vn be the unique solution of

−∆v = av − ‖b‖∞vpn , v|∂Ω = 0.

By Theorem 1.3 we know ‖vn‖∞ → 1. On the other hand, a simple com-
parison argument shows un ≥ vn. Hence c ≥ 1.

Claim 3. w ≤ 1/c a.e. in Ω \ Ω0.
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Proof. Otherwise the set {x ∈ Ω \ Ω0 : w(x) > 1/c} has positive measure
and we can find some c1 > 1/c such that Ω1 := {x ∈ Ω \ Ω0 : w(x) ≥ c1}
has positive measure. As wn → w in L2(Ω), by passing to a subsequence,
wn → w a.e. in Ω. Hence, by Egorov’s theorem, we can find a subset of Ω1,
say Ω2 which has positive measure and such that wn → w uniformly on Ω2.
It follows that un → cw uniformly on Ω2. Thus, there exists ε > 0 such that
for all large n, un ≥ 1 + ε on Ω2.

Let φ ∈ C∞0 (Ω) be an arbitrary nonnegative function, and multiply the
equation for wn by φ and integrate over Ω. It results∫

Ω
wn(−∆φ) = a

∫
Ω
wnφ−

∫
Ω
bupn−1

n wnφ.

Hence, for all large n,

(1 + ε)pn−1

∫
Ω2

bwnφ ≤
∫

Ω2

bupn−1
n wnφ ≤

∫
Ω
wn(∆φ) + a

∫
Ω
wnφ.

Dividing the above inequality by (1 + ε)pn−1 and letting n→∞, we deduce∫
Ω2

bwφ = 0.

It follows that w = 0 a.e. in Ω2, contradicting the assumption that w ≥ c1
there. This proves Claim 3.

Using un = Mnwn and denoting û = cw, we see from Lemma 5.1 and
Claims 1-3 above that the following result holds:

Lemma 5.2.
(i) {‖un‖∞} is bounded.
(ii) Subject to a subsequence, un → û weakly in H1

0 (Ω) and strongly in
Lq(Ω), ∀q ≥ 1.

(iii) û ≤ 1 a.e. in Ω \ Ω0 and ‖û‖∞ ≥ 1.
(iv) ũ(x) := limr→0

∫
Br(x) û(y)dy/|Br(x)| exists for every x ∈ Ω.

(v) ũ(x) is u.s.c. on Ω and ũ = û a.e. in Ω.
(vi) For each x0 ∈ Ω and any given ε > 0, we can find a small ball Br(x0) ⊂

Ω such that for all large n,

un(x) ≤ ũ(x0) + ε, ∀x ∈ Br(x0).

We are now ready to complete the proof of Theorem 1.6. Multiplying the
equation for un by φ ∈ C∞0 (Ω), we deduce∫

Ω
∇un · ∇φdx = a

∫
Ω
unφdx−

∫
Ω
b(x)upn

n φdx.

It follows that, subject to a subsequence,

lim
n→∞

∫
Ω
b(x)upn

n φdx = −
∫

Ω
∇û · ∇φdx+ a

∫
Ω
ûφdx, ∀φ ∈ C∞0 (Ω).(5.1)
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Clearly the right-hand side of (5.1) defines a continuous linear functional on
H1(Ω):

T (φ) = −
∫

Ω
∇û · ∇φdx+ a

∫
Ω
ûφdx.

Using the left-hand side of (5.1), and noticing that b = 0 on Ω0, we see
that T (φ) ≥ 0 whenever φ ∈ C∞0 (Ω) satisfies φ ≥ 0 on Ω \ Ω0. Moreover,
if supp (φ) ⊂ {ũ < 1} ∪ Ω0, where {ũ < 1} := {x ∈ Ω : ũ(x) < 1}, then
by Lemma 5.2 (vi) and the fact that {ũ < 1} is relatively open (due to ũ
being u.s.c), we can find δ > 0 such that un(x) ≤ 1− δ on the compact set
supp(φ)\Ω0 ⊂ supp(φ)∩{ũ < 1} ⊂ Ω for all large n. Therefore, since b = 0
on Ω0

0 ≤
∫

Ω
b(x)upn

n φdx ≤
∫

supp (φ)\Ω0

b(x)(1− δ)pnφdx→ 0.

It follows that T (φ) = 0 if supp (φ) ⊂ {ũ < 1} ∩Ω0. Using the continuity of
T on H1(Ω) and the fact that functions in H1

0 (Ω) can be approximated in
the H1(Ω) norm by functions in C∞0 (Ω), we find that

T (φ) ≥ 0, ∀φ ∈ H1
0 (Ω) satisfying φ ≥ 0 a.e. on Ω \ Ω0,(5.2)

T (φ) = 0, ∀φ ∈ H1
0 (Ω) satisfying supp(φ) ⊂ Ω0 ∪ {û < 1}.(5.3)

By Lemma 5.2 (iii), we easily see that ũ ≤ 1 on the open set Ω \ Ω0. We
show next that ũ is close to 0 near ∂Ω and ũ ≤ 1 on ∂Ω0. By Lemma 5.2
(i), we can find M > 0 such that aun < M on Ω for all n ≥ 1. Therefore

−∆un = aun − b(x)upn
n ≤M on Ω.

If V is given by

−∆V = M in Ω, V |∂Ω = 0,

we obtain by the maximum principle that un ≤ V . It follows that ũ ≤ V .
Therefore ũ is close to 0 near ∂Ω.

Since ũ ≤ 1 on Ω \ Ω0, we must have ũ ≤ 1 on ∂Ω0 except possibly for a
set of capacity zero (see, e.g., [Z] pp. 190-191).

From the above analysis, we see that it is possible to choose φ ∈ C∞0 (Ω)
such that 0 ≤ φ ≤ 1 on Ω and φ = 1 on a δ-neighborhood Nδ of {û = 1}. Let
v ∈ K be arbitrary and denote v̂ = max{v, φ}. Clearly 0 ≤ v̂ − v ∈ H1

0 (Ω).
Thus, by (5.2),∫

Ω
∇û · ∇(v − û)dx− a

∫
Ω
û(v − û)dx = −T (v − û)

= T (v̂ − v) + T (û− v̂) ≥ T (û− v̂).

Denote u∗ = û − v̂. Clearly u∗ ∈ H1
0 (Ω). Now we choose ψ ∈ C∞0 (Ω)

satisfying 0 ≤ ψ ≤ 1 on Ω, ψ = 0 on Ω \ N(2/3)δ, ψ = 1 on N(1/3)δ. Then
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clearly

supp((1− ψ)u∗) ⊂ Ω \N(1/3)δ ⊂ {ũ < 1} ∪ Ω0.

Hence, by (5.3),

T (u∗) = T ((1− ψ)u∗) + T (ψu∗) = T (ψu∗).

As ψ = 0 on Ω \ N(2/3)δ, and v̂ = max{v, φ} = 1 a.e. on Nδ, we find that
ψu∗ = ψ(û − 1) a.e. on Ω. Since ψ(û − 1) is zero outside N(2/3)δ it can be
regarded as a member of H1(RN ). It is easily seen that the representative of
ψ(û−1) obtained through the limiting process in Lemma 5.1 (iii) is ψ(ũ−1).
Thus we obtain

T (u∗) = T (ψu∗) = T (ψ(ũ− 1)).

As ũ ≤ 1 on Ω\Ω0 and is u.s.c., we find that the set A1 := {ũ = 1}∩(Ω\Ω0)
is closed. Let A2 := RN \N(2/3)δ and A = A1 ∪A2. We know that ψ(ũ− 1)
vanishes on the closed set A (except possibly for a set of capacity zero)
and so by Lemma 5.1 (iii), it can be approximated in the H1(RN ) norm by
φn ∈ H1(RN ) with each φn vanishing in a neighbourhood of A. Therefore,
supp(φn) ⊂ {ũ < 1} ∪ Ω0, and by (5.3), T (φn) = 0. It follows that

T (u∗) = T (ψ(ũ− 1)) = lim
n→∞

T (φn) = 0.

We thus obtain∫
Ω
∇û · ∇(v − û)dx− a

∫
Ω
û(v − û)dx ≥ 0, ∀v ∈ K.

That is to say that û ∈ K is a solution of (1.6). This finishes our proof of
Theorem 1.6.
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