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Let K be an algebraic function field of characteristic 2 with
constant field Cx. Let C be the algebraic closure of a fi-
nite field in K. Assume that C has an extension of degree
2. Assume that there are elements u,x of K with u tran-
scendental over Ck and x algebraic over C(u) and such that
K = Ck(u,z). Then Hilbert’s Tenth Problem over K is un-
decidable. Together with Shlapentokh’s result for odd charac-
teristic this implies that Hilbert’s Tenth Problem for any such
field K of finite characteristic is undecidable. In particular,
Hilbert’s Tenth Problem for any algebraic function field with
finite constant field is undecidable.

1. Introduction.

Hilbert’s Tenth Problem in its original form can be stated in the follow-
ing form: Is there a uniform algorithm that determines, given a polynomial
equation with integer coefficients, whether the equation has an integer so-
lution or not? In [Mat70] Matijasevich proved that the answer to this
question is no, i.e., that Hilbert’s Tenth Problem is undecidable. Since then
various analogues of this problem have been studied by asking the same
question as above for polynomial equations with coefficients and solutions
over some other commutative ring R. Perhaps the most important unsolved
question in this area is Hilbert’s Tenth Problem over the field of rational
numbers. There are also many results that prove undecidability: It was
proved in [Den80] and [DL78] that Hilbert’s Tenth Problem is undecidable
for various rings of algebraic integers, and [Den78] proves the undecidability
of the problem for rational functions over formally real fields. In [KR92a]
Kim and Roush proved that Hilbert’s Tenth Problem over C(t¢1,t2) is unde-
cidable. Diophantine undecidability has also been proved for some rational
function fields of characteristic p: Pheidas [Phe91] has shown that Hilbert’s
Tenth Problem is undecidable for rational function fields over finite fields of
characteristic greater than 2 and Videla [Vid94] has proved the analogous
result for characteristic 2. Kim and Roush [KR92b] proved undecidability
for rational function fields of characteristic p > 2 whose constant fields do
not contain the algebraic closure of a finite field. In [Shl00] Shlapentokh
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proved that the problem for algebraic function fields over possibly infinite
constant fields of characteristic p > 2 is undecidable. This paper will solve
the analogous problem over function fields of characteristic 2, so Hilbert’s
Tenth Problem for any such field of finite characteristic is undecidable. We
will first describe the general approach that is used to prove the undecidabil-
ity of Hilbert’s Tenth Problem for any function field of positive characteris-
tic. The approach is based on an idea that was first introduced by Denef in
[Den79| and further developed by Pheidas in [Phe91] and Shlapentokh in
[Sh196] and [Sh100].

Before we can describe the idea in detail we need to define what an alge-
braic function field is:

Definition 1.1. A field extension K/Cf is said to be an algebraic function
field (of one variable) if these conditions hold:

1) The transcendence degree of K/C is 1;
2) K is finitely generated over Ck; and
3) Ck is algebraically closed in K.

In this case there exists ¢t € K, transcendental over C'x, such that the degree
of the field extension [K : Ck(t)] is finite. The field Ck is called the constant
field of K.

We also need to define two notions that we will use below:

Definition 1.2.

1. If R is a commutative ring, a diophantine equation over R is an equa-
tion P(z1,...,2z,) = 0 where P is a polynomial in the variables 1, ...,
x, with coefficients in R.

2. A subset S of R* is diophantine if there is a polynomial P(z1,...,xy,
Yiy--yYm) € Rlx1, ..., Tk, Y1, .., Ym] such that

S={(z1,...,z1) ERk:EIyl,...,ymER, (P(x1,. . Ty Y1y - - Ym) = 0) }.

When R is not a finitely generated algebra over Z, we restrict our attention
to diophantine equations whose coefficients are in a finitely generated algebra
over Z. In particular, if R is a ring of polynomials or a field of rational
functions in an indeterminate ¢, we only consider diophantine equations
whose coefficients lie in the natural image of Z[t] in R.

1.1. Idea of Proof. Let N be the set of natural numbers {0, 1,2,...}. The
general idea of the proof is to reduce a certain decision problem over the
natural numbers which we know to be undecidable to Hilbert’s Tenth Prob-
lem over K. The undecidable structure that we will use is the diophantine
theory of the natural numbers with addition and a predicate |, defined by
n|pm if and only if 3s € N(m = p®n). In [Phe87] Pheidas showed that this
structure has an undecidable diophantine theory, i.e., there is no uniform
algorithm that, given a system of equations over the natural numbers with
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addition and |, determines whether this system has a solution or not. To
reduce this problem to Hilbert’s Tenth Problem over K we first let G be a
subfield of K containing an element t transcendental over Cg. The field G
will be defined in Lemma 2.2. Also fix a prime p of K which lies above a non-
trivial prime of G. We can choose ¢ and p such that ordyt = 1. Both ¢ and
p will be defined at the end of Section 2. Let O p, := {z € K : ordpz > 0},
and let Ogp = G N Ogp. Now let INT(p) be any subset of K such that
Og,p CINT(p) € Ok . We define a map f from the integers to subsets of K
by associating to an integer n the subset f(n) := {x € INT(p) : ordpx = n}.
Then ng = n1 +ng (n; € N) is equivalent to the existence of z; € f(n;) such
that 23 = 21-29. This follows from the fact that ordyz14+ordy 2z = ordy (21-22)
and that t" € f(n;). We also have for natural numbers n, m

nlpym <= dseN m=pn
< dze f(n)3Jye f(m)IseN (ordyy = p’ordyz).

This equivalence can be seen easily, because we can let x := t" and y := t™.
But the last formula is equivalent to

3z e f(n)Iye f(m)Iwe KIse Nw=2z" and {w/y,y/w} C INT(p).

Here w/y € INT(p) and y/w € INT(p) just means that y and w have the
same order at p.

If we have diophantine definitions for p(K) := {(z,w) € K?:3s € Nyw =
2"} and INT(p), then the above argument shows that for every system of
equations with addition and |, we can construct a system of polynomial
equations over K which will have solutions in K if and only if the original
system of equations over N has solutions in N. But the diophantine theory
of N with + and |, is undecidable; hence Hilbert’s Tenth Problem over K is
undecidable.

So the strategy for the proof will be to prove that p(K) is diophantine
and that there exists some set INT(p) as above which is diophantine for the
class of fields K that we are considering. This can be summarized as:

Theorem 1.3. Let K be an algebraic function field of characteristic 2 with
constant field Cx. Let C be the algebraic closure of a finite field in K.
Assume that C has an extension of degree 2. Assume that there are elements
u, z of K with u transcendental over Cx and x algebraic over C(u) and such
that K = Ck (u,z). Then p(K) is diophantine. Also there exists a subfield G
of K as above with C(t) C G for an element t transcendental over C. There
exists a prime p of K satisfying the conditions above such that INT(p) is
diophantine for some set INT(p) with Og,, C INT(p) C Ok p. So Hilbert’s
Tenth Problem over K is undecidable.

In [Sh100] Shlapentokh proves that for such K in any characteristic p > 0
there exists some set INT(p) as above which is diophantine. She also proves
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that p(K) is diophantine when the characteristic of K is greater than 2,
but her main lemmas are not valid in characteristic 2. So in order to prove
undecidability in characteristic 2, the last open case, we need to prove that
p(K) is diophantine when the characteristic of K is 2. The rest of the paper
is devoted to proving this. The outline of the proof follows Shlapentokh’s
proof for odd characteristic. Before we can prove this we first need to prove
some properties of K and then set up some notation. The next section will
do that. In Section 3 we will prove that the set p(K) is diophantine in
characteristic 2.

2. Setup and notation.

Let N be the set of natural numbers {0,1,2,...}. Let K,Ck,C,u and z be
as in Theorem 1.3. We will use the following:

Notation 2.1. Let F be a field, and & € N. We denote by F* the set
FF.={d":a € F}.

We will now prove some properties of K that we will need later on. We
may assume that u is not a square in K, because if u = u? with u; € K and
s € N, we can replace u by u;. Then K = Ck(u,z) = Ck(u1,x). Since the
extension K/Ck(u) can be generated by a single element, v € K2 only if
s < [K : Ck(u)], so replacing u by its square root terminates after a finite
number of steps.

We have the following:

Lemma 2.2. Let K,Ck,C,u,z be as above. Let G be the algebraic closure
of C(u) inside K. Then G = C(u,x).

Proof. First note that C(u) is algebraically closed in Ck(u), because C
is algebraically closed in Cx ([Deu73], p. 117). Let m := [K : Ck(u)]. If
m =1, i.e., z € Ck(u), then the statement is true since C'(u) is algebraically
closed in Ck(u). So assume = ¢ Ck(u). Let o € G, a ¢ C(u). Then by
[Lan93] Lemma 4.10, p. 366,

(1) [C(u,a): C(u)] = [Ck(u,a) : Cx(u)] < [K : Ck(u)] = m.

In particular, [C(u,z) : C'(u)] = m. Now assume by contradiction that there
exists a § € G, 0 ¢ C(u,x). Let Gy := C(u,z,3). Then [G; : C(u)] > m.
Also (G1 is an algebraic function field with constant field C, and C' is perfect.
Then by [Mas84], p. 94 the extension G;/C(u) is finite and separable, since
u is not a square in G1. Hence there exists a primitive element v € G with
C(u,7v) = Gp. But then [C(u,v) : C(u)] =[Gy : C(u)] > m, contradicting
(1). O

Definition 2.3. Let K be an algebraic function field with constant field
Ck. A constant field extension of K is an algebraic function field L with
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constant field Cy, such that L O K, O N K = Ck and L is the composite
extension of K and Cp, L = CL K.

Proposition 2.4. Let G be as in Lemma 2.2. Fiz a positive integer k.
For any sufficiently large positive integer h a finite constant extension of G
contains a nonconstant element t and a set of constants V' of cardinality
k+ 2" such that 0 € V, 1 ¢ V. Also we can choose t and V such that for
all ¢ € V' the divisor of t + ¢ is of the form p./q, where the p.’s and q are
prime divisors of degree 2".

Proof. This is Theorem 6.11 of [Shl00] if C' is infinite. The proof of the
existence of ¢ and V with the desired properties in Theorem 6.11 does not
use that C' is infinite; it only requires passing to a finite extension of C. [

Remark. In Proposition 2.4 we can choose V with the property that for
alls€ Nforall e, €V ¢ # ¢ if c# .

From now on we will assume that an element ¢ and a set V' of constants
with the desired properties as in Proposition 2.4 already exist in G. (Oth-
erwise rename the constant extension G again and work with it instead.)
Enlarging the field of constants by a finite extension is okay as far as the
undecidability of Hilbert’s Tenth Problem is concerned. Also let p := pg, so
that the divisor of ¢ is of the form p/q.

Proposition 2.5. Let G,C,t be as above. Then [G : C(t)] is separable, and
2" =n =[G :C()].

Proof. Since the divisor of ¢ is of the form p/q, ¢ is not a square in G. Also
C is perfect. Hence G/C(t) is separable by [Mas84], p. 22. Also by [FJ86],
p. 13, [G : O(t)] = degp = degq = 2". O

Now we can prove that K is separably generated:

Corollary 2.6. Let K be an algebraic function field with constant field C .
Let C be the algebraic closure of a finite field in K. Assume that C has an

extension of degree 2. Assume that there exist x,u as above. Let G,t be as
above. Then K/Ck(t) is separable.

Proof. By Proposition 2.5 G/C(t) is separable. The field K is the composi-
tum of Ck (t) and G over C(t), hence K/Ck(t) is also separable. O

Now we can use Lemma 6.13 of [Sh100] to see how the p.’s and q behave
in the extension K.

Lemma 2.7 (Lemma 6.13 of [Shl00]). Let H be an algebraic function field
over a field of constants Cygr. Let K be a constant field extension of H. Let
Cxk be the constant field of K, and assume H is algebraically closed in K.
Let t € H — Cpg be such that H/Cg(t) is separable. Let a be a prime of
C (t) remaining prime in the extension H and such that its residue field is
separable over Cr. Then a will have just one prime factor in K.
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This lemma easily implies the following corollary:

Corollary 2.8. Let {p.: c € V} and q be as in Proposition 2.4. Then the
p.’s and q remain prime in K.

Proof. Lemma 2.7 applies, since K/C is a constant field extension of G/C"
By construction C' is algebraically closed in Ck, and also CxG = K. The
only thing we need to check is that GNCx = C. Assume oo € G — C. Then
a is transcendental over C' and also over Cx. Hence o ¢ G N Ck. Thus
we can apply the lemma to the primes, ¢,1/t and ¢t 4 ¢ of C(t). Since C' is
perfect, the residue extensions of the primes will be separable. O

Since the p.’s and q remain prime in K we will just denote them by the
same letters again when considering them as primes of K, and we will let
p := po. Now we can fix some notation that we will use for the rest of the
paper:

e K will denote an algebraic function field over a field of constants Ck
of characteristic p = 2.

e (' will denote the algebraic closure of a finite field inside C'.

e ¢ will denote a nonconstant element of K — Ci such that the divisor
of t is of the form p/q, where p, q are primes of degree 2" for some
natural number h. Furthermore, K/Cx(t) is separable, and 2" = n =
[f( : C(t)]. N _

o (i will denote the algebraic closure of Ck, and K := Cg K.

e 7 will denote the number of primes of K ramifying in the extension
K/Ck(t).

e VV will denote a subset of C, containing n + 2r + 6 elements, such that
0e€V,1¢V, and such for all ¢ € V the divisor of ¢ + ¢ is of the form
pc/q, where p. is a prime divisor of K. Also pick V such that for any
sEN, ¢, €V, wehave ¢” £, ifc#c.

e For all ¢ € V, P, will denote the prime of Ck () lying below p., while
9 will denote the prime of C'x (t) lying below g. Also let B := By. For
all c € V, P, and Q do not split in the extension K/Ck(t).

e For every c € V, V.. will denote the set V, := {¢” : j € N}. Since every
c € V is algebraic over a finite field, V. is a finite set for all c € V.

To obtain ¢t and V with the desired properties, we have to assume that C
is sufficiently large, but this is not a restriction because we can enlarge the
field of constants and by Proposition 2.4 a finite extension is enough. Let L
be this finite extension. If Hilbert’s Tenth Problem over L is undecidable,
then Hilbert’s Tenth Problem over K is also undecidable. So in the following
we will assume that L = K to simplify notation.
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3. p-th power equations.

Using the notation that we set up in the last section will now prove that
the set p(K) = {(z,y) € K? : 3s € N,y = 22’} is diophantine which
is Theorem 3.12 below. The main ingredient for proving this is the next
theorem. It gives an equivalent definition of what it means for (x,y) to be
in p(K). Eventually we want to find polynomial equations describing these
relations, so the goal afterwards will be to rewrite the equations below as
polynomial equations.

. 2 2 ~ 2 -2 —1
Theorem 3.1. Given z,y € K, let u := z;gi;'t and u := % Let

2T e e

vi= e — and U e Jor some s € N.
Then y = 2% if and only if

(2) IreNv=u?

(3) JjeNv=a?,

Proof. Suppose y = 22", Let r = j = 5. Then (2) and (3) are satisfied. This
completes one direction of the proof.

On the other hand, suppose that r and j as in the statement of the
theorem exist. Then

<$2 + t2 + t>27' :B2r+1 +t2'r+1 + t2r y2 + t25+1 + tzs
v = —_—mm = _=

a2+t e
So
@ 2T 2R ) = (@ ) (R 2T ),
ie.,
t2'r+1y2 n Q2rlps _ort get n e
Thus
(4) y2 _ ($2r+1t2s+1 n t27‘+23+1 n t2r+1+2s) ' 75_2r+1.
Hence if we can show that r = s, then y? = x2s+1, so y = x2°, since the

characteristic of K is 2. So our goal is to show that r = s.
Similarly to the calculations above we get

- <$2 2 +t1>2j LT P Y 2t e

v = 22 4 1 Y = v+ ’
and we get
(5) g2 = (22T Y ey

By (4)

(6) y _ (x2rt2s + t2r71+23 + t2r+2371) . t_2r
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(unless r or s are < 1), and by (5)

(7) y= (@t 7Y ) Y

(unless j or s < 1). Eliminating y from (6) and (7), we get

®) (Va4 (V) =TT T Y
Now assume that y is a square, say y = 2z (and s, 7,7 > 0). Then

s s s s— 2
At (2 2
e 2242

— (U/)Q.

v =

Hence

2 98 2571
r r— z t t
v = (’U/)Z = u2 y SO u2 ! = + _‘_571 = ’U/'
22 412

- ~ gi-1 . .
Similarly v = (?")? and @? = ¥, so in the new formulae s,r and j are

replaced by s — 1,7 — 1 and j — 1, respectively, and we’re done if we can
show that z = 2. Hence we can reduce the problem to the case where
either (a) s=0orr=0or j =0, or (b) y is not a square.

2 2 . .
Case (a). s =0: If s =0, then v = yyﬁijt, and v is not a square since

% = y”(’*;jjj)g”t = (yQit)z # 0. So if s =0, then v = yQyttjjt = u?". Since
v is not a square, this implies 7 = 0. Hence r = s = 0 and we’re done.

If r =0, then v = u. By the same argument as above wu is not a square.
Now if s > 0, then v is a square and hence u is a square, contradiction.

Hence r = s = 0, and we’re done. The case j = 0 follows from symmetry.

Case (b). By Case (a) we may assume r > 0,s > 0 and j > 0 and by
contradiction let’s assume that r # s. If we look at Equations (6) and (7),
we see that y is a square unless (i) s = 1 or (ii) both r = j = 1.

(i) Suppose s = 1. Since we're done if r = s we may assume that r > 2,5 >
2. From (8) we obtain

277 P2 2 YT %
or
1
;-
Since 7 > 2 and r > 2 the left side is a square. The right side is not,
contradiction.

(t1—2f'*1$27‘*1 + t2j*1—1$2ﬂ'*1 + 751—27'*2 + t2]‘*2—1)2 —t4

(ii) Suppose r = j = 1. Again since we’re done if r = s we may assume
s > 1. By (8) we have

$2(t25_2 + t2—25) — t1—25 + t25—1 + 25’1‘

t2s—1 + t
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Let p be the simple zero of t. Since 1 — 2% < —257! (s > 2), the right side
has a pole of odd order at p, while the left side is a square, so it only has
poles of even order. This proves the theorem. O

So the goal for the rest of this section is to show that the relations we
used in the statement of the theorem are diophantine. To do that it will
clearly be enough to show that the following four sets are diophantine:

S:={t¥:seN}, §:={(t"" :seN},

244244\ %
T::{(:L‘,w)EKQ:HSEN,w:<x—Z+> ,
T4+t

and

2 (=12 4 41\ ¥
T'::{(:L‘,w)EKQ:HSEN,w:<aj ) > .

22 4+ ¢!
It is enough to prove that S and T are diophantine, because we can replace
t by t7! and replace V by W := {1:ce (V- {0})} U {0} in Section 2.
Then we can also replace ¢ by t~! and V by W in the whole proof to obtain
diophantine definitions for S’ and T".

Lemma 3.5 and Corollary 3.7 below will show that S is diophantine, and
Corollary 3.11 will show that T is diophantine.

3.1. The set § = {t*>" : s € N} is diophantine. To prove that S is
diophantine, we first need a definition and a lemma:

Definition 3.2. Let w € K. The height of w is the degree of the zero
divisor of w.

Remark. Equivalently, we could have defined the height of w € K to be
the degree of the pole divisor of w.

Lemma 3.3. Let w € K, let a,b € C. Then all the zeros of Z’)ia are zeros

b
of w+a and all the poles o %ig are zeros of w+b. Furthermore, the height

of ﬁiﬁ is equal to the height of w.

Proof. This is Lemma 2.4 in [Shl00]. O

Lemma 3.4. Let u,v,z € K = 6’KK, assume that z ¢ 6’K, and let y €
6;((2) Assume that y,z do not have zeros or poles at any valuation of
K ramifying in the extension K/Ck(z) and that K/Cr(z) is separable.
Moreover, assume

9) y+z=u'+u
1 1

(10) —+ - =t
y oz

Then y = A for some k > 0.
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Proof. Recall that for a field F' and a natural number k, F* denotes the set
FF={d*:a€ F}.In G'K(z) the zeros and poles of z are simple. Assuming
that z satisfies the conditions of Lemma 3.4 thus amounts to assuming that
all zeros and poles of z are simple in K.

Equation (9) and the fact that z has simple poles imply that y ¢ Ck,
soy € (K)¥ only if s <[K:Ck(2)]. If y = w* with w € Cg(2), then
w+z=(u+w)+ (u+w)and 1/w+1/2 = (v+1/w)* + (v+ 1/w). So if
we can prove that w = 2% for some s € N, then y= wh = 2" Hence we
may assume without loss of generality that y ¢ (Cx(2))~.

Let “4 be the divisor of z in K where A and B are relatively prime effective
d1v1sors By assumption, all the prime factors of A and B are distinct. Also
all the poles of u* 4+ v and v* 4 v have orders divisible by 4.

Claim. The divisor of y is of the form £4D where all the prime factors of
D come from A or B. Also the factors of A that appear in D, will appear
to the first power in D and the factors of B that appear in D occur to the
power —1.

Proof of Claim. Let t be a prime which is not a factor of A or B. Without
loss of generality assume t is a pole of y. Then, since ord¢z = 0, we have
0 > ordyy = ord¢(z + y) = ord¢(u* +u) =0 mod 4.

Now let t be a factor of A or B. Again without loss of generality assume t
is a pole of y. If t is a factor of A, then ordyy = ord¢(y + 2) = ord¢(u* + u).
Hence t is a pole of u, so ord¢y = 0 mod 4. If, however, t is a factor of
B, there are two possibilities: Either ordiy = ord¢z = —1 or again ordyy =
ord¢(u* +u) =0 mod 4. This proves the claim.

On the other hand, A and B considered as divisors over C~'K(z) are prime
divisors, and since y € éK(z), we can deduce that the divisor of y is of the
form £*A°B, with either, a,b =0 or a = 1,b = —1, since the degree of the
zero and the pole divisor must be the same.

Casel: a=0=0. o

Since no prime which is a zero of y ramifies in the extension K /Ck (z), the
divisor of y in Cg () is also a fourth power of another divisor. In the rational
function field Ck (z) every degree 0 divisor is principal, so y € (C(2))%.
Casell: a =1,b= —1.

In this case, the divisor of % is of the form £* and hence 4= f* for some
fe 5K(z) by the same argument as in Case I. Hence y 4+ z = u* + u can
be rewritten as z (£ +1) = z(f + 1)* = u* + u. Since f + 1 is a rational
function in z, we can rewrite this as

(11) z<fl>4=u4—|—u



HILBERT’S TENTH PROBLEM FOR ALGEBRAIC FUNCTION FIELDS 271

where f1, fo are relatively prime polynomials in éK[z], and fo is monic.
Equation (11) shows: Any valuation which is a pole of u is either a pole of
z or a zero of fo. Let ¢ be a pole of u which is a zero of fo. Then, since f, is
a polynomial in z, ¢ is not a pole of z. So we must have |ord, fo| = |ord ul.
Hence s := f5 - u will have poles only at the valuations which are poles of z.
Thus we can rewrite (11) in the form

(12) zft + st =sf3.

Furthermore, let ¢ be a zero of fy. As pointed out above, ¢ is not a pole
of z, so ¢ is not a pole of s. So we can deduce that for a zero ¢ of fo
we have ord.(s* + zf{) = ordc(sf3) > 3. Thus ord(d(s* + zf{)) > 2, so
ord.(f{ dz) > 2. Here dz denotes a Kihler differential. Since ¢ is unramified
in the extension K /Cr(z), orde(dz) = 0. Hence ord.(f{) > 2, i.e., fi has
a zero at c¢. Since fi and fo are relatively prime polynomials, this implies
that fo has no zeros, i.e., fo = 1. Hence y is a polynomial in z. Exactly
the same argument applied to i shows that % is a polynomial in % Thus

y=2 forsomel>0andy+2z =2 +2=u*+u Ify =2z we are done.
Otherwise this implies that all the poles of y + z have order [ (the poles of
z are simple), and also, that all the poles of y + z are divisible by 4. Hence
4|1.

So in both cases, Case I and Case II, we could deduce that either y = 2
or that y € (Ck(2))*. Since we assumed that y ¢ (Ck(2))?* this concludes
the proof of the Claim. O

Lemma 3.5. For all ¢,d € V let t.o := tt_tg,. Let w,v,u,uqq,vqq be

elements of K such that Ve € V 3d € V.. such that V¢ € V 3d' € V. such
that the following equations are satisfied:

(13) w+t=ul+u
1 1
(14) —t-= vt o
w+d
15 ) = —
( ) wd7d w + dl
(16) Wad + tee = Ug g + Ud
1 1
(17) Wq.d t. v = Uﬁvd/ + Ud:d/'
R c,c

S
Then w = t*" for some natural number s.

Proof. Recall that the divisor of ¢ in K is of the form p/q, and that 3 and Q
are the primes of C'k (t) lying below p and g, respectively. Thus the degree of
1 is one. Similarly, for all ¢ € V' the degree of the primes P, in C'k () is one.
Hence 9 and all the PB.’s will remain prime in the constant field extension
Ck(t)/Ck(t). By Lemma 6.16 in [Shl00] their factors will be unramified in
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the extension K /Ck(t). Hence for all ¢,c’ € V, te,r has neither zeros nor
poles at any prime ramifying in the extension K /Ci(t).

In the second paragraph of the proof of Lemma 2.6 of [Sh100], pp. 471-
472, translated to our notation, Shlapentokh proves that for some ¢y € V
there exists a subset V' of V' containing n + 1 elements, not containing cg,
and such that for any dy € V,, for all ¢ € V/, for any d' € Vi, wg, o does
not have zeros or poles at any prime ramifying in the extension K /Cg (t).
Her argument uses the fact that there are exactly r primes ramifying in the
extension K /Ck(t), and it does not use the characteristic of K, so the same
proof works here. We have two cases to consider:

Case I: w € Ck (t).

If w is in Ck(t), then pick a dy € V,, and for some ¢/ € V' pick a d’ € V.
such that (16) and (17) are satisfied. Then wq, o € Ck(t), and we can apply
Lemma 3.4 to t.,  instead of ¢, and to wg, 4 to conclude that wq, 4 = t‘cl;d
for some s > 0. (Note that C(t) = Ck(te,,e).) So

45
w+d - (t0076/) :
If s = 0, then we can check that w = t. (See the last part of Lemma 3.3.)

Otherwise write 1 + ‘fgij,/ = (tc07c/)4& )

45
Hence w + d' = (ﬁ) - (do+d') . Since (dp + d') is an element of
cQ,C

C and hence a fourth power this implies that w + d’ € (Ck(t))*, and hence
w € (Ck(t)), say w = w*. We can rewrite Equations (13) and (14) as

(18) W+t = (u+@)" + (ut D)
L () (or )
Also

Wy, gt =

- a4
w+d_w—|—d4_ w+d
_w+d’_w+3/4

\a+d

for d € V,.,d € V, and some suitable de V. and d e V... This lets us
rewrite Equations (16) and (17) in a similar fashion. So we can rewrite
Equations (13) through (17), and w € Ck(t). Equation (13) and the fact

that ¢ has only simple zeros imply that w ¢ Ck. Hence after finitely many
iterations we must be in the position where s = 0.

Case II: w ¢ Ck(t).
In this case we will derive a contradiction. w ¢ Ck(t) would imply that
waqa ¢ Ck(t) for all d and d'.
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By putting a := u? 4+ u we can rewrite Equation (13) as
(20) w+t=0a?+a.
Similarly by putting 3 = v? + v, g g = ufl’d, +uqa, Baa = chl,d’ + Vg
we can rewrite (14),(16) and (17) as
1 1

21 —+-=p

(21) sty =0+0

(22) Wag +tee = QG g + Qd
1

23 = Bia + Baa-

(23) war s P :

Let ¢g € V be as above. By the same argument as in [Sh100], p. 472,
with p replaced by 2, (20) through (23) imply that 3dy € V,, such that
V¢ € V! 3d' € Vp such that the divisor of wg, 4 is of the form A%g,pgo.
Here pg, and py are prime divisors, a is either —1 or 0, and b is either 1
or 0. Now the proof follows word for word that of Lemma 2.6 in [Sh100],
p. 472 with p replaced by 2 to prove that in this case w = w? with w € K.
For this part of the proof we only used Equations (20) through (23). Now
we can rewrite Equations (20) through (23) with w replaced by w. Since
w ¢ Cg(t), w ¢ Ck(t). So we can keep replacing w by its square root over
and over, contradicting that w € K?* only if s < [K : Ck(t)]. So w = t*
for some s € N. (]

Corollary 3.6. The set S := {t*" : s € N} is diophantine over K.

Proof. Lemma 3.5 shows that an element w € K satisfying Equations (13)
through (17) must be of the form w = t** for some s € N. What we have
left to show is that if w = t** for some s € N, then we can satisfy Equations
(13) through (17). If w =t, let w = 0 and v = 0. For the general case we
use the fact that for any z € K and any s € N we have

x4s L p = (:1;48_1 +x4s—2 + o +$)4 . (x4s—1 +x4s—2 + o +x)

Soif w =t with s > 1, let uw =+ + ... +t4 +¢. For v take

1 1 1

Now fix ¢ € V. To satisfy the other equations we can use the same argument,
if we can show that 3d € V, such that V¢’ € V3d' € Vy such that wg g =
(te)*. This is done in Corollary 2.7 in [Sh100]. O

Corollary 3.7. The set S = {t*" : s € N} is diophantine over K.

Proof. This follows from the fact that
weS > (we S orIze K(z2=wand z € 5y)).
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28
3.2. The set T' = {(a:,w) € K?:3seNyw = (%) } is dio-

phantine over K.

Lemma 3.8. Let 2 € K. Let t be as above, i.e., K/Ck(t) is separable and
the divisor of t is of the form %. Let u = Q”Q;tjjt, and let a € C, a # 1.
Then u+ a has only simple zeros and simple poles, except possibly for zeros

at p,q or primes ramifying in the extension K /Ck(t).

Proof. First we will show that the zeros of u + a away from the ramified
primes and p and q are simple: By Lemma 4.4 in [Sh196] it is enough to
show that v + a and % do not have common zeros. We have

dlu+a) (22++1t)+ (2% +1) t2
= = and
dt (22 +1)? (22 +1)?
2 2 2
4+ 12 4t t
uta="———+a=1l4+a+—5—.
22+t x2 4+t

Suppose ¢ is a zero of d(u+ a)/dt satisfying the above conditions. Then ¢ is
not a zero of t, so ¢ must be a pole of 22 + ¢, i.e., a pole of z. If ¢ is a pole
of x, then it is a zero of x;—it, m%—it
d(u 4+ a)/dt and u + a have no zeros in common, except possibly the ones
mentioned above.

We will now show that all poles at above described valuations are simple:
Since u and w + a have the same poles, it is enough to show that the poles
of u are simple. v has simple poles if and only if the zeros of u~! are simple.
So we’ll show that the zeros of v = u~! are simple by doing exactly the same

and hence not a zero of 1 +a + Hence

thing as above. Let v :=u"! = % Then
dv (2?2 +t+a2+t2+1) t2 4
R — = al
dt (22 4 t2 4 t)? (22 42 4 t)?
zt+t t2
V=——>=1—-—FF-—=.
2+ 2+t (22 + 12+ t)?

Again let ¢ be a zero of dv/dt satisfying the above conditions. Again ¢ has

to be a pole of . So ¢ is a zero of v, but not a zero of 1 — #;th’ since ¢ is
not a zero or pole of t. Hence all the zeros of ©~! are simple except possibly
for the ones mentioned above. O

Lemma 3.9. Let z,v € K*, let u := ngg’ijt. For alle,d eV, ge {-1,1}
let

ud + ¢

Uee g i — ———.
C,Ch9 ug + Cl
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FordeV,,d € Vy,ge {-1,1} let

vI +d

vI +d’

In addition assume that ¥Yc € V 3d € V. such that V¢ € V 3d' € V. such
that the following equations hold for for e,g € {—1,1}, and some s € N:

Udvdlvg =

(24) Us d',g + ui g — Uﬁ,d’,e,g + 0d,d ,e,g
(25) ’Uid/ t4 + Ugecl gt )\é,d’,e,g + )\d7d/767g
(26) (W9 4 0)° + (09 + d)° = pigeg + Hdeg-

Then for some natural number m, v = u*" .
Proof. It is sufficient to prove that the result is valid in K :=CkK , SO We
work in K. We will first prove the following:

Claim. For all ¢,c € V,g € {—1,1}, uce .9 has no multiple zeros or poles
except possibly at the primes ramifying in K / CK( ) or p or q.

Proof of Claim. By Lemma 3.3 we have that for all ¢, ¢/, g as above all the
poles of u. 4 are zeros of u? 4+ ¢ and all the zeros of u.. 4 are zeros of
u9 +c. By Lemma 3.8 and by assumption on ¢ and ¢/, all the zeros of u9 + ¢’
and u? + ¢ are simple, except possibly for zeros at p, q or primes ramifying
in the extension K /C(t). This proves the claim.

Also since %‘ # 0, u is not a second power in K. We will show the
following: (a) If s = 0, then u = v, and (b) if s > 0, then v is a fourth power
of some element in K.

Case (a): Suppose that s =0, and set g = 1.

Again, using Shlapentokh’s argument in Lemma 2.6 of [Sh100] there exists
co € Vand V' C (V — {co}) containing n + 1 elements, such that for all
do € Vi, for all ¢ € V', and for all d’ € Vi, uey 1 and vg, 4 1 have no zeros

or poles at the primes of K ramifying in the extension K /C(t) or at p or q.
For indices selected in this way, all the poles and zeros of u,, 1 are simple.
Pick dy € V., and for all ¢ € V' pick d’ € Vs such that Equations (24) and
(25) are satisfied. Equations (25) and (24) imply:
4
(27) ”do d, 1t + Uco o1t =Agoa 11+ Mo/, 11
8 2
(28) Vdodr 1 + U o1 = O @11+ Odg.ar 11

From (27) and (28) we obtain (since s = 0)
4 8 2
Mol T Ao 11 =t(0g w11+ Tagar11)

All the poles of A\g, 41,1 and o4, 41,1 are poles of uc, o 1, Vgya,1 Or t, and
thus are not at any valuation ramifying in the extension K/Cg(t). By
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Lemma 4.4 applied to o = 030 @11 and (28)

By + 100 =0,
Thus vy, 4.1 = Uey,r,1. From here on the proof is word for word like the
proof of Lemma 2.10 in [Sh100], top of p. 477, showing that if s = 0, then
u=v.

Case (b): Suppose now that s > 0. Again set ¢ = 1. Let ¢p and V' be
selected as above.

Again we can pick dy € V, and for all ¢ € V' we can pick d' € Vu
such that Equations (24) through (26) are satisfied and such that the cor-
respondlng Uey,r 1 and vgy @71 do not have zeros or poles at the primes of
K ramifying in the extension K / C( ) or at p or q. We can use the same
argument as in Lemma 3.4 to show that either:

(i) For all d’ chosen as above the divisor of Vdp,d/,1 1N K is a fourth power

of another divisor, or

(ii) for some ¢ € V' and some d' € Vs and some prime t not ramifying in

K /C(t) and not equal to p or g, ordgvg, a € {1,—1}.

In Case (i), because of our choice of the v4, #’s and Proposition 4.3, a
short calculation shows that v € K4:

- v+ dy _ (d/-l-do)
do,d’,1 = oy 4 @t v+ dp

1 1
—(d +d
(' + 0)<d/+do+v+do>’

where dy € V,, is fixed, and we have d’ € Vv , and all d’ are distinct. Also
174 Contains n + 1 elements, so by Proposition 4.3 applied to ﬁ we have
that + o7 € K*. This implies that v € K*. This finishes Case (i).

So assume now that we are in Case (ii): Without loss of generality, assume
that t is a pole of vg, o1 (and hence neither a zero nor a pole of t).

Again look at Equations (27) and (28). Since t does not have a pole or
a zero at t and since the right hand sides of Equations (27) and (28) only
have poles of order > 4,

(29) ordt(vdo . 1t + uco o1 t) = ordt()\flmd,ym + Ndp,a1,1) > 0 and
(30) Ordt(vdo a1t “co, 1) = Ordt(aso,d/,1,1 + U?lo,d/,l,l) > 0.
Thus

ordeg, g, (1" +1) > 0.

Hence it follows that ord¢(t*" +¢) > 2Jordivg, #1|- But in Ck(t) all the
zeros of t*” 4 t are simple. So this function can have multiple zeros only at
primes ramifying in the extension K /Ck (t). But by assumption t is not one
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of these primes, and so we have a contradiction unless v € K*. This shows
that if s > 0, then Equations (24) through (26) can be rewritten in the same
fashion as in Lemma 3.5 with v replaced by its fourth roots, and in (25) s is
replaced by s — 1. Therefore, after finitely many iterations of this rewriting
procedure we will be in the case of s = 0, which was treated in Case (a).
Hence, for some natural number m, v = u*". U

4S
Corollary 3.10. The set T := {(m,w) cK?:3secNw= (%) }

1s diophantine over K.

Proof. Let x € K, and let u = % Lemma 3.9 shows that an element
v € K satisfying Equations (24) through (26) must be of the form v = ut®
for some k € N. So we have to show now that if v = u*" for some k € N, then
Equations (24) through (26) can be satisfied. The proof of this is almost

identical to Corollary 3.6. O

28
Corollary 3.11. The setT := {(az,w) €K?:3seNw= <x2;gi;rt) } 08

diophantine over K.
Proof. This follows from the fact that
(r,w) €T <= (z,w) €Ty or Iz € K (22 =w and (z,2) € T}).
O

Theorem 3.12. The set {(z,y) € K? : 3s € N,y = 2¥'} is diophantine
over K.

Proof. By Corollary 3.7, Corollary 3.11 and the remark after Theorem 3.1,
the sets S,S5’,T, and T" are diophantine. Together with Theorem 3.1 this
finishes the proof. O

4. Appendix.

In the appendix we give proofs for Proposition 4.3 and Lemma 4.4. Both
were used in Lemma 3.9.

Lemma 4.1. Let F/G be a finite extension of fields of positive character-
istic p. Let o € F be such that all the coefficients of its monic irreducible
polynomial over G are in GP’. Then o € FP.

Proof. This is Lemma 2.1 in [Sh100] with p replaced by p?, and the same
proof works here. O

Corollary 4.2. Let F/G be a finite separable extension of fields of positive
characteristic p. Let [F : G] = n. Let x € F be such that F' = G(x), and
such that for distinct aq,...,a, € G, NF/G(an —x) = yfg with y; € G.
Then x € FP”.
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Proof. This is very similar to Lemma 2.2 in [Sh100]. Let H(T') = Ao+ AT+
2 2
-+« + T"™ be the irreducible polynomial of z over G. Then H(al") = y? for

i €{0,...,n}. This gives us the following linear system of equations:
2 2(n 2 2
1 df ... af (n=1) ap " Ao vh
. 2 2 . B o2 . - . 2
1 a& ... d& (n—1) ab ™ 1 yh

We can use Cramer’s rule to solve the system and to conclude that A; € Gr’
for all 7. Then by the previous lemma, z € F p?, O

Now we can apply the corollary to our situation:

Proposition 4.3. Letv € IN(, and assume that for some distinct aq, ..., an
e C, the divisor of v+a; s of the form sz for divisors D; of[?, i=0,...,n.
Moreover, assume that for all i, v+ a; does not have zeros or poles at any
prime ramifying in the extension K /Cr(t). Then v e KP.

Proof. This is almost the same as Lemma 2.9 in [Sh100]: First assume that
v € Ci(t). Since v+ a; does not have any zeros or poles at primes ramifying
in the extension K /Ck(t), the divisor of v + a; in Ck(t) is of the form SZP2.
In Ck(t) every divisor of degree zero is principal, so v + a; € (C(t))P” and
hence v € (Ck(t))P". Therefore v € KP°.

So now assume that v ¢ Ci(t). From our assumption on v + a; it follows
that in éK(t, v) the divisor of v + a; is a p? power of another divisor. Since
the divisor of Néx(t,v) G (8) (v + a;) is equal to the coirespondiilg norm of
the divisor of (v+a;), it follows that the divisor of the Ck (t,v)/Ck (t) norm
of (v+ a;) is of the form j\/;-p2, and hgnce NaK(t,v)/5’K~(t) (v+a;) € (Cr(1)P".
Now apply Corollary 4.2 with G = Ck(t) and F = Ck(t,v). O

Lemma 4.4. Let o, € K. Assume that all the primes that are poles of o
or i do not ramify in the extension K/Ck(t). Moreover assume that

(31) t(o* + o) = put + p.
Then o* + o = p* +p = 0.

Proof. Let A, B be effective divisors of K, relatively prime to each other
and to p and q, such that the divisor of ¢ is of the form %pqu‘C , where ¢ and
k are integers.

Claim 1. For some effective divisor C relatively prime to B, p and q, some
integers j, m, the divisor of u is of the form %pﬂ qm.
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Proof of Claim 1. Let t be a pole of p such that t # p and t # q. Then

0 > 4ordg = ord(pu* + p) = ord¢(t(c* 4+ o)) = ord¢(¢* + o) = 4 ordyo.
Conversely, let t be a pole of o such that t # p and t # q. Then

0 > 4ordio = ordy(c* + o) = ord¢(t(c* + 0)) = ord¢(u* + ) = 4ordep.
This proves the claim.

By the Strong Approximation Theorem there exists b € K* such that the

divisor of b is of the form %D, where D is an effective divisor relatively prime

to A, C, p and g and [ is a natural number.

Claim 2.
bo = s1t* and bu = sztj,
where s1, sg are integral over Ck[t] and have zero divisors relatively prime

to p and B.

Proof of Claim 2. The divisor of bo is

BD A b e [P

77pqu~c _ DApzqk I _ (D.Aqk l+z) (qz) ]
Thus the divisor of s1 := bo/t! is of the form DAg*~*+?. Therefore q is the
only pole of s1, so s is integral over Ck[t]. By construction A and D are

relatively prime to p and B. A similar argument applies to s := by/t/. This
proves the claim.

Multiplying (31) by b* we obtain the following equation (using the claim):
(32) t(sTtY 4+ b3s1th) = sot™ + b3sot.
Suppose i < 0. Then the left side of (32) has a pole of order |4i + 1| at p.
This would imply that j < 0, and the right side has a pole of order |4j| at
p, contradiction. Thus we can assume that ¢, j are both nonnegative. We
can rewrite (32) as

(sTEHTY 4 s3t47) = B3 (51t L + s9t).

Let t be any prime factor of B in K. Then t does not ramify in the extension
K /CF(t) by our assumption on o. Also t is not a pole of s1, 53 or .

Thus ‘ ‘ . .

ord¢(sTt¥ ! 4+ s3tY) = ord (b3 (s1t' Tt 4 s9t7)) > 3.

We have
0 < ord(d(sTth! 4+ s5tY)) = ordy (s} d(t**1)) = ord¢(s}) + ord¢(d(t¥*1)).

Since t is unramified in the extension K/Cg(t) and since t is not a zero
or a pole of ¢, ord¢(d(t**1)) = 0. So s1 has a zero at t. This, however, is
impossible, because t is a prime factor of B, but the zero divisor of s; is
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relatively prime to B. So B must be the trivial divisor. This implies that in
(31) all the functions are integral over Ck[t], i.e., they can have poles at q
only. So if i is not constant, it must have a pole at q. But then the left side
of (31) has a pole at g of odd order, while the right side of (31) has a pole
at q of even order, which is a contradiction.

Thus p must be a constant. But if a function h € K is integral over Ck[t],
and t-h is constant, then A = 0. Thus 0* +0 = 0. Then p*+p = 0also. O

Remark. A. Shlapentokh informed the author by email on March 31, 2003,
that she has an argument in her paper [Compositio Math., 132 (2002),
pp. 99-120] that reduces the case of finite transcendence degree to tran-
scendence degree 1. Together with the result in this paper this implies that
Hilbert’s Tenth Problem is undecidable for function fields F' of characteristic
2, finitely generated over a field C' that is algebraic over a finite field, and
such that C' has an extension of degree 2.

References

[Den78] J. Denef, The Diophantine problem for polynomial rings and fields of ratio-
nal functions, Trans. Amer. Math. Soc., 242(1978), 391-399, MR 58 #108009,
Zbl 0399.10048.

[Den79] | The Diophantine problem for polynomial rings of positive characteristic
in ‘Logic Colloquium ’78 (Mons, 1978)’, 131-145, North-Holland, Amsterdam,
1979, MR 81h:03090, Zbl 0457.12011.

[Den80] | Diophantine sets over algebraic integer rings, 11, Trans. Amer. Math.
Soc., 257(1) (1980), 227-236, MR 81b:12031, Zbl 0426.120009.

[DL78] J. Denef and L. Lipshitz, Diophantine sets over some rings of algebraic integers,
J. London Math. Soc. (2), 18(3) (1978), 385-391, MR 80a:12030, Zbl 0399.10049.

[Deu73] M. Deuring, Lectures on the Theory of Algebraic Functions of One Variable, Lec-
ture Notes in Mathematics, 314, Springer-Verlag, Berlin, 1973, MR 49 #8970,
Zbl 0249.14008.

[FJ86] M.D. Fried and M. Jarden, Field Arithmetic, Springer-Verlag, Berlin, 1986,
MR 89b:12010, Zbl 0625.12001.

[KR92a] K.H. Kim and F.W. Roush, Diophantine undecidability of C(t1,t2), J. Algebra,
150(1) (1992), 35-44, MR 93h:03062, Zbl 0754.11039.

, Diophantine unsolvability for function fields over certain infinite
fields of characteristic p, J. Algebra, 152(1) (1992), 230-239, MR 93k:11114,
Zbl 0768.12008.

[Lan93] S. Lang, Algebra, Springer-Verlag, New York, third edition, 1993, CMP 1 878 556,
Zbl 0848.13001.

[Mas84] R.C. Mason, Diophantine Equations over Function Fields, Cambridge University
Press, Cambridge, 1984, MR 86b:11026, Zbl 0533.10012.

[Mat70] Ju.V. Matijasevi¢, The Diophantineness of enumerable sets, Dokl. Akad. Nauk
SSSR, 191 (1970), 279-282, MR 41 #3390.

[KR92b)



http://www.ams.org/mathscinet-getitem?mr=58:10809
http://www.emis.de/cgi-bin/MATH-item?0399.10048
http://www.ams.org/mathscinet-getitem?mr=81h:03090
http://www.emis.de/cgi-bin/MATH-item?0457.12011
http://www.ams.org/mathscinet-getitem?mr=81b:12031
http://www.emis.de/cgi-bin/MATH-item?0426.12009
http://www.ams.org/mathscinet-getitem?mr=80a:12030
http://www.emis.de/cgi-bin/MATH-item?0399.10049
http://www.ams.org/mathscinet-getitem?mr=49:8970
http://www.emis.de/cgi-bin/MATH-item?0249.14008
http://www.ams.org/mathscinet-getitem?mr=89b:12010
http://www.emis.de/cgi-bin/MATH-item?0625.12001
http://www.ams.org/mathscinet-getitem?mr=93h:03062
http://www.emis.de/cgi-bin/MATH-item?0754.11039
http://www.ams.org/mathscinet-getitem?mr=93k:11114
http://www.emis.de/cgi-bin/MATH-item?0768.12008
http://www.ams.org/mathscinet-getitem?mr=1878556
http://www.emis.de/cgi-bin/MATH-item?0848.13001
http://www.ams.org/mathscinet-getitem?mr=86b:11026
http://www.emis.de/cgi-bin/MATH-item?0533.10012
http://www.ams.org/mathscinet-getitem?mr=41:3390

HILBERT’S TENTH PROBLEM FOR ALGEBRAIC FUNCTION FIELDS 281

[Phe87] T. Pheidas, An undecidability result for power series rings of positive charac-
teristic, 11, Proc. Amer. Math. Soc., 100(3) (1987), 526-530, MR 89c:03075,
Zbl 0664.03008.

, Hilbert’s tenth problem for fields of rational functions over finite fields,
Invent. Math., 103(1) (1991), 1-8, MR 92e:11145, Zbl 0696.12022.

[Shl96] A. Shlapentokh, Diophantine undecidability over algebraic function fields over fi-
nite fields of constants, J. Number Theory, 58(2) (1996), 317-342, MR 97d:12010,
Zbl 0856.11058.

, Hilbert’s tenth problem for algebraic function fields over infinite fields
of constants of positive characteristic, Pacific J. Math., 193(2) (2000), 463-500,
MR 2001e:12008.

[Vid94] C.R. Videla, Hilbert’s tenth problem for rational function fields in charac-
teristic 2, Proc. Amer. Math. Soc., 120(1) (1994), 249-253, MR 94b:11122,
Zbl 0795.03015.

[Phe91]

[Sh100]

Received July 1, 2002 and revised September 11, 2002.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA

BERKELEY, CA 94720

E-mail address: eisentra@math.berkeley.edu


http://www.ams.org/mathscinet-getitem?mr=89c:03075
http://www.emis.de/cgi-bin/MATH-item?0664.03008
http://www.ams.org/mathscinet-getitem?mr=92e:11145
http://www.emis.de/cgi-bin/MATH-item?0696.12022
http://www.ams.org/mathscinet-getitem?mr=97d:12010
http://www.emis.de/cgi-bin/MATH-item?0856.11058
http://www.pacjmath.org/2000/193_463.html
http://www.pacjmath.org/2000/193_463.html
http://www.pacjmath.org/2000/193_463.html
http://www.ams.org/mathscinet-getitem?mr=2001e:12008
http://www.ams.org/mathscinet-getitem?mr=94b:11122
http://www.emis.de/cgi-bin/MATH-item?0795.03015
mailto:eisentra@math.berkeley.edu

