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Using the theory of hyperbolic manifolds with totally ge-
odesic boundary, we provide for every n > 2 a class Mn of
such manifolds all having Matveev complexity equal to n and
Heegaard genus equal to n + 1. All the elements of Mn have
a single boundary component of genus n, and #Mn grows at
least exponentially with n.

This paper is devoted to the investigation of the class Mn of orientable
compact 3-manifolds having an ideal triangulation with n > 2 tetrahedra
and a single edge. We show in particular for each M in Mn that the Hee-
gaard genus of M is equal to n+1, and that the complexity of M in the sense
of Matveev is equal to n. Moreover we prove that the classical invariants,
such as homology and those of Turaev and Viro, cannot distinguish two dif-
ferent members ofMn from each other. However, using the fact that each M
in Mn carries a hyperbolic metric with totally geodesic boundary, we prove
that M has a unique ideal triangulation with n tetrahedra. We exploit this
property showing that the number of elements of Mn grows at least expo-
nentially with n. This implies in particular the previously unknown fact
that the rate of growth of the number of orientable boundary-irreducible
acylindrical manifolds of complexity n is also at least exponential in n. The
class Mn was already considered in [8], but none of our results was covered
there.

1. Manifolds with a one-edged triangulation.

In this section we introduce the class of manifolds we are interested in, and
we prove their many remarkable topological and geometric properties.

Ideal triangulations and spines. We begin by recalling some definitions.
An ideal tetrahedron is a tetrahedron with its vertices removed. An ideal
triangulation of a compact 3-manifold M with boundary is a realization of
the interior of M as a gluing of some ideal tetrahedra, induced by a simplicial
pairing of the faces. A spine of M is a compact polyhedron P such that
M \ P = ∂M × [0, 1). A 2-dimensional polyhedron Q is quasi-standard if
every point has a neighbourhood homeomorphic to one of the polyhedra
shown in Fig. 1.
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Figure 1. Local aspect of a quasi-standard polyhedron.

We denote by V (Q) the set of points having regular neighbourhoods of
type (3), and by S(Q) the set of points having regular neighbourhoods of
type (2) or (3). If Q \ S(Q) consists of open cells and S(Q) \ V (Q) consists
of open edges, we say that Q is standard, and we call faces the components
of Q \ S(Q). An ideal triangulation of M defines in a natural way a dual
standard polyhedron, which is in fact a spine of M (see Fig. 2).

Figure 2. Duality between ideal triangulations and spines.

We now define the class of manifolds investigated in this paper. For every
integer n > 2 we set

Mn = {M : dim(M) = 3, M is compact and orientable, ∂M 6= ∅,
M admits an ideal triangulation with one edge and n tetrahedra}.

The class Mn can be defined in various equivalent ways, as the next lemma
shows.

Lemma 1.1. Let M be a compact 3-manifold and let T be an ideal trian-
gulation of M consisting of n tetrahedra. The following facts are equivalent:

1. T has one edge;
2. χ(M) = 1− n;
3. χ(M) = 1− n and ∂M is connected.
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Proof. Set M̂ = M/∂M , let |∂M | be the number of components of ∂M , and
let x be the number of edges of T . We have χ(M̂) = χ(M)−χ(∂M)+ |∂M |
and χ(∂M) = 2χ(M). Extending T to a cellularization of M̂ , we also get

χ(M̂) = |∂M | − x + 2n− n = |∂M | − x + n.

Summing up, we get χ(M) = x− n, which shows (1) ⇔ (2).
We are left to show that if x = 1 then |∂M | = 1. Since there is a single

edge, we have |∂M | 6 2. Suppose A and B are distinct components of ∂M ,
and examine a triangular face F of T . Let e1, e2, and e3 be the edges of F
viewed abstractly (i.e., before the embedding in M). Since e1, e2, e3 become
the same edge in M , they should all join A to B, which is clearly impossible:
If e1 and e2 join A to B, then e3 joins either A or B to itself. �

Topological and geometric properties. Before proving our main theo-
rem, we recall the definition of Matveev complexity of a compact 3-manifold
with boundary, and the notion of hyperbolic 3-manifold with geodesic bound-
ary. A compact 2-dimensional polyhedron Q is said to be simple if the link
of every point in Q is contained in the 1-skeleton K of the tetrahedron.
(Note that a standard polyhedron is obviously simple.) A point having the
whole of K as a link is called a vertex, and its regular neighbourhood is as
shown in Fig. 1-(3). This implies that the set V (Q) of the vertices of Q
consists of isolated points, so it is finite. The complexity c(M) of a compact
3-manifold M with boundary is the minimal number of vertices of a simple
spine of M .

A hyperbolic 3-manifold with geodesic boundary is a complete Riemannian
manifold with boundary which is locally isometric to a half-space of hyper-
bolic 3-space H3. By Mostow’s Rigidity Theorem (see [6] for an explicit
statement in the geodesic boundary case), every compact 3-manifold admits
at most one hyperbolic structure with geodesic boundary, and has therefore
a well-defined hyperbolic volume (if any). A useful tool for the computa-
tion of hyperbolic volumes, used in the sequel, is the Lobachevsky function
L : R → R defined by

L(ω) = −
ω∫

0

log |2 sinu|du.

To state our result we also recall that for any integer r > 2, after fixing
q0 in C such that q2

0 is a primitive r-th root of unity, a real-valued invariant
TVr for compact 3-manifolds with boundary was defined by Turaev and Viro
in [14]. We consider here these invariants normalized so that TVr(S3) = 1
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for any r. Their computation involves the complex-valued quantum 6j-

symbols
{

i j k
l m n

}
, where i, j, k, l,m, n are half-integers, and the real-

valued quantum integers [k] = qk
0−q−k

0

q0−q−1
0

, defined for any integer k.

Theorem 1.2. Let M ∈Mn. Then:
1. M is hyperbolic with geodesic boundary and its volume is given by

vol(M) = n ·

8L
(π

4

)
− 3

π
3n∫

0

arccosh
(

cos t

2 cos t− 1

)
dt

.

2. M is boundary-irreducible and acylindrical.
3. Every closed embedded incompressible surface in M is parallel to the

boundary.
4. H1(M ; Z) ∼= Zn.
5. The Heegaard genus of M is equal to n + 1.
6. c(M) = n.
7. The r-th Turaev-Viro invariant of M is given by

TVr(M) =
∑

h∈N, 063h6r−2

{
h h h
h h h

}n

· [2h + 1]1−n.

Before giving the Proof of Theorem 1.2, we introduce the notion of (hy-
perbolic) truncated tetrahedron [7, 9, 6]. Let ∆ be a tetrahedron and let
∆∗ be the combinatorial polyhedron obtained by removing from ∆ small
open stars of the vertices. We call lateral hexagon and truncation triangle
the intersection of ∆∗ respectively with a face and with the link of a vertex
of ∆. The edges of the truncation triangles are called boundary edges, the
other edges of ∆∗ are called internal edges. A hyperbolic truncated tetrahe-
dron is a realization of ∆∗ as a compact polyhedron in H3, such that the
truncation triangles are geodesic triangles, the lateral hexagons are geodesic
hexagons, and truncation triangles and lateral hexagons lie at right angles
to each other. A truncated tetrahedron is regular if all the dihedral angles
along its internal edges are equal to each other. It turns out [7, 6] that for
every θ with 0 < θ < π/3 there exists up to isometry exactly one regular
truncated tetrahedron ∆∗

θ of dihedral angle θ. The boundary edges of ∆∗
θ

all have the same length b = b(θ), and the internal edges all have the same
length i = i(θ), as shown in Fig. 3.

The volume of ∆∗
θ is given by (see [13]):

vol(∆∗
θ) = 8L

(π

4

)
− 3

θ∫
0

arccosh
(

cos t

2 cos t− 1

)
dt.
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Figure 3. Length of the edges of a regular truncated tetrahedron.

As the Proof of Theorem 1.2 will now make clear, truncated tetrahedra can
be used as building blocks to construct hyperbolic manifolds with geodesic
boundary [7, 9, 6].

Proof of Theorem 1.2. First of all, we fix a one-edged ideal triangulation T
of M and we denote by e the single edge of T .

In order to give M a hyperbolic structure, we identify each tetrahedron
of T with a copy of the regular truncated tetrahedron ∆∗

π/3n. Due to the
symmetries of ∆∗

π/3n, every pairing between the faces of the tetrahedra of T
can be realized by an isometry between the corresponding lateral hexagons
of the ∆∗

π/3n’s. This procedure defines a hyperbolic metric on M , possibly
with a cone singularity along e. But each tetrahedron is incident 6 times
to e, so the cone angle around e is 6 · n · π/3n = 2π, and M is actually
hyperbolic without singularities. Finally, vol(M) = n ·vol(∆∗

π/3n) and Point
(1) is proved.

Point (2) is a general consequence of the existence of a hyperbolic struc-
ture with geodesic boundary, and Point (3) is proved using Haken’s theory of
normal surfaces. If Σ ⊂ M is a closed incompressible surface, then Σ can be
isotoped into normal position with respect to T , so the intersection of Σ with
an ideal tetrahedron T ∈ T consists of triangles and squares. Recall now
that Σ intersects all the edges of T in the same number k of points. Assuming
there are q squares and ti triangles of type i, for i = 1, . . . , 4, we deduce the
relations t1+t2 = t3+t4 = t1+t3+q = t1+t4+q = t2+t3+q = t2+t4+q = k.
This easily implies that q = 0 and ti = k/2 (so k is even), hence Σ ∩ T con-
sists of k/2 parallel triangles at each vertex of T . Therefore Σ consists of
k/2 disjoint surfaces parallel to ∂M .

Concerning Point (4), let P be the standard spine of M dual to T . Since
M collapses onto P , we have H1(M ; Z) ∼= H1(P ; Z), and we can use cellular
homology to compute H1(P ; Z). To do so, we choose a maximal tree Y in
the 4-valent graph S(P ). Then S(P )\Y consists of n+1 edges e1, . . . , en+1.
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Choose an orientation on each ei and on the single face F of P . The face
F is incident three times to each ei. For i = 1, . . . , n + 1 let ri be the sum
of a contribution ±1 over the three instances F runs along ei, with sign de-
pending on whether orientations are matched or not. So ri ∈ {−3,−1, 1, 3}
and H1(P ; Z) ∼= Zn+1/〈r〉 where r = (r1, . . . , rn+1). We will now prove that
ri = ±1 for some i, which implies that H1(P ; Z) ∼= Zn. Let v ∈ V (P ) be an
extremal vertex of Y , i.e., a vertex adjacent to only one edge of Y , whence
to three of the ei’s, say ei1 , ei2 , ei3 (indices could be repeated according to
multiplicity of incidence). Looking at the picture of the neighbourhood of
v in P , shown in Fig. 1-(3), one now easily sees that F cannot be incident
three times in the same direction to each ei1 , ei2 , ei3 , so we have ri = ±1 for
some i ∈ {i1, i2, i3}.

Let us turn to Point (5). Lemma 1.1 shows that ∂M has genus n but, by
Point (2), M is not a handlebody, so its genus is at least n + 1. A Heegaard
surface having genus n + 1 is simply given by the boundary of a regular
neighbourhood of ∂M ∪ e, whence the conclusion.

We now prove Point (6). The standard spine P dual to T has n vertices,
so we have c(M) 6 n. By Point (2), a result of Matveev [11] shows that
there is a standard spine Q of M (not just a simple one) with precisely c(M)
vertices. An Euler characteristic computation gives χ(Q) = x− c(M) where
x > 1 is the number of faces of Q, so c(M) > 1−χ(Q) = 1−χ(M) = n, the
last equality having been proved in Lemma 1.1.

Point (7) is an easy calculation. We follow the notation of [14]: Since
there is only one face F , a colouring of P is given by assigning to F a
half-integer in {0, 1/2, 1, 3/2, . . . , (r − 2)/2}. Since the same F is incident
three times to each edge, the colouring is admissible if it is an integer h
with 0 6 3h 6 r − 2. Each such colouring contributes to TVr(M) with a

summand given by the product of a factor
{

h h h
h h h

}
· [2h+1]−1 for each

vertex and of a factor [2h + 1] due to the single face of P . �

Remark 1.3. The Proof of Theorem 1.2-(1) actually shows that every one-
edged ideal triangulation of M ∈ Mn is combinatorially equivalent to a
decomposition of M into n regular truncated tetrahedra of dihedral angle
π/3n.

Remark 1.4. It was proved in [13] that among compact hyperbolic 3-
manifolds with geodesic boundary and fixed Euler characteristic χ < 0,
those having minimal volume are decomposed into 1−χ copies of ∆∗

π/3(1−χ).
Therefore Mn is precisely the set of hyperbolic 3-manifolds M with geodesic
boundary having minimal volume among compact orientable manifolds with
χ(M) = 1− n.
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Remark 1.5. It follows from the Proof of Theorem 1.2-(6) that Mn is also
the set of all hyperbolic manifolds M having minimal complexity among
compact orientable manifolds with χ(M) = 1− n.

Remark 1.6. Point (7) of Theorem 1.2 shows in particular that TVr(M),
for M in Mn, depends only on n and r (actually, on q0), but not on M . This
could also be proved using the fact that two standard spines with the same
incidence relations between faces and vertices produce the same Turaev-Viro
invariants (see [12] for more details). In fact, each manifold in Mn admits
a spine with one face and n vertices, so the incidence relations are always
the same.

Remark 1.7. We believe that Theorem 1.2 extends, with minor variations,
to non-orientable manifolds admitting a one-edged triangulation. However,
to prove this extension, one should first generalize Matveev’s theorem [11]
on standardness of minimal spines to the case of non-orientable, boundary-
irreducible manifolds not containing projective planes or essential Möbius
strips.

Uniqueness of the minimal spine. We are now left with two tasks: We
must provide examples of manifolds in Mn, and we must be able to distin-
guish manifolds in the same Mn. We will face the former task in the next
section, by constructing standard polyhedra with n vertices and one face.
Concerning the latter task, we have just shown that homology, Heegaard
genus, Turaev-Viro invariants, and volume of manifolds in Mn depend on n
only, so we need a more powerful tool. This tool is provided by hyperbolic
geometry. We recall that the cut-locus of a hyperbolic manifold M with
geodesic boundary is the set of all points of M which admit at least two
distinct distance-minimizing geodesics to ∂M .

Theorem 1.8. Every M ∈Mn has a unique standard spine with n vertices,
homeomorphic to the cut-locus of M .

Proof. Let C ⊂ M be the cut-locus of M , and let P be a standard spine
of M with n vertices. By Remark 1.3, P is dual to a decomposition T of
M into n regular truncated tetrahedra. We claim that C intersects each
tetrahedron T ∈ T as in Fig. 2-right. This implies that C is homeomorphic
to P , whence the conclusion.

To prove our claim it is sufficient to show that for every tetrahedron T of
T , every point p in T , and every distance-minimizing geodesic γ connecting p
to ∂M , we have that γ is entirely contained in T . If this were not true, since
γ meets ∂M at a right angle, a subarc γ′ of γ would connect a truncation
triangle and its opposite hexagon in some tetrahedron T ′ ∈ T . Then the
length of γ′ would be greater than the distance between such a truncation
triangle and its opposite hexagon, which in turn is greater than the distance
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between p and some truncation triangle in T , since T and T ′ are isometric
to each other and regular. �

Remark 1.9. An alternative proof of Theorem 1.8 could be based on the
machinery developed in [6]: Remark 1.3 and the tilt-formula [16, 15, 6]
easily imply that a one-edged ideal triangulation of a manifold M ∈ Mn is
combinatorially equivalent to Kojima’s canonical decomposition of M , which
is obtained by straightening the ideal triangulation dual to the cut-locus of
M (see [9]).

We say that a standard polyhedron is orientable if it can be embedded
in an orientable 3-manifold. Note that an orientable standard polyhedron is
automatically the spine of an orientable 3-manifold, which is unique by [3].

Corollary 1.10. The set Mn is in one-to-one correspondence with the set
of orientable standard polyhedra with n vertices and one face.

Automorphisms and chirality. Another remarkable consequence of The-
orem 1.8 is that there is an easy algorithm running in n2 time to determine
all the automorphisms of an element M of Mn. This algorithm will check
in particular whether M is amphichiral or chiral, i.e., whether M admits an
orientation-reversing automorphism or not. The algorithm is based on the
following consequence of Theorem 1.8:

Corollary 1.11. The automorphisms of M ∈ Mn correspond bijectively
to the combinatorial automorphisms of the triangulation dual to the unique
minimal spine of M .

The algorithm now works as follows: First, pick an arbitrary “base” tetra-
hedron T0 in the ideal triangulation T of M . Second, for each T in T ,
consider the 24 combinatorial isomorphisms f : T0 → T (12 of which are
orientation-reversing). Third, check whether f extends to the whole of T .
The process of checking whether a given f extends is linear in n, so the
whole algorithm runs in time proportional to n2.

2. Numerical estimates.

The results of the previous section would of course be of little or no interest
if Mn (the class of manifolds having a triangulation with one edge and
n tetrahedra) turned out to be empty or very small. In this section we
prove that #Mn grows at least exponentially with n, deducing that the
number of orientable compact 3-manifolds of complexity n also grows at
least exponentially (Corollary 2.6). We do this by concentrating on a special
class of one-edged triangulations, and we give some hints showing that our
exponential lower estimate on #Mn is actually far from being sharp.1

1Added in proof. We have actually shown in math.GT/0301114 that #Mn has growth
type nn.

http://arXiv.org/abs/math.GT/0301114
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Oriented spines and o-graphs. In the whole of this section we consider
oriented (rather than just orientable) manifolds (but recall that chirality of
the elements of Mn can be checked very easily). We remind [1] that if P is a
standard spine of an oriented M then P also carries an orientation, defined as
a screw-orientation along the edges of S(P ) with a natural compatibility at
vertices (see [2, Fig. 2]). Conversely, if P is an oriented standard polyhedron,
then P is orientable, and the manifold it defines is oriented. In addition, P
can be described by two additional structures on the 4-valent graph S(P ):

• An embedding in the plane of the neighbourhood of each vertex, with
two opposite strands marked as being over the other two, as in knot
projections.

• A colour in Z/3 attached to each edge.
A 4-valent graph with these additional structures is called an o-graph. It
was shown in [1] that any o-graph defines an oriented standard polyhedron,
whence an oriented manifold, and that two o-graphs defining the same ori-
ented polyhedron are related by certain “C-moves.” The effect of a C-move
is to change the planar structure at a vertex and the Z/3-colouring of the
edges incident to this vertex.

O-graphs based on the open chain. Let Gn be the graph with vertices
v1, . . . , vn, a closed edge at v1 and one at vn, and two edges joining vi to vi+1

for i = 1, . . . , n−1. We characterize in this paragraph the oriented standard
polyhedra P such that S(P ) = Gn and P has a single face. We begin
with the following fact that one can readily establish using the C-moves
mentioned above:

Lemma 2.1. Any oriented standard polyhedron P such that S(P ) = Gn

can be represented by an o-graph as shown in Fig. 4.

Figure 4. O-graph of a generic polyhedron based on Gn.

The description of which o-graphs as in Fig. 4 have a single face will
use the language of finite state automata (see for instance [4]). We recall
that a finite state automaton over a finite set A (the alphabet) consists of
a finite set S (the states), a function S × A → S (the transition function),
an element s0 of S (the start state), and a subset S′ of S (the set of accept
states). A word (a finite string of letters from the alphabet) is accepted
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by the automaton if, starting from s0, reading the word from left to right,
and using the transition function, the automaton ends in a state of S′. An
automaton can be encoded by a picture, where the states are represented
by S-labeled boxes (with double margin for accept states), the transition
function is given by box-to-box A-labeled arrows, and a mark indicates the
start state.

Theorem 2.2. The oriented standard polyhedron defined by the o-graph of
Fig. 4 has a single face if and only if both α and δ are different from 2 and
the word

(β1, γ1)(β2, γ2) . . . (βn−1, γn−1)
is accepted by the automaton described in Fig. 5, where

A0 = {(2, 2)}, A1 = {(0, 0), (1, 1)}, A2 = {(1, 0), (0, 1)},
A3 = {(0, 2), (1, 2), (2, 0), (2, 1)}, A = A0 ∪A1 ∪A2 ∪A3.

Figure 5. A finite state automaton with alphabet A = A0∪
A1 ∪A2 ∪A3.

Proof. We confine ourselves to a general explanation, omitting the many
combinatorial details. We analyze the graph left to right, starting from α.

Figure 6. Portions of o-graph.

Figure 6 shows that for α = 2 there are at least two faces, so α ∈ {0, 1}.
Now we examine the pair of colours (β1, γ1) starting with the string XY Y X
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which describes the way the faces already constructed are matched to the
left of the point we are considering. (Note that both α = 0 and α = 1
give XY Y X.) Depending on (β1, γ1) we will have either the creation of
a face which does not fill the polyhedron, or a new pattern that describes
the matching of faces. More generally, as we proceed, we will have a string
xyzw of two symbols each repeated twice, and we will have to analyze the
effect of a pair of colours (i, j), which either creates a closed face or produces
a new pattern x′y′z′w′ (see Fig. 6 again). The detailed analysis of all the
possibilities leads precisely to the transitions shown in Fig. 5, where “FAIL”
means that a closed face is created. To conclude we note that the final edge
with colour δ ∈ {0, 1} gives a single global face when the input pattern is
XXY Y or XY XY , and not otherwise. �

Growth of #Mn. Theorem 1.8 shows that to compute #Mn it is sufficient
to count the combinatorially distinct standard polyhedra with n vertices
and one face. Restricting to the oriented ones with the open chain Gn as
singular graph we must then discuss which o-graphs as in Fig. 4 define the
same polyhedron. A move that of course does not change the polyhedron
associated to the o-graph is the 180◦ degree rotation. Using the C-moves
of [1] one can see that another such move consists in interchanging each
βk with the corresponding γk. In addition, these two moves are sufficient
to generate all graphs giving the same polyhedron. Therefore we have the
following:

Lemma 2.3. An oriented standard polyhedron is defined by at most four
different o-graphs as in Fig. 4.

Proposition 2.4. There are at least 4 ·12(2n−5)/3 distinct oriented standard
polyhedra with one face and the open chain with n vertices as singular set .

Proof. We must count the possible choices for the βk’s and γk’s, i.e., the
words of length n − 1 accepted by the finite state automaton of Fig. 5,
multiply by 4 (the choices for α and δ), and divide by at most 4 according
to the previous lemma. So it is sufficient to prove that there are at least
4 · 12(2n−5)/3 words of length n− 1 accepted by the automaton.

The idea is just to perform the loop XY Y X → XXY Y → XY XY →
XY Y X in all possible ways, inserting a single loop XXY Y → XXY Y
when n− 1 is a multiple of 3 (for in this case we would end up in the non-
accept start state). Since 6 letters lead from XY Y X to XXY Y , 4 lead from
XXY Y to XY XY , and again 6 from XY XY to XY Y X, it is clear that
approximately 62(n−1)/3 · 4(n−1)/3 = 122(n−1)/3 words can be constructed
with this method. The exact computation carried out depending on the
congruence class of n− 1 modulo 3 leads to the desired estimate. �
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The next easy remark shows that the qualitative type of growth just
established is actually the maximal one could expect. After the remark we
also give an obvious consequence of the previous proposition.

Remark 2.5. Given a 4-valent graph G with n vertices, there exist at most
2n · 32n = 18n distinct oriented standard polyhedra P such that S(P ) = G.
If G = Gn, using Lemma 2.1, one can see that there exist at most 32n = 9n

of them.

Corollary 2.6. There exist c > 0 and b > 1 such that #Mn > c · bn.
In particular, the number of distinct orientable, boundary-irreducible, and
acylindrical manifolds of complexity n is at least c · bn.

We remind the reader that the manifolds referred to in the previous corol-
lary are precisely those known to have standard minimal spines. Now we
have:

Remark 2.7. The number of distinct oriented standard polyhedra with n
vertices is bounded from above by 18n · g(n), where g(n) 6 (4n− 1)!! is the
number of distinct four-valent graphs with n vertices.

Further comments on estimates. The lower bound on the number of
elements of Mn based on the open chain graph Gn provided by Proposi-
tion 2.4 is very far from being sharp. For instance, if we consider in Fig. 5
the paths consisting of some XY Y X → XXY Y → XY XY → XY Y X cy-
cles intermingled with some XXY Y → XXY Y loops, we deduce that the
number of distinct spines is at least

n−2∑
k=0


0 if n− k − 1 = 3h,

2k · 62h+1 · 4h ·
(

h + k
h

)
if n− k − 1 = 3h + 1,

2k · 62h+1 · 4h+1 ·
(

h + k
h

)
if n− k − 1 = 3h + 2.

Concentrating on the term of the sum corresponding to k = [n/7] and using
Stirling’s formula one can for instance deduce from this estimate that there
exists c > 0 such that, for all ε > 0, the number of oriented elements of Mn

based on Gn is at least c · (6− ε)n for n � 0. Note that 122/3 ∼= 5.2418.

Remark 2.8. With the aid of a computer, in [10] we have listed and classi-
fied the approximately 2,000 closed, irreducible and orientable manifolds of
complexity up to 9. Corollary 2.6 suggest that a similar listing for orientable,
compact, boundary-irreducible, acylindrical manifolds may be hopeless. Our
lower bound on their number, even if not sharp, already implies that there
are at least 115,000 such manifolds of complexity up to 9.
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Another example: The closed chain. We have concentrated in this sec-
tion on the open chain Gn, because this graph is already sufficient to show
that #Mn grows exponentially. But we believe that a systematic investiga-
tion of the 4-valent graphs supporting a polyhedron with a single face would
be quite interesting. Our guess is actually that most graphs indeed support
many different such polyhedra. As another example we only mention the
closed chain, shown in Fig. 7.

Figure 7. An o-graph based on the closed chain.

The combinatorial analysis is in this case harder than that carried out for
Theorem 2.2, but we state at least the following fact, which already implies
that again in this case the number of relevant polyhedra grows exponentially
with n:

Proposition 2.9. Fix (α1, β1) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)} in the o-graph
of Fig. 7. Let (α2, β2) . . . (αn, βn) be a random word w in the letters {(0, 2),
(1, 2), (2, 0), (2, 1)}. Then for n � 0 there is a probability 1/2 that w defines
a polyhedron with a single face.

Chirality. We get back here to the chirality issue discussed at the end of
Section 1, showing how o-graphs can be used in connection with it. We first
recall [1] that if an o-graph Γ represents an oriented manifold M then the
manifold −M obtained by reversing the orientation of M is represented by
the o-graph −Γ obtained from Γ by switching overstrands and understrands
at vertices, and changing each edge-colour to its opposite in Z/3. Now
assume M belongs to Mn and Γ represents the unique minimal spine of
M . Then M is amphichiral if and only if −Γ defines the same oriented
polyhedron as Γ, which can be checked in n2 time using an algorithm based
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on C-moves. Turning to the M ’s based on Gn and using the C-moves again,
one can now prove the following:

Proposition 2.10. If Γ is the o-graph of Fig. 4 then −Γ is a similar o-graph
with colours:

α′ = 1− α, β′
2k+1 = 1− γ2k+1, β′

2k = 1− β2k,
δ′ = 1− δ, γ′2k+1 = 1− β2k+1, γ′2k = 1− γ2k.

This proposition and Lemma 2.3 show that chirality for the elements of
Mn obtained from the open chain Gn can be tested in linear time: We
only need to check whether one of four given 2n-tuples of elements of Z/3

coincides with another such given 2n-tuple.
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