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QUADRATIC FIELDS

J. Mc Laughlin

Solving Pell’s equation is of relevance in finding fundamen-
tal units in real quadratic fields and for this reason polynomial
solutions are of interest in that they can supply the fundamen-
tal units in infinite families of such fields.

In this paper an algorithm is described which allows one to
construct, for each positive integer n, a finite collection, {Fi},
of multi-variable polynomials (with integral coefficients), each
satisfying a multi-variable polynomial Pell’s equation

C2
i − FiH

2
i = (−1)n−1,

where Ci and Hi are multi-variable polynomials with integral
coefficients. Each positive integer whose square-root has a
regular continued fraction expansion with period n + 1 lies in
the range of one of these polynomials. Moreover, the contin-
ued fraction expansion of these polynomials is given explic-
itly as is the fundamental solution to the above multi-variable
polynomial Pell’s equation.

Some implications for determining the fundamental unit in
a wide class of real quadratic fields is considered.

1. Introduction.

Solving Pell’s equation is of relevance in finding fundamental units in real
quadratic fields and for this reason polynomial solutions are interesting in
that they can supply the fundamental units in infinite families of such fields.

There have been several papers written over the past thirty years which
describe certain polynomials whose square roots have periodic continued
fraction expansions which can be written down explicitly in terms of the
coefficients and variables of the polynomials. See for example the papers of
Bernstein [1], Levesque and Rhin [4], Madden [5], Van der Poorten [10] and
Van der Poorten and Williams [11].

In this paper an algorithm is described which allows one to construct,
for each positive integer n, a finite collection of multi-variable Fermat-
Pell polynomials which have all positive integers whose square-roots have
a continued fraction expansion of period n + 1 in their range. If Fi :=

335
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Fi

(
t0, t1, . . . , tbn+1

2
c

)
is any one of these polynomials, the fundamental poly-

nomial solution to the equation

C2
i − FiH

2
i = (−1)n−1(1.1)(

where Ci and Hi are polynomials in the variables t0, t1, . . . , tbn+1
2

c

)
can be

found. Moreover, the continued fraction expansion of
√

Fi can be written
down when t1, . . . , tbn+1

2
c ≥ 0 and t0 > gi

(
t1, . . . , tbn+1

2
c

)
, a certain rational

function of these variables. Some implications for single-variable Fermat-
Pell polynomials are discussed as are the implications for writing down the
fundamental units in a wide class of real quadratic number fields.

Definition. A multi-variable polynomial

F := F (t0, t1, . . . , tk) ∈ Z[t0, t1, . . . , tk], k ≥ 1

is called a multi-variable Fermat-Pell polynomial1 if there exists polynomials

C := C(t0, t1, . . . , tk) and H := H(t0, t1, . . . , tk) ∈ Z[t0, t1, . . . , tk ]

such that either

C2 − F H2 = 1, for all ti, 0 ≤ i ≤ k, or(1.2)

C2 − F H2 = −1, for all ti, 0 ≤ i ≤ k.

Such a triple of polynomials {C,H,F} satisfying Equation (1.2) constitute
a multi-variable polynomial solution to Pell’s equation.

Definition. The multi-variable Fermat-Pell polynomial F (as above) is said
to have a multi-variable polynomial continued fraction expansion if there ex-
ists a positive integer n, a real constant T , a rational function g(t1, . . . , tk) ∈
Q(t1, . . . , tk) and polynomials a0 := a0(t0, t1, . . . , tk) ∈ Z[t0, t1, . . . , tk ] and
aj := aj(t1, . . . , tk) ∈ Z[t1, . . . , tk ], 1 ≤ j ≤ n, which take only positive
integral values for integral ti ≥ T, 1 ≤ i ≤ k and (possibly half-) integral
t0 > g(t1, . . . , tk) such that
√

F = [a0; a1, . . . , an, 2a0], for all ti ’s in the ranges stated, 0 ≤ i ≤ k.

Remarks.

(1) From the point of view of simplicity it would be desirable to replace
the condition t0 ≥ g(t1, . . . , tk) by t0 ≥ T but it will be seen that
for the polynomials examined here that the former condition is more
natural and indeed cannot be replaced by the latter condition.

1These polynomials are called “Fermat-Pell polynomials” here to avoid confusion with
“Pell Polynomials” and also because Fermat investigated the “Pell” equation.
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(2) The restriction that the ai(t1, . . . , tk) ≥ 0, 1 ≤ i ≤ n may also seem
artificial to some since negative terms can easily be removed from a
continued fraction expansion (see, for example [10]) but this changes
the period of the continued fraction so is avoided here.

(3) It may also seem artificial to have a0 depend on a variable t0 while the
other ai’s do not but this will also be seen to occur naturally.

(4) Finally, allowing t0 to take half-integral values in some circumstances
may also seem strange but this also will be seen to be natural and
indeed necessary.

Definition. If, for all sets of integers {t′0, t′1, . . . , t′k} satisfying t′0 ≥ g(t′1,
. . . , t′k) and t′i ≥ T , 1 ≤ i ≤ k,

X = Ci(t′0, t
′
1, . . . , t

′
k), Y = Hi(t′0, t

′
1, . . . , t

′
k)

constitutes the fundamental solution (in integers) to

X2 − Fi(t′0, t
′
1, . . . , t

′
k)Y

2 = (−1)n−1

then (Ci(t0, t1, . . . , tk),Hi(t0, t1, . . . , tk)) is termed the fundamental polyno-
mial solution to Equation (1.1).

Standard notations are used:

a0 +
1

a1+
1

a2+
1

a3+
. . .

1
aN

:= a0 +
1

a1 +
1

a2 +
1

a3 + . . .
1

aN

.

To save space this continued fraction is usually written [a0; a1, . . . , an]. The
infinite periodic continued fraction with initial non-periodic part a0 and
periodic part a1, . . . , an, 2a0 is denoted by [a0; a1, . . . , an, 2a0]. The i-th ap-
proximant of the continued fraction [a0; a1, . . . , ] is denoted by Pi/Qi.

Repeated use will be made of some basic facts about continued fractions,
such as:

PnQn−1 − Pn−1Qn = (−1)n−1,(1.3)
Pn+1 = an+1Pn + Pn−1,

Qn+1 = an+1Qn + Qn−1,

each of these relations being valid for n = 1, 2, 3 . . . .
Before coming to the main problem, it is necessary to first solve a related

problem on symmetric strings of positive integers.
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2. A problem concerning symmetric sequences.

Question: For which symmetric sequences of positive integers a1, . . . , an do
there exist positive integers a0 and D such that

√
D = [a0; a1, . . . , an, 2a0]?(2.1)

Let Pi/Qi denote the ith approximant of the continued fraction

0 +
1

a1+
1

a2+
1

a3+
. . .

1
an

.(2.2)

By the well-known correspondence between convergents and matrices(
0 1
1 0

) (
a1 1
1 0

)
. . . . . .

(
an 1
1 0

)
=

(
Pn Pn−1

Qn Qn−1

)
=⇒

(
0 1
1 0

) (
a1 1
1 0

)
. . . . . .

(
an 1
1 0

) (
0 1
1 0

)
=

(
Pn−1 Pn

Qn−1 Qn

)
.

Since the left side in the second equation is a symmetric sequence of sym-
metric matrices it follows that

Pn = Qn−1.(2.3)

Suppose
√

D = [a0; a1, ......., an, 2a0] = a0 +β, where β =[0; a1, ......., an, 2a0]
so that

β = [0; a1, . . . , an, 2a0 + β],

=⇒ β =
(2a0 + β)Pn + Pn−1

(2a0 + β)Qn + Qn−1
=

βPn + (2a0Pn + Pn−1)
βQn + (2a0Qn + Qn−1)

,

=⇒ β2Qn + (2a0Qn + Qn−1 − Pn)β − (2a0Pn + Pn−1) = 0,

=⇒ β2Qn + (2a0Qn)β − (2a0Pn + Pn−1) = 0, (by (2.3))

=⇒
√

D = a0 + β =

√
a2

0 +
2a0Pn + Pn−1

Qn
.

The problem now becomes one of determining for which symmetric se-
quences of positive integers a1, . . . , an does there exist positive integers a0

such that (2a0Pn + Pn−1)/Qn is an integer.

Theorem 1. There exists a positive integer a0 such that (2a0Pn+Pn−1)/Qn

is an integer if and only if Pn−1Qn−1 is even.

Proof. ⇐= Suppose first of all that Pn−1Qn−1 is even. By Equation (1.3)

PnQn−1 + (−1)n = Pn−1Qn.
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(i) Suppose n is even. Then PnQn−1Pn−1 + Pn−1 = P 2
n−1Qn. Choose t

to be any integer or half-integer such that tQn is an integer and a0 :=
Qn−1Pn−1/2 + tQn > 0. Then

2a0Pn + Pn−1

Qn
=

Qn−1Pn−1Pn + 2tPnQn + Pn−1

Qn
= 2tPn + P 2

n−1.

(ii) Similarly, in the case n is odd, −PnQn−1Pn−1 + Pn−1 = −P 2
n−1Qn.

Choose t to be any integer or half-integer such that tQn is an integer and
a0 := −Qn−1Pn−1/2 + tQn > 0. In this case

2a0Pn + Pn−1

Qn
= 2tPn − P 2

n−1.

=⇒ Suppose next that Pn−1 and Qn−1 are both odd and that there exists a
positive integer a0 such that (2a0Pn+Pn−1)/Qn is a positive integer, m, say.
Using (1.3) and (2.3) it follows that Qn is even. Then 2a0Pn +Pn−1 = mQn

implies Pn−1 is even - a contradiction. �

Remarks.

(i) Note that this process gives all a0 such that (2a0Pn + Pn−1)/Qn is an
integer. Indeed,

(2a0Pn + Pn−1)/Qn = k, an integer
⇐⇒ 2a0PnQn−1 = −Pn−1Qn−1 + kQnQn−1,

⇐⇒ 2a0(−1)n−1 = 2a0(PnQn−1 − Pn−1Qn), (by (1.3))

= −Pn−1Qn−1 + Qn(kQn−1 − 2a0Pn−1),

⇐⇒ a0 = (−1)n−1

(
−Pn−1Qn−1

2
+ Qn

kQn−1 − 2a0Pn−1

2

)
.

Notice also that if there is one such a0 that there are infinitely many
of them.

(ii) Notice that, with Pn, Pn−1, Qn and Qn−1 as defined above, if there
exists a positive integer D satisfying (2.1) then D = p(t0), for some
allowed t0, where

p(t) =
(

Qn−1Pn−1

2
+ tQn

)2

+ 2tPn + P 2
n−1, t >

−Qn−1Pn−1

2Qn
, (n even),

p(t) =
(
−Qn−1Pn−1

2
+ tQn

)2

+ 2tPn − P 2
n−1, t >

Qn−1Pn−1

2Qn
, (n odd).

The above theorem suggests a simple algorithm for deciding if, for a given
symmetric sequence of positive integers a1, . . . , an, there exist positive in-
tegers a0 and D such that (2.1) holds. Notice that all that matters is the
parity of the ai so all calculations can be done in Z2. First of all define the
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following matrices:

J =
(

0 1
1 0

)
, K =

(
1 1
1 0

)
and I =

(
1 0
0 1

)
.

Convert the sequence a1, a2, . . . , an to a sequence of J- and K-matrices,
according to whether each ai is odd (replace by a K) or even (replace by a J).
Prefix a J-matrix (to account for the initial 0 in the continued fraction (2.2)).
Multiply this sequence together (modulo 2) using the facts that J2 = K3 =
I, and JK = K2J .

The final matrix ≡
(
∗ 1
∗ 1

)
mod 2 ⇐⇒ there do not exist positive inte-

gers a0 and D such that (2.1) holds.

Example 1. Do there exist positive integers a0 and D such that
√

D = [a0; 22, 34, 97, 32, 15, 17, 17, 15, 32, 97, 34, 22, 2a0]?

As described above convert the sequence 22, 34, 97, 32, 15, 17, 17, 15, 32, 97,
34, 22 to a sequence of J- and K-matrices, prefix a J-matrix and multiply
the sequence together:

JJ︸︷︷︸ JKJ KKK︸ ︷︷ ︸ KJK JJ︸︷︷︸ = JK(JK)JK = J K(K2︸ ︷︷ ︸ J)J︸︷︷︸ K

= JK =
(

1 0
1 1

)
.

Therefore there do exist positive integers a0 and D such that
√

D = [a0; 22, 34, 97, 32, 15, 17, 17, 15, 32, 97, 34, 22, 2a0].

3. Multi-variable Fermat-Pell polynomials.

Definition. If { a1, . . . , an} is a symmetric zero-one sequence such that(
0 1
1 0

) n∏
i=1

(
ai 1
1 0

)
6≡

(
∗ 1
∗ 1

)
mod 2

then the sequence { a1, . . . , an} is termed a permissible sequence. Let r(n)
denote the number of permissible sequences of length n.

Note: It is not difficult to show that r(2m) = ((−1)m +2m+1)/3 and that
r(2m + 1) = ((−1)m + 5× 2m)/3.

If D is a positive integer such that
√

D = [a0; a1, . . . , an, 2a0] then { a1,
. . . , an} mod 2 must equal one of the above permissible sequences and D is
said to be associated with this permissible sequence . The collection of all
positive integers associated with a particular permissible sequence is termed
the parity class of this permissible sequence. Sometimes, if there is no danger
of ambiguity, these collections of positive integers will be referred to simply
as parity classes.
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Theorem 2.
(i) For each positive integer n there exists a finite collection of multi-

variable Fermat-Pell polynomials Fj

(
t0, t1, . . . , tbn+1

2
c

)
, 1 ≤ j ≤ r(n),

such that each positive integer whose square root has a continued frac-
tion expansion with period n + 1 lies in the range of exactly one of
these polynomials. Moreover, these polynomials can be constructed.

(ii) These polynomials have a polynomial continued fraction expansion
which can be explicitly determined.

(iii) The fundamental polynomial solution
C = Cj

(
t0, t1, . . . , tbn+1

2
c

)
, H = Hj

(
t0, t1, . . . , tbn+1

2
c

)
to

C2 − Fj

(
t0, t1, . . . , tbn+1

2
c

)
H2 = (−1)n−1(3.1)

exists and can be explicitly determined.

Proof. (i) The proof will be by construction.

Step 1. Find all permissible sequences. This will involve checking 2b
n+1

2
c

zero-one sequences in a way similar to Example 1 above.

Step 2. For each permissible sequence {a1, . . . , an} create a new symmetric
polynomial sequence {a1(t1), a2(t2), . . . , an−1(t2), an(t1)} by replacing each
ai and its partner an+1−i in the symmetric sequence by ai(ti) = an+1−i(ti) =
2ti + 1 if ai = 1 and by ai(ti) = an+1−i(ti) = 2ti + 2 if ai = 0. This
new sequence will sometimes be referred to as the sequence {a1, . . . , an},
if there is no danger of ambiguity. Each of the integer variables ti (in the
polynomial being constructed) will be allowed to vary independently over
the range 0 ≤ ti < ∞ and each of the new ai’s will keep the same parity
and stay positive.

Step 3. As in (2.2), form the continued fraction

0 +
1

a1(t1)+
1

a2(t2)+
. . .

1
an−1(t2)+

1
an(t1)

and calculate Pn, Qn, Pn−1 and Qn−1 for this polynomial continued fraction,
where these expressions are now polynomials in the ti’s.

Step 4. Construct Fj := Fj(t0, t1, . . . , tbn+1
2

c), the multi-variable Fermat-
Pell polynomial corresponding to the particular parity sequence under con-
sideration. This is simply done by defining

Fj :=


(

Qn−1Pn−1

2 + t0Qn

)2
+ 2t0Pn + P 2

n−1, (n even)(
−Qn−1Pn−1

2 + t0Qn

)2
+ 2t0Pn − P 2

n−1, (n odd)
(3.2)

where (−1)n+1Qn−1Pn−1/(2Qn) < t0 < ∞ and t0 can take half-integral
values if Qn is even and otherwise takes integral values.
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Every positive integer whose square root has a continued fraction expan-
sion with period n + 1 lies in the range of exactly one of these polynomials.
That these polynomials are multi-variable Fermat-Pell polynomials follows
from Equation (3.4) below.

(ii) With t0 in the range given, then√
Fj =

[
a0

(
t0, t1, . . . , tbn+1

2
c

)
; a1(t1), . . . , an(t1), 2a0

(
t0, t1, . . . , tbn+1

2
c

)]
,

for all ti ≥ 0. Here

a0 = a0

(
t0, t1, . . . , tbn+1

2
c

)
:=

{
Qn−1Pn−1

2 + t0Qn, (n even)
−Qn−1Pn−1

2 + t0Qn, (n odd).
(3.3)

(iii) Notice (using (1.3) and (2.3)) that

(a0Qn + Pn)2 − (a2
0 + (2a0Pn + Pn−1)/Qn)Q2

n = (−1)n−1.(3.4)

To see that (a0Qn +Pn, Qn) is the fundamental solution to (3.1), notice that√
Fj =

[
a0

(
t0, t1, . . . , tbn+1

2
c

)
; a1(t1), . . . , an(t1), 2a0

(
t0, t1, . . . , tbn+1

2
c

)]
.

This has period n + 1 and the nth approximant is a0 + Pn/Qn = (a0Qn +
Pn)/Qn and by the theory of the Pell equation (a0Qn + Pn, Qn) is the fun-
damental solution to (3.1). �

As regards fundamental units in quadratic fields there is the following
theorem on page 119 of [6]:

Theorem 3. Let D be a square-free, positive rational integer and let K =
Q(
√

D). Denote by ε0 the fundamental unit of K which exceeds unity, by
s the period of the continued fraction expansion for

√
D, and by P/Q the

(s− 1)-th approximant of it.
If D 6≡ 1 mod 4 or D ≡ 1 mod 8, then

ε0 = P + Q
√

D.

However, if D ≡ 5 mod 8, then

ε0 = P + Q
√

D

or

ε30 = P + Q
√

D.

Finally, the norm of ε0 is positive if the period s is even and negative oth-
erwise.
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It is easy, working modulo 4, to determine simple conditions (on t0) which
make Fj ≡ 2 or 3 mod 4 and thus to say further, for a particular set of
choices of t1, . . . , tbn+1

2
c and for all odd or even t0, that if Fj is square-free,

then a0Qn +Pn +
√

FjQn is the fundamental unit in Q[
√

Fj ]. For example,
suppose that n is even and that the original Qn−1 determined from the
permissible zero-one sequence is also even (so that Pn−1 and Qn are both odd
and Pn = Qn−1 is even). Then the multi-variable form of Qn−1 evaluated in
Step 3 will also have all even coefficients. Suppose Qn−1

2 ≡ c0+
∑

ti′ mod 2.
(Here c0 may be 0 and the sum

∑
ti′ may contain some, all or none of the

ti’s.) It is easy to see that Fj

(
t0, t1, . . . , tbn+1

2
c

)
≡ (c0 +

∑
ti′ + t0)2 + 1

mod 4. Even more simply, if the original Qn−1 as in Step 1 is odd (here
also the case n is even is considered) then Pn−1 as evaluated in Step 3 is
even and it is not difficult to show that in fact Pn−1 ≡ 2 mod 4 (since
for n even PnQn−1 − Pn−1Qn = −1) and that Qn is odd, which leads to
Fj

(
t0, t1, . . . , tbn+1

2
c

)
≡ t20 + 1 mod 4. Similar relations hold in the case

where n is odd.
The polynomials constructed in Theorem 2 take values in only one parity

class, if all the variables are positive. However, given any two parity classes,
there are multi-variable Fermat-Pell polynomials that take values in those
two classes.

Theorem 4. Let n be any fixed positive integer large enough so that the set
of positive integers whose square roots have a continued fraction expansion
of period n + 1 can be divided into more than one parity class.

(i) Given any two parity classes of integers whose square roots have con-
tinued fraction expansions of period n + 1, there are multi-variable
Fermat-Pell polynomials, which can be constructed, that take values in
both parity classes.

(ii) These polynomials have a polynomial continued fraction expansion
which can be explicitly determined.

(iii) If F = F
(
t0, c, t1, . . . , tbn+1

2
c

)
is any such polynomial then the funda-

mental polynomial solution

C = C
(
t0, c, t1, . . . , tbn+1

2
c

)
,H = H

(
t0, c, t1, . . . , tbn+1

2
c

)
to

C2 − FH2 = (−1)n−1(3.5)

can be explicitly determined.

Proof. As in Step 2 in Theorem 2 a polynomial sequence {a1, . . . , an} is
created. Suppose L1 = {b1 . . . , bn} and L2 = {c1, . . . , cn} are the permis-
sible sequences associated with the two parity classes. Let i1, . . . , ik be
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those positions ≤ bn+1
2 c at which the sequences agree. For each of these

ir’s set air(tir) = an+1−ir(tir) = 2tir + 1, if cir is odd and set air(tir) =
an+1−ir(tir) = 2tir + 2, if cir is even. Subdivide the remaining positions
(those positions ≤ bn+1

2 c at which L1 and L2 differ) into two subsets: Those
at which L1 has a 0 and L2 has a 1 and those at which L1 has a 1 and L2

has a 0.
Suppose ij is a position of the first kind. Let aij (c, tij ) = an+1−ij (c, tij )

= c + 2 + 2tij . Repeat this for all the positions ij in this first set. Likewise,
suppose ij is a position of the second kind. In this case let aij (c, tij ) =

an+1−ij

(
c, tbn+1

2
c

)
= c + 1 + 2tij . This is also repeated for all the positions

ij in this second set. Step 3 and Step 4 are then carried out as above. The
rest of the proof is identical to Theorem 2. Denote the polynomial produced
by

F := F
(
t0, c, t1, . . . , tbn+1

2
c

)
.(3.6)

As in Theorem 2, if c and all the ti’s are nonnegative, 1 ≤ i ≤ bn+1
2 c and

t0 > (−1)n+1Qn−1Pn−1/(2Qn) then
√

F = [a0; a1, ......., an, 2a0],

where the ai’s, 1 ≤ i ≤ n are as defined just above and a0 is as defined in
Equation (3.3).

Under these conditions also the parity class of F
(
t0, c, t1, . . . , tbn+1

2
c

)
will

depend only on the parity of c. As in Theorem 2 the fundamental polynomial
solution to

C2 − F
(
t0, c, t1, . . . , tbn+1

2
c

)
H2 = (−1)n−1

is given by C = a0Qn + Pn, H = Qn. �

4. A worked example.

As an example, consider those positive integers whose square-roots have
continued fraction expansion with period of length 9. Thus the symmetric
part of the period has length 8 and it is necessary to check the 24 = 16
zero-one sequences to determine which are permissible. (This checking is
done in essentially the same way as in Example 1 above.) There are 11 valid
sequences:

0, 0, 0, 0, 0, 0, 0, 0
0, 0, 0, 1, 1, 0, 0, 0
0, 0, 1, 1, 1, 1, 0, 0
0, 1, 0, 0, 0, 0, 1, 0
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0, 1, 0, 1, 1, 0, 1, 0
0, 1, 1, 1, 1, 1, 1, 0
1, 0, 0, 1, 1, 0, 0, 1
1, 0, 1, 0, 0, 1, 0, 1
1, 0, 1, 1, 1, 1, 0, 1
1, 1, 0, 0, 0, 0, 1, 1
1, 1, 1, 0, 0, 1, 1, 1.

The ninth of these is considered in more detail (each of the others can be
dealt with in a similar way). For clarity the letters a, b, c and d are used
instead of t1, t2, t3 and t4. Evaluating the continued fraction

0 +
1

2a + 1 +
1

2b + 2 +
1

2c + 1 +
1

2d + 1 +
1

2d + 1 +
1

2c + 1 +
1

2b + 2 +
1

2a + 1

(4.1)

it is found that

P8 = Q7 = −1− 2 d +

2 (3 + 4 a + 2 b + 4 a b)(4 + 3 b + 4 c + 4 b c + 6 d + 4 b d + 8 c d + 8 b c d)

+ 4 (3 + 2 b + 4 (1 + b) c) (2 + b + 3 c + 2 b c + a (3 + 2 b + 4 (1 + b) c))×
(1 + 2 d + 2 d2),

P7 = 4 (1 + b) (4 + 3 b + 4 c + 4 b c + 6 d + 4 b d + 8 c d + 8 b c d) +

2 (3 + 2 b + 4 (1 + b) c)2 (1 + 2 d + 2 d2) and

Q8 = 8 (2 + b + 3 c + 2 b c + a (3 + 2 b + 4 (1 + b) c))2 (1 + 2 d + 2 d2) +

(3 + 4 a + 2 b + 4 a b) (3 + 4 c + 4 d + 8 c d + (2 + 4 a) (4 + 3 b +

4 c + 4 b c + 6 d + 4 b d + 8 c d + 8 b c d)).

Since n is 8 (even) and Q8 is odd (so t0 cannot take half-integer values), in
this case F9(t0, a, b, c, d) is defined by

F9(t0, a, b, c, d) = (Q7P7/2 + t0Q8)2 + 2t0P8 + P 2
7(4.2)



346 J. MC LAUGHLIN

and√
F9(t0, a, b, c, d) = [Q7P7/2 + t0Q8; 2a + 1, 2b + 2, 2c + 1, 2d + 1, 2d + 1,

2c + 1, 2b + 2, 2a + 1, 2(Q7P7/2 + t0Q8)],

this expansion being valid for all a, b, c, d ≥ 0 and all t0 > −Q7P7/(2Q8)
and in particular for all t0 ≥ 0. In these ranges

C = (Q7P7/2 + t0Q8)Q8 + P8, H = Q8

gives the fundamental polynomial solution to

C2 − F9H
2 = −1.

F9(t0, a, b, c, d) = (Q7P7/2 + t0Q8)2 + 2t0P8 + P 2
7 ≡ (1 + t20) mod 4, so that

if (Q7P7/2+ t0Q8)2 +2t0P8 +P 2
7 is a square-free number for some particular

a, b, c, d ≥ 0 and some odd t0 > −Q7P7/(2Q8), then

(Q7P7/2 + t0Q8)Q8 + P8 +
√

(Q7P7/2 + t0Q8)2 + 2t0P8 + P 2
7 Q8

is the fundamental unit in Q
( √

(Q7P7/2 + t0Q8)2 + 2t0P8 + P 2
7

)
.

5. Mystification, Fermat-Pell polynomials of a single variable
and more on odd-even.

Clearly it is possible to “mystify” this process by replacing each ti by some
polynomial gi(ti) taking only positive values or by replacing 2ti (recalling
that the continued fraction expansion contains only terms like 2ti + 1 or
2ti + 2) by some polynomial gi(ti) taking only even nonnegative values or
by setting ti = ti(X1, X2, . . . , Xk), 1 ≤ i ≤ bn+1

2 c, a polynomial in the Xj ’s
taking only positive values, where the Xj ’s can be independent variables
and k can be as large as desired and so on.

Finally of course one can obtain single-variable Fermat-Pell polynomials
by replacing the original variables t0, ti, 1 ≤ i ≤ bn+1

2 c by polynomials in
a single variable. If it is desired that the period of the continued fraction
expansion of the new single-variable Fermat-Pell polynomial should stay the
same as that of the originating multi-variable polynomial then the domain
of the single variable should be restricted so that the polynomials replacing
each of the ti’s take only positive values as in the multi-variable case and
the polynomial replacing t0 must be such that the a0 term stays positive for
all allowed values of the new single variable.

For example, letting a = s, b = 0, c = s, d = 0 and t0 = s in the polyno-
mial (4.2) above produces the single-variable Fermat-Pell polynomial

g(s) = 639557 + 6858268 s + 33078145 s2 +

94534688 s3 + 177380352 s4 + 228442240 s5 + 204593408 s6 +
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125870080 s7 + 50925568 s8 + 12238848 s9 + 1327104 s10

which has the continued fraction expansion (valid for all s ≥ 0)√
g(s) = [799 + 4289 s + 9184 s2 + 9856 s3 + 5312 s4 + 1152 s5;

2s + 1, 2, 2s + 1, 1, 1, 2s + 1, 2, 2s + 1,

2(799 + 4289 s + 9184 s2 + 9856 s3 + 5312 s4 + 1152 s5)].

g(s) ≡ (1 + s2) mod 4 so when s is odd and positive and g(s) is square-free

51982 + 534625 s + 2429840 s2 + 6408000 s3 +

10812928 s4 + 12115200 s5 + 9019392 s6 + 4304896 s7 + 1196032 s8 +

147456 s9 +
√

g(s)(65 + 320 s + 576 s2 + 448 s3 + 128 s4)

is the fundamental unit in Q[
√

g(s)]. For example, letting s = 1 gives that
47020351 + 1537

√
935888258 is the fundamental unit in Q[

√
935888258].

Starting with the continued fraction

0 +
1

2a + 1 +
1

2b + 2 +
1

c + 2e +
1

2d + 1 +
1

2d + 1 +
1

c + 2e +
1

2b + 2 +
1

2a + 1

and following the same steps as above with the continued fraction (4.1) a
multi-variable Fermat-Pell polynomial is developed which takes values in
the parity classes associated with permissible sequences 7 and 9. Letting
a = b = d = e = t = 0 one gets the single-variable Fermat-Pell polynomial

g(c) = 4325 + 28140 c + 83652 c2 + 147440 c3 + 168000 c4 +

126528 c5 + 61504 c6 + 17664 c7 + 2304 c8

with continued fraction expansion√
g(c) = [65 + 214c + 288c2 + 184c3 + 48c4;

1, 2, c, 1, 1, c, 2, 1, 2(65 + 214c + 288c2 + 184c3 + 48c4)],

valid for c ≥ 1.
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6. Concluding remarks.

Every Fermat-Pell polynomial in one variable, s say, that eventually has a
continued fraction expansion of fixed period length can be found from (3.2),
if it takes values in only one parity class for all sufficiently large s, and from
(3.6), if it takes values in two parity class for all sufficiently large s. (Recall
Remark (i) after Theorem 1.)

Of course none of this does anything to answer Schinzel’s question of
whether every Fermat-Pell polynomial in one variable has a continued frac-
tion expansion. Neither does it provide a criterion (such as Schinzel’s in the
degree-two case) for deciding if a polynomial of arbitrarily high even degree
is a Fermat-Pell polynomial. Perhaps it raises another question - Does every
multi-variable Fermat-Pell polynomial have a continued fraction expansion?
Does every multi-variable Fermat-Pell polynomial have a continued fraction
expansion, assuming every Fermat-Pell polynomial in one variable does?
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