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We show that the restriction on the uniform norms of ap-
proximating matricial microstates can be removed when defin-
ing free entropy.

1. Introduction.

Denote by Mk the algebra of complex k × k matrices, and by τk the nor-
malized trace on Mk, i.e., τk(A) = 1

kTr(A) for A ∈ Mk. Consider for each
k a standard Gaussian Hermitian random matrix Xk. Thus, if E denotes
expected value, Eτk(Xk) = 0 and Eτk(X2

k) = 1. It was shown by E. Wigner
[9] that, as k →∞, Xk tends in distribution to a semicircular law, i.e., the
limits

µp = lim
k→∞

Eτk(X
p
k)

exist, and they can be calculated as

µp =
1
2π

∫ 2

−2
tp

√
4− t2 dt

for p = 1, 2, . . . . If we have several independent standard Gaussian Hermit-
ian random matrices (Xk(i))n

i=1, D. Voiculescu [4] proved that, as k → ∞,
these sets of variables converge in distribution to a free semicircular family.
Briefly, this means that given indices ij ∈ {1, 2, . . . , n} such that ij 6= ij+1

for j = 1, 2, . . . ,m− 1, and given positive integers p1, p2, . . . , pm, the limit

lim
k→∞

Eτk(Xk(i1)p1Xk(i2)p2 . . . Xk(im)pm)

exists, and

lim
k→∞

Eτk[(Xk(i1)p1 − µp1)(Xk(i2)p2 − µp2) . . . (Xk(im)pm − µpm)] = 0.

It is natural to look for large deviation principles associated with these
limit laws. For this purpose (and also with motivation from information
theory and statistical physics) Voiculescu introduced in [6] (cf. also [5])
the notion of free entropy. The original definition of free entropy, which
will be reviewed below, involves a bound R > 0 on the operator norm
of approximating matricial microstates, and this may perhaps obscure its
significance for large deviations. It is our purpose here to show that this
bound can be removed — roughly speaking, one can set R = ∞ in the
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definition of free entropy. This result applies to other notions of free entropy
which appeared subsequently (see for instance [7] for free entropy in the
presence of additional variables, [8] for free entropy using an ultrafilter, and
[3] for free entropy of a nonselfadjoint variable). We will only provide the
proof for the original quantity χ defined in [6], but it should be obvious how
the argument applies in the other situations.

It should be noted that a large deviation theorem for Wigner’s result
has been proved by G. Ben Arous and A. Guionnet [1], where the natural
topology of weak convergence of probability measures on the real line is used.
The rate function is closely related with free entropy. For several variables, a
thorough study of large deviations was undertaken by T. Cabanal Duvillard
and A. Guionnet [2]. The rate function they determine is related with
another version of free entropy (microstate free).

2. The main result.

For the remainder of this note we fix a positive integer n. We will denote by
I the collection of all multiindices α = (α1, α2, . . . , αm) with m ≥ 1 and αj ∈
{1, 2, . . . , n} for all j = 1, 2, . . . ,m. In other words, I =

⋃∞
m=1{1, 2, . . . , n}m.

A multiindex of the form (α, α, . . . , α) will also be denoted αm. We consider
the space S consisting of all families (µ(α))α∈I of complex numbers indexed
by I. The space S will be endowed with the topology of componentwise
convergence.

Consider now a tracial W ∗-probability space (A, τ). That is, A is a von
Neumann algebra, and τ is a normal trace state on A. We will write
Asa for the space of selfadjoint elements of A. Given an n-tuple X =
(X1, X2, . . . , Xn) ∈ (Asa)n, its distribution µX ∈ S is defined by

µX(α) = τ(Xα),

where Xα = Xα1Xα2 . . . Xαm for α = (α1, α2, . . . , αm) ∈ I. This notation
applies in particular to n-tuples of selfadjoint matrices in Mk. Voiculescu’s
entropy measures the extent to which the distribution of X can be approx-
imated by distributions of the form µA with A ∈ (Msa

k )n. Note first that
Msa

k is a real Hilbert space with the Hilbert-Schmidt norm ‖A‖2 = Tr(A2),
and λk will denote the corresponding Lebesgue measure (i.e., a cube whose
sides form an orthonormal basis has measure equal to one). On the space
(Msa

k )n we have the product measure λ⊗n
k .

Given X ∈ (Asa)n, and a neighborhood U of µX in S, we set

Γ(X; k, U) = {A ∈ (Msa
k )n : µA ∈ U}.

Given in addition a positive number R,

ΓR(X; k, U) = {A ∈ Γ(X; k, U) : ‖Aj‖ < R for all j}.
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We can then define the quantities

χR(X;U) = lim inf
k→∞

[
1
k2

log λ⊗n
k (ΓR(X; k, U)) +

n

2
log k

]
,

and
χR(X) = inf

U
χR(X;U),

where U runs over a neighborhood base of µX in S. Finally, the free entropy
is defined as

χ(X) = sup
R>0

χR(X).

We also set

χ∞(X;U) = lim inf
k→∞

[
1
k2

log λ⊗n
k (Γ(X; k, U)) +

n

2
log k

]
,

and χ∞(X) = infU χ∞(X;U). This quantity was introduced in the con-
cluding remarks of [6], where other possible definitions of free entropy are
discussed briefly. The inequalities

χR(X) ≤ χ(X) ≤ χ∞(X)

are obvious for R > 0, and Proposition 2.4 of [6] states that χR(X) = χ(X)
if R is sufficiently large; R > maxj ‖Xj‖ will suffice. Our main result is as
follows:

Proposition 2.1. For every X ∈ (Asa)n we have χ(X) = χ∞(X).

The proof of this result is a refinement of the proof of Proposition 2.4
in [6]. We begin by considering the diffeomorphism f of the real line onto
(−2, 2) defined by f(t) = t for t ∈ [−1, 1], f(t) = 2 − 1

t for t > 1, and
f(t) = −2− 1

t for t < −1. Observe that f ′ does not have any local minimum,
and therefore

f(s)− f(t)
s− t

≥ min{f ′(s), f ′(t)} ≥ f ′(s)f ′(t)

for all s and t. The function Fn : (Msa
k )n → (Msa

k )n defined by

Fn(A1, A2, . . . , An) = (f(A1), f(A2), . . . , f(An))

is also differentiable, and we need to estimate the Jacobian determinant
(JFn)(A). Since

(JFn)(A) = (JF1)(A1)(JF1)(A2) . . . (JF1)(An),

it suffices to do this in one variable. As pointed out in [6], if A is a k × k
matrix with eigenvalues µ1, µ2, . . . , µk, we have

(JF1)(A) =

∏
i6=j

f(µi)− f(µj)
µi − µj

 ·
k∏

i=1

f ′(µi).
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By the estimate for difference quotients shown above,

(JF1)(A) ≥

∏
i6=j

f ′(µi)f ′(µj)

 ·
k∏

i=1

f ′(µi)

=
k∏

i=1

f ′(µi)2k−1 =
∏
|µi|>1

µ
−2(2k−1)
i .

Denoting log+(t) = max{log t, 0}, we obtain

log(JF1)(A) ≥ −2(2k − 1)
k∑

i=1

log+ µi

= −2k(2k − 1)
1
k

k∑
i=1

log+ µi

= −2k(2k − 1)τk(log+ |A|).
We have therefore proved the following estimate:

Lemma 2.2. Given A = (A1, A2, . . . , An) ∈ (Msa
k )n, we have

(JFn)(A) ≥ exp

−2k(2k − 1)
n∑

j=1

τk(log+ |Aj |)

 .

Note for further use that, for a selfadjoint k × k matrix A, τk(log+ |A|)
can be estimated in terms of the moments τk(A2p), p ≥ 1. In fact, log+ t =
1
2p log+ t2p ≤ 1

2p t2p, and therefore

τk(log+ |A|) ≤ 1
2p

τk(A2p).

We need one more ingredient.

Lemma 2.3. Let X ∈ (Asa)n satisfy maxj ‖Xj‖ < 1, and let U be a neigh-
borhood of µX in S. There exists a neighborhood V of µX in S such that

Fn(Γ(X; k, V )) ⊂ Γ2(X; k, U) for all k.

Proof. Clearly it suffices to prove the lemma for neighborhoods of the form

U = {µ ∈ S : |µ(α)− τ(Xα)| < ε},
where α = (α1, α2, . . . , αm) ∈ I and ε > 0 are fixed. Using the Hölder
inequality

‖Aα‖1 ≤ ‖Aα1‖m‖Aα2‖m . . . ‖Aαm‖m,

we see that it is sufficient to choose V so that, for all A ∈ Γ(X; k, V ), we
have |τk(Aα) − τ(Xα)| < ε/2, ‖Aj‖m ≤ 1, and ‖Aj − f(Aj)‖m < ε/2m for
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j = 1, 2, . . . , n. Choose a number r < 1 so that r > ‖Xj‖ for all j, and
choose an even integer q > m such that rq/m < ε/2m. Define next

V =
{

µ ∈ S : |µ(α)− τ(Xα)| < ε

2
and |µ(jq)| < rq for j = 1, 2, . . . , n

}
;

recall that jq denotes the q-multiindex with all entries equal to j. Consider
now A ∈ Γ(X; k, V ), and note that the inequalities |τk(Aα)− τ(Xα)| < ε/2
are obviously satisfied. Also,

‖Aj‖m ≤ ‖Aj‖q = τ(Aq
j)

1/q ≤ r < 1.

Finally, if µ1, µ2, . . . , µk are the eigenvalues of Aj ,

‖Aj − f(Aj)‖m ≤

1
k

∑
|µj |≥1

|µj |m
1/m

≤

1
k

∑
|µj |≥1

|µj |q
1/m

≤ (τk(A
q
j))

1/m ≤ rq/m,

and this quantity is less than ε/2m. �

Proof of Proposition 2.1. It suffices to prove the proposition in case ‖Xj‖ <
1 for all j. From the results of [6] we know that χ2(X) = χ(X), and clearly
χ2(X) ≤ χ∞(X). To prove the opposite inequality χ2(X) ≥ χ∞(X), let
U be a neighborhood of µX in S, and let V be the neighborhood of µX

furnished by Lemma 2.3, i.e., Fn(Γ(X; k, V )) ⊂ Γ2(X; k, U) for all k ≥ 1.
Given a positive integer p, we may also assume that τk(A

2p
j ) ≤ 1 whenever

A = (A1, A2, . . . , An) ∈ Γ(X; k, V ). It follows then from Lemma 2.2 (and
the remark following its statement) that

(JFn)(A) ≥ exp
[
−2k(2k − 1)

n

2p

]
for all A ∈ Γ(X; k, V ). Since the function Fn is one-to-one, we deduce that

λ⊗n
k (Γ2(X; k, U)) ≥ λ⊗n

k (Fn(Γ(X; k, V )))

≥ exp
[
−2k(2k − 1)

n

2p

]
λ⊗n

k (Γ(X; k, V )).

Therefore
1
k2

log λ⊗n
k (Γ2(X; k, U)) +

n

2
log k

≥ 1
k2

log λ⊗n
k (Γ(X; k, V )) +

n

2
log k −

(
2− 1

k

)
n

p
,

and as k →∞ this yields

χ2(X;U) ≥ χ∞(X;V )− 2n

p
.
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Since p is arbitrary, we deduce that χ2(X;U) ≥ χ∞(X;V ) ≥ χ∞(X), and
the proof is concluded by taking the infimum over U . �

We remark that a suitable modification of the above proof yields directly
that χ∞(X) = χR(X) if ‖Xj‖ < R. One needs an appropriate version of
the function f , and that is easily constructed.
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