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A PROPERTY OF FREE ENTROPY

S.T. BELINSCHI AND H. BERCOVICI

We show that the restriction on the uniform norms of ap-
proximating matricial microstates can be removed when defin-
ing free entropy.

1. Introduction.

Denote by 91, the algebra of complex k x k matrices, and by 75 the nor-
malized trace on My, i.e., 7,(4) = 1Tr(A) for A € M. Consider for each
k a standard Gaussian Hermitian random matrix Xj. Thus, if E denotes
expected value, ET;(Xg) = 0 and E7x(X?) = 1. It was shown by E. Wigner
[9] that, as k — 0o, X}, tends in distribution to a semicircular law, i.e., the
limits
pp = lim E7,(X7?)
k—o00
exist, and they can be calculated as

1 /2
= — [ P4 —t2dt
27 _92

for p=1,2,.... If we have several independent standard Gaussian Hermit-
ian random matrices (X (7)) 4, D. Voiculescu [4] proved that, as k — oo,
these sets of variables converge in distribution to a free semicircular family.
Briefly, this means that given indices i; € {1,2,...,n} such that i; # i1,
for j =1,2,...,m — 1, and given positive integers p1, pa, ..., Pm, the limit

klim ETk(Xk(il)ple(iQ)pQ .. -Xk(im)pm)

exists, and
Jim B [(Xe(i1)?" = i) (Xeli2)” = fpa) - (Xl = iy, )] = 0.

It is natural to look for large deviation principles associated with these
limit laws. For this purpose (and also with motivation from information
theory and statistical physics) Voiculescu introduced in [6] (cf. also [5])
the notion of free entropy. The original definition of free entropy, which
will be reviewed below, involves a bound R > 0 on the operator norm
of approximating matricial microstates, and this may perhaps obscure its
significance for large deviations. It is our purpose here to show that this
bound can be removed — roughly speaking, one can set R = oo in the
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definition of free entropy. This result applies to other notions of free entropy
which appeared subsequently (see for instance [7] for free entropy in the
presence of additional variables, [8] for free entropy using an ultrafilter, and
[3] for free entropy of a nonselfadjoint variable). We will only provide the
proof for the original quantity x defined in [6], but it should be obvious how
the argument applies in the other situations.

It should be noted that a large deviation theorem for Wigner’s result
has been proved by G. Ben Arous and A. Guionnet [1], where the natural
topology of weak convergence of probability measures on the real line is used.
The rate function is closely related with free entropy. For several variables, a
thorough study of large deviations was undertaken by T. Cabanal Duvillard
and A. Guionnet [2]. The rate function they determine is related with
another version of free entropy (microstate free).

2. The main result.

For the remainder of this note we fix a positive integer n. We will denote by

I the collection of all multiindices & = (a1, 2, ..., ) Withm > 1 and 5 €
{1,2,...,n}forall j = 1,2,...,m. In other words, I = J;>_,{1,2,...,n}™.
A multiindex of the form (o, c, ..., ) will also be denoted o™. We consider

the space S consisting of all families (u(«))qecr of complex numbers indexed
by I. The space S will be endowed with the topology of componentwise
convergence.

Consider now a tracial W*-probability space (2, 7). That is, 2 is a von
Neumann algebra, and 7 is a normal trace state on . We will write
A% for the space of selfadjoint elements of 2. Given an n-tuple X =
(X1, X2,...,X,) € (A*)", its distribution px € S is defined by

MX(Q) = T(X(X)7

where X, = Xo, Xa, - .- Xa,, for a = (a1, a9,...,am,) € I. This notation
applies in particular to n-tuples of selfadjoint matrices in 91;. Voiculescu’s
entropy measures the extent to which the distribution of X can be approx-
imated by distributions of the form p4 with A € (9*)". Note first that

%2 is a real Hilbert space with the Hilbert-Schmidt norm [|A||2 = Tr(A4?),
and A will denote the corresponding Lebesgue measure (i.e., a cube whose
sides form an orthonormal basis has measure equal to one). On the space
(M52)™ we have the product measure ;"

Given X € (%)™, and a neighborhood U of pux in S, we set

N(X;k,U)={Ac ()" :pa €U},
Given in addition a positive number R,

Tr(X;k,U) = {AeT(X;k,U): ||A;| <R for all 5}.
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We can then define the quantities
1
XR(X:U) = limint | log NP (DR(X; b, U) + glogk ,

and
XRr(X) = if[}fXR(X; U),

where U runs over a neighborhood base of ux in S. Finally, the free entropy
is defined as

X(X) = ISD}E[))XR(X)‘

We also set
1
Yoo (X5 U) = lim inf | 5 log X" (D(X: k, U)) + glogk ,

and Xoo(X) = infy xoo(X;U). This quantity was introduced in the con-
cluding remarks of [6], where other possible definitions of free entropy are
discussed briefly. The inequalities

XR(X) < X(X) < xoo(X)

are obvious for R > 0, and Proposition 2.4 of [6] states that xr(X) = x(X)
if R is sufficiently large; R > max; ||.X;|| will suffice. Our main result is as
follows:

Proposition 2.1. For every X € ()" we have x(X) = Xoo(X).

The proof of this result is a refinement of the proof of Proposition 2.4
n [6]. We begin by considering the diffeomorphism f of the real line onto
(—2,2) defined by f(t) =t for t € [-1,1], f(t) =2 — 1 for t > 1, and
flt) = —2—% for t < —1. Observe that f’ does not have any local minimum,
and therefore

T2 wmings/(s), 70 = 1)1

for all s and ¢. The function Fj, : (9I*)" — (M5*)" defined by
Fn(Ala A2a R An) = (f(Al)v f(AQ)a RN f(An))

is also differentiable, and we need to estimate the Jacobian determinant
(JF,)(A). Since

(JF)(A) = (JF1) (A1) (JF1)(A2) ... (JF1)(An),

it suffices to do this in one variable. As pointed out in [6], if Aisa k X k
matrix with eigenvalues p1, po, ..., g, we have

Hf*“ - Hf ).

i#]
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By the estimate for difference quotients shown above,

k
(TFE)A) = [ TTF o) # () | - T (i)
i#j i=1
_ Hf/(/iz’)%_l _ H Mf2(2k—1)'
=1 il >1

Denoting log™ (#) = max{logt,0}, we obtain

k
log(JF1)(A) > —2(2k — 1)) log* p;

i=1
1 F
= —2k(2k — 1>E Z log™ p1;
i=1

= —2k(2k — 1)1 (log™ |A|).
We have therefore proved the following estimate:

Lemma 2.2. Given A= (A1, A4s,...,A,) € (MG*)", we have

(JF2)(A) > exp | —2k(2k — 1) > 7(log™ | 4;])
j=1

Note for further use that, for a selfadjoint k x k matrix A, 7(log™ |A|)
can be estimated in terms of the moments 73, (A%?), p > 1. In fact, log"t =
% logt t? < %tzp, and therefore

1
me(log™ |A]) < %Tk(AQP).

We need one more ingredient.

Lemma 2.3. Let X € (A%*)" satisfy max; || X;|| < 1, and let U be a neigh-
borhood of ux in S. There exists a neighborhood V' of ux in S such that

F,(T(X;k,V)) C Ty (X;k,U) for all k.

Proof. Clearly it suffices to prove the lemma for neighborhoods of the form
U=A{peS:|ula) - 7(Xa)| <e},

where a = (a1,a9,...,0,,) € I and € > 0 are fixed. Using the Holder
inequality

[Aallt < [|Aay lmllAas e - - - [ A, llm;
we see that it is sufficient to choose V' so that, for all A € I'(X; k, V), we
have |7,(Aq) — 7(Xa)| < €/2, [|Ajllm < 1, and ||A; — f(A))|lm < &/2m for
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j =1,2,...,n. Choose a number r < 1 so that » > ||.Xj|| for all j, and
choose an even integer ¢ > m such that r?/™ < /2m. Define next

V= {MGS: lu(a) — 7(Xa)| < % and |p(j9)] < r? for j = 1,2,...,n};

recall that j7 denotes the g-multiindex with all entries equal to j. Consider
now A € I'(X;k,V), and note that the inequalities |7x(Aq) — 7(Xa)| < /2
are obviously satisfied. Also,

14jllm < 145]lq = T(ADYe < r < 1.
Finally, if 1, o, ..., puy are the eigenvalues of A;,
1/m 1/m
1
[A; = F(Aj)llm < Z g™ <z DRIZE
Iuy|>1 lp |21
< (m(AD)Y™ <l

and this quantity is less than €/2m. O

Proof of Proposition 2.1. It suffices to prove the proposition in case || X;|| <
1 for all j. From the results of [6] we know that y2(X) = x(X), and clearly
X2(X) < Xoo(X). To prove the opposite inequality x2(X) > xoo(X), let
U be a neighborhood of px in S, and let V' be the neighborhood of px
furnished by Lemma 2.3, ie., F,(I'(X;k,V)) C I'a(X;k,U) for all k& > 1.
Given a positive integer p, we may also assume that 7 (A?p ) < 1 whenever
A= (A1, A,...,Ay) € I'(X;k, V). It follows then from Lemma 2.2 (and
the remark following its statement) that

(JF,)(A) > exp [—Qk(% - 1)2’;}

for all A € I'(X;k,V). Since the function F,, is one-to-one, we deduce that
AT (Ta(X 5k, U)) > AP (Fu(T(X 5K, V)

> exp [—2]@(% - 1)”} APMD(X 5k, V).

2p

Therefore

k2 log A&™(Ty(X 3k, U)) + logk

Xn . n 1\ n

and as kK — oo this yields
2n

X2(X5U) = Xoo (X V)—?
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Since p is arbitrary, we deduce that x2(X;U) > Xoo(X;V) > Xoo(X), and
the proof is concluded by taking the infimum over U. U

We remark that a suitable modification of the above proof yields directly
that xoo(X) = xr(X) if [|Xj]| < R. One needs an appropriate version of
the function f, and that is easily constructed.
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