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SOLUTIONS OF NON-HYPERBOLIC EQUATIONS
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We prove a Phragmèn–Lindelöf theorem which yields the
behavior at infinity of bounded solutions of Dirichlet prob-
lems for non-hyperbolic (e.g., elliptic, parabolic) quasilinear
second-order partial differential equations in terms of partic-
ular solutions of appropriate ordinary differential equations.

1. Introduction.

Many types of Phragmèn-Lindelöf Theorem have appeared in the literature
since Edvard Phragmèn and Ernst Lindelöf’s famous 1908 article ([20]; also
see [3], Ch. 3). When Ω is an unbounded domain and f ∈ C2(Ω) ∩ C0(Ω)
is a solution of a Dirichlet problem on Ω for a second-order elliptic or non-
hyperbolic equation, a fundamental question is that of the behavior of f(X)
as |X| goes to infinity. A Phragmèn-Lindelöf theorem “at infinity” estab-
lishes the existence of asymptotic limits of f at infinity and offers insight into
the nature of these limits when f lies in an appropriate class of solutions.
The goal of this note is to obtain a comprehensive Phragmèn-Lindelöf theory
at infinity for bounded solutions of Dirichlet problems in certain types of
domains using the “local barrier functions” constructed in [14] and solutions
of boundary value problems for ordinary differential equations.

Let Ω be an open set in Rn. Suppose (aij(X, z, P )) is any n×n (symmet-
ric) matrix with trace one which is positive semidefinite for X ∈ Ω, z ∈ R,
and P ∈ Rn and whose entries satisfy aij ∈ C0(Ω×R×Rn). Assume fur-
ther that ann(X, z, P ) ≥ σ1(|P |) for some positive continuous function σ1

defined on [1,∞). Let b be a function in C0(Ω × R × Rn). Let Q be the
non-hyperbolic operator defined by

Qu(X) =
n∑

i,j=1

aij(X, u(X), Du(X))Diju(X) + b(X, u(X), Du(X)).(1)

For convenience, let us write elements X = (x1, . . . , xn) of Rn as (x, y),
where

x = (x1, . . . , xn−1) and y = xn

101

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2003.211-1


102 ZHIREN JIN AND KIRK LANCASTER

and, for each M > 0, let SM denote the set

{X = (x1, . . . , xn) ∈ Rn | |xn| < M}.

Let us assume here that Ω ⊂ SM for some M > 0. If b/ann have appropriate
limits at infinity (i.e., (7)), φ ∈ C0(Rn), ω ∈ Sn−2 is a direction of Ω at
infinity (i.e., (6)) and Assumptions 1 and 2 in §2 are satisfied, we will prove
that every bounded solution f ∈ C2(Ω) ∩ C0(Ω) of the Dirichlet problem

Qf = 0 in Ω(2)

and

f = φ on ∂Ω(3)

satisfies

f(x, y) → kω(y) for X = (x, y) ∈ Ω(4)

as |X| → ∞ with x
|x| → ω, where kω is a solution of a related boundary

value problem (e.g., (13)).
We will use local barrier functions and solutions of ordinary differential

equations to obtain (4). Rescaling (and truncating) the graph of a barrier
function w while leaving unaltered a solution k of an appropriate ordinary
differential equation and comparing a bounded solution f of the Dirichlet
problem with w + k is a principal technique we will use. As a consequence
of the facts that our fundamental comparisons are made in barrier domains
of the form U = {X ∈ Rn | C1 < X · ν < C2, |X − (X · ν)ν| < h(X · ν)}
for ν ∈ Sn−1 and C1 < C2 and the ability to rescale w (and so h) improves
our estimates, domains in slabs are of particular interest. Our results are
significant for:

(i) The generality of allowable domains Ω,
(ii) the generality of allowable operators Q, and
(iii) the simplification achieved by approximating f(x, y) by k(y) for |x|

large when f is an “unknown” solution of (2) & (3) and k is a “known”
solution of a boundary value problem for an ordinary differential equa-
tion (e.g., (13)).

Theorem 2.2 complements other Phragmèn-Lindelöf principles at infinity
in which the domain has different geometric constraints, for example being
required to lie in a cone (e.g., [1], [17]). The results here hold for a large
class of operators, including uniformly elliptic operators, degenerate elliptic
operators and parabolic operators. These results can be used to investigate
other questions, such as the effect on the behavior at infinity of a solution f
when the coefficients of Q are perturbed. Finally, the approximation (near
infinity) of the solution of a partial differential equation by the solution of
an ordinary differential equation (i.e., (iii)) is a very useful technique which
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is often used, sometimes without justification, in continuum mechanics (e.g.,
[9]).

Previous results on Phragmèn-Lindelöf theorems at infinity generally con-
cern limited classes of operators and/or limited types of domains. The cases
in which Ω is (or is contained in) a strip in R2 or a cylinder in R3 have
generated particular interest, in part because of applications of Phragmèn-
Lindelöf principles and their companion “spatial decay estimates” to prob-
lems in continuum mechanics (e.g., [7]; also see references in [14], [15]).
Classes of operators in previous articles include (linear and nonlinear) uni-
formly elliptic operators or divergence structure operators (e.g., [1], [2],
[11], [12], [21]). Theorems containing decay estimates usually concern lim-
ited classes of operators in special geometries, including strips (e.g., [10],
[11]) and cylinders (e.g., [2], [8]).

In [14], Dirichlet problems in domains Ω ⊂ SM for quasilinear elliptic
second-order partial differential equations which do not have lower-order
terms are studied. It is shown there that f(x, y) → Φ(ω) as |x| → ∞
with x

|x| → ω when ω is a “direction of Ω at infinity,” f is a solution of
the Dirichlet problem with Dirichlet data φ, φ(x, y) → Φ(ω) as |x| → ∞
with x

|x| → ω, and b ≡ 0. In addition, if Ω = SM , φ(x,M) → Φ1(ω) and
φ(x,−M) → Φ2(ω) as |x| → ∞ with x

|x| → ω, and the other conditions
remain unchanged, it is proven that

f(x, y) → 1
2M

(
Φ1(ω)− Φ2(ω)

)
(y + M) + Φ2(ω)

as |x| → ∞ with x
|x| → ω. The results in [14] are significant for the generality

of operators Q and domains Ω allowed and especially for the construction of
new barrier functions. The inclusion of lower-order terms here complicates
the arguments used in [14] in a subtle but significant way; we compensate
for this in the Proof of Theorem 2.2 by assuming our solutions are bounded.
All arguments occurring here are “local” with respect to the direction ω.

2. Main result.

We will assume from now on that the coefficients of Q have been normalized
so that

n∑
i=1

aii(X, z, P ) = 1 for (X, z, P ) ∈ Rn ×R×Rn(5)

and satisfy the conditions mentioned previously (i.e., before (1)). We will
set IM = (−M,M) and

π(Ω) = {(x1, . . . , xn−1) : ∃y∈[−M,M ] (x1, . . . , xn−1, y) ∈ Ω}.
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Let T (Ω) represent the set of directions ω ∈ Sn−2 at infinity of Ω (actually
π(Ω)); that is

T (Ω) = ∩∞N=1∪r≥N{ω ∈ Sn−2 : rω ∈ π(Ω)}.(6)

Notice that ω ∈ T (Ω) if and only if there exists a sequence {(xj, yj)} in Ω
with |xj| → ∞ and xj

|xj| → ω as j →∞.

For ω ∈ T (Ω), consider the following assumptions:

Assumption 1. For some open subset O of Sn−2 with ω ∈ O , there exists
a function E ∈ C0(O × IM ×R2) such that E

(
x
|x| , y, z, q

)
is nonincreasing

in z and
b(x, y, z,p, q)

ann(x, y, z,p, q)
→ E(σ, y, z, q)(7)

as |x| → ∞ with x
|x| → σ and |p| → 0 uniformly for |y| < M, σ ∈ O , and

z, q ∈ R.

Assumption 2. There exists a function k mapping IM × T into R such
that

φ(x, y) → k(y, ω)(8)

uniformly as |x| → ∞ and x
|x| → ω for (x, y) ∈ ∂Ω and, for each α > 0,

there exist δ = δα,ω > 0 and functions k1 and k2 in C1(IM ) ∩ C2(IM ) such
that for each y ∈ IM

|k1(y)− k(y, ω)| ≤ α,(9)

|k2(y)− k(y, ω)| ≤ α,(10)

k′′1(y) + E(ω, y, k1(y), k′1(y)) ≥ δ,(11)

and

k′′2(y) + E(ω, y, k2(y), k′2(y)) ≤ −δ.(12)

Remark 2.1. In what might be the most common situation in which As-
sumptions 1 and 2 are satisfied for all ω ∈ T (Ω), we would have Ω =
U × IM for some open subset U of Rn−1, E ∈ C0(Sn−2 × IM × R2),
k ∈ C0(IM × T (Ω)), kω ∈ C2(IM ),

k′′ω(y) + E(ω, y, kω(y), k′ω(y)) = 0 for |y| < M, ω ∈ T (Ω),(13)

where kω is defined by kω(y) = k(y, ω) for ω ∈ T (Ω), and, for each ω ∈ T (Ω),
functions k1 and k2 respectively satisfying (9)-(12).

Theorem 2.2. Let M > 0, Ω ⊂ SM , and ω ∈ T (Ω). Suppose:
1) f ∈ C2(Ω) ∩ C0(Ω) ∩ L∞(Ω) satisfies (2) & (3);
2) Assumptions 1 and 2 are satisfied for ω;
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3) there exist L ≥ 0 and a positive continuous function σ1 on [1,∞) such
that

ann(x, y, z,p, q) ≥ σ1(|p|2 + q2)(14)

whenever x,p ∈ Rn−1, y, z, q ∈ R with |x| ≥ L and |y| < M ;
4) Q satisfies (5).

Then

lim
j→∞

|f(xj , yj)− k(yj , ω)| = 0(15)

uniformly for sequences {(xj , yj)} in Ω with |xj | → ∞ and xj

|xj | → ω as
j →∞.

When Q is of a particular type (e.g., uniformly elliptic), arguments exist
which show that a solution f of (2) & (3) is bounded whenever it satisfies an
appropriate (for Q) growth condition. For such operators, we may assume
that the hypothesis f ∈ L∞(Ω) in Theorem 2.2 is replaced by this growth
condition without changing the conclusion of the theorem. From the Proof
of Theorem 2.2, it follows that f ∈ L∞(Ω) can be replaced by f is “bounded
in the direction ω” in the sense that there exist δ > 0, R > 0, and J ≥ 0
such that |f(x, y)| ≤ J if (x, y) ∈ Ω, |x| ≥ R, and

∣∣∣ x
|x| − ω

∣∣∣ < δ. Finally, the
necessity of the nondegerancy condition on ann (i.e., (14)) is illustrated by
Example 4 of [15].

We shall also prove the following consequence of Theorem 2.2:

Theorem 2.3. Let ω ∈ T. Suppose:
1) f ∈ C2(Ω) ∩ C0(Ω) ∩ L∞(Ω) satisfies (2) & (3);
2) Assumption 1 is satisfied for ω;
3) E = E(y, z, q) is a nonincreasing function of z for each (y, q) ∈ I×R;
4) E, ∂E

∂z , ∂E
∂q ∈ C0(I ×R2);

5) there exists k ∈ C2(IM ) such that

k′′(y) + E(ω, y, k(y), k′(y)) = 0 for |y| < M

and φ(x, y) → k(y) uniformly as |x| → ∞ and x
|x| → ω for (x, y) ∈ ∂Ω;

6) there exist L ≥ 0 and a positive continuous function σ1 on [1,∞) such
that

ann(x, t, z,p, q) ≥ σ1(|p|2 + q2)

whenever x,p ∈ Rn−1, z, t, q ∈ R with |x| ≥ L and |t| ≤ M ;
7) Q satisfies (5).

Then

lim
j→∞

|f(xj , yj)− k(yj , ω)| = 0(16)
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uniformly for sequences {(xj , yj)} in Ω with |xj | → ∞ and xj

|xj | → ω as
j →∞.

3. Barrier functions.

Let us review the construction of barrier functions in [14]. This idea origi-
nated from the following fact: If w = w(x, y) in C2(Rn) satisfies Qw = 0,
Q is elliptic (non-hyperbolic), and g = g(x, z) is a function in C2(Rn) for
which gz 6= 0 and

g(x, w(x, y)) = y,

then g will satisfy an equation of the form Q#g = 0 for an elliptic (respec-
tively non-hyperbolic) operator Q#, where Q and Q# are related by the
equation

Qw(x, y) =
−1

g3
z(x, w(x, y))

Q#g(x, w(x, y)).(17)

In particular, if gz > 0 and Q#g > 0, then Qw < 0. A computation shows
that Q# is defined by

Q#v(x, z) =
n∑

i,j=1

Aij(x, z, v, Dv)Dijv + B(x, z, v,Dv)(18)

for v = v(x, z) in C2(Rn) with ∂v
∂z 6= 0, where

Aij(x, z, t,p, q) = q2aij , 1 ≤ i, j ≤ n− 1,(19)

Ain(x, z, t,p, q) = qain −
n−1∑
j=1

pjqaij , 1 ≤ i ≤ n− 1,(20)

Ann(x, z, t,p, q) = ann − 2
n−1∑
j=1

pjajn +
n−1∑
i,j=1

pipjaij ,(21)

and

B(x, z, t,p, q) = −q3b

(
x, t, z,−p

q
,
1
q

)
.(22)

Here aij means aij(x, t, z,−p
q , 1

q ) for 1 ≤ i, j ≤ n, p = (p1, . . . , pn−1) ∈
Rn−1, t ∈ R, q 6= 0, Di = ∂

∂xi
for 1 ≤ i ≤ n − 1, Dn = ∂

∂z , Dv =
(D1v, . . . , Dnv), and Dij = DiDj for 1 ≤ i, j ≤ n. The construction of
barriers for Q is somewhat similar to the constructions of barriers for the
operator Q# given in [13] and [22].
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In this note, we will be unable to use barriers specifically tailored to our
operator as was done in [14]. Instead, in the construction in §7 of [14], we
will set σ ≡ 1 and obtain the functions

χ(α) =

{
1
2 − ln(α) if 0 < α < 1
1

2α2 if 1 ≤ α < ∞

and

η(β) =

{
1√
2β

if 0 < β < 1
2

e
1
2
−β if 1

2 ≤ β < ∞.

Also let us define for H ≥ 1 the number

A(H) = 2M

(∫ eχ(H)

1
η(ln(t)) dt

)−1

.

Then for a > 0, H ≥ 1, x0 ∈ Rn−1, and Γ ∈ R, the construction in §7 of
[14] yields the functions ha = ha,H , ga = ga,x0,Γ,M,H , and wa = wa,x0,Γ,H

defined by

ha(r) =

{
a
√

e
(

1
2H2 − 1

2

)
+ a√

2
(λ(

√
e)− λ

(
r
a

)
) if a < r < a

√
e

a
√

e
(

1
2H2 − ln

(
r
a

) )
if a

√
e ≤ r < aeχ(H),

ga(x, z) = ha

(√
|x− x0|2 + (z − Γ)2

)
−M,

and
wa(x, y) = Γ−

√
(h−1

a (y + M))2 − |x− x0|2,

where λ satisfies λ′(t) = 1√
ln(t)

.

y=M

y=−M

Figure 1. Ωa,x0,H .

The domain of wa,x0,Γ,H is a set Ωa,x0,H ⊂ SM , illustrated in Figure 1
when n = 2, which is relatively compact in Rn and whose central axis (of
symmetry) is {(x0, y) : |y| < M}. As the parameter a becomes larger, the
domain Ωa,x0,H becomes larger but the variation of wa along the axis of
symmetry decreases and goes to zero as a goes to infinity. This “rescaling”
of the barrier wa by increasing a allows increasingly better estimates of a
solution along the central axis; this fact plays a key role in the use of these
barriers. As a goes to infinity, wa also goes to infinity on ∂Ωa,x0,H ∩ SM .
We assume a solution f is bounded in order to use this fact to help show
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that f ≤ wa + k2 in the Proof of Theorem 2.2; a careful examination of the
growth rate of wa on ∂Ωa,x0,H ∩ SM might allow the growth hypothesis on
f (i.e., f is bounded) to be relaxed (e.g., Theorem 2.5 of [14]).

4. Proofs of Theorems 2.2 & 2.3.

Proof of Theorem 2.2. We may assume that the set O mentioned in Assump-
tion 1 is all of Sn−2. As described in the previous section, in the construction
in §7, [14] we let σ ≡ 1 (we ignore (7.1), [14]), so that Ψ ≡ 1. Let ω ∈ T,
ε > 0, and α = ε. Let δ = δα,ω, k1 and k2 be as given in Assumption 2. From
Assumption 2 and the continuity of k(y, ω), we see that there exist δ1 > 0
and R1 such that if (x, y) ∈ ∂Ω, |x| ≥ R1, |y| ≤ M , and

∣∣∣ x
|x| − ω

∣∣∣ < δ1, we
have

|φ(x, y)− k(y, ω)| < ε.(23)

Assumption 1 implies there exist δ2 > 0 and R2 such that∣∣∣∣ b(x, y, z,p, q)
ann(x, y, z,p, q)

− E(ω, y, z, q)
∣∣∣∣ ≤ δ

4
(24)

if |x| ≥ R2, |p| ≤ δ2, and
∣∣∣ x
|x| − ω

∣∣∣ ≤ 2δ2. Consider the compact set

K = {(p, q) ∈ Rn : |p|2 + q2 ≤ 2(1 + ‖k′2‖2
∞)}.

From (14), we see that there exists µ(K) > 0 such that

ann(x, y, z,p, q) ≥ µ(K) if (p, q) ∈ K,x ∈ Rn−1 and y, z ∈ R.

Set N = ‖f − k2‖∞. Since for fixed ω, E(ω, y, z, q) is uniformly continuous
for (y, z, q) in a fixed compact set, there exists δ3 > 0 such that

|E(ω, y, z, t + q)− E(ω, y, z, q)| ≤ δ

4
(25)

for |t| ≤ δ3, |y| < M, |z| < N, and |q|2 ≤ 2(1 + ‖k′2‖2
∞). Let us set δ0 =

min{1, δ1, δ2, δ3} and choose H ≥ 2 such that 2M
H < ε, χ(H) ≤ ln(2),

A(H) ≥ 16N, A(H) ≥ 5
µ(K)δ

,(26)

and

2
√

2NA(H)eχ(H)

A(H)
+

2
H

< δ0,(27)

where A(H) is given in (7.8), [14]. There exists R3 > 0 such that if |x0| ≥
R3, |x − x0| ≤ A(H)eχ(H), and

∣∣∣ x0
|x0| − ω

∣∣∣ < δ0, then
∣∣∣ x
|x| − ω

∣∣∣ < 2δ0. Set

R0 = max{R1, R2, R3}+ A(H)eχ(H).
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Now define

W =
{
x | |x| > R0,

∣∣∣∣ x
|x|

− ω

∣∣∣∣ < δ0

}
.

We claim that if (x0, y) ∈ Ω and x0 ∈ W, then

f(x0, y) < k(y, ω) + 2ε.(28)

Throughout the remainder of this proof, let x0 represent a point in W such
that (x0, y) ∈ Ω for some y ∈ IM .

Let w(x, y) = wa,x0,γ,H(x, y) be the upper barrier given by (7.14), [14]
with γ = 2ε and a = A(H); a formula for wa is given in the previous section.
Notice then that w ≥ γ = 2ε on Ωa,x0,H . Now set

Ω1 =
{

(x, y) ∈ Ωa,x0,H ∩ Ω : |x− x0| <
√

2NA(H)eχ(H) −N2

}
,(29)

which is illustrated by the shaded region in Figure 2 when n = 2,
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Figure 2. Ω1.

and define u2 ∈ C1(Ω1) ∩ C2(Ω1) by

u2(x, y) = w(x, y) + k2(y).

Notice that if (x, y) ∈ Ω1, then |x| ≥ max{R1, R2, R3}, h′a(h
−1
a (y + M)) ≥

H ≥ 2, A(H) < h−1
a (y + M) < A(H)eχ(H), and

∣∣∣ x
|x| − ω

∣∣∣ < 2δ0.

Let ζ ≥ 0. We claim that

Q(u2 + ζ) < 0 in Ω1.(30)

From §7, [14], we find that

∂2w

∂xi∂xj
(x, y) =

δijS
2 + (xi − x

(0)
i )(xj − x

(0)
j )

S3
for 1 ≤ i, j ≤ n− 1,

∂2w

∂xi∂y
(x, y) =

−(xi − x
(0)
i )Z

S3h′a(Z)
for 1 ≤ i ≤ n− 1,

∂2w

∂y2
(x, y) =

S2
(
Z h′′a(Z)− h′a(Z)

)
+ Z2h′a(Z)

S3(h′a(Z))3
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where x0 =
(
x

(0)
1 , . . . , x

(0)
n−1

)
,

Z = h−1
a (y + M), and

S =
√

(h−1
a (y + M))2 − |x− x0|2 =

√
Z2 − |x− x0|2.

Since A(H) < Z < 2A(H), |x−x0|2 < 2NA(H)eχ(H)−N2 ≤ 4NA(H)−N2,
and A(H) ≥ 16N, it is easy to see that 2S2 ≥ (A(H))2. Notice then that

|Dw(x, y)| ≤ |x− x0|
S

+
Z

S|h′a(Z)|
≤ 2

√
2NA(H)eχ(H) −N2

A(H)
+

2
H

and so (27) implies |Dw(x, y)| < δ0.

If we set ξi = xi−x
(0)
i

S for 1 ≤ i ≤ n− 1, ξn = −Z
Sh′

a(Z) , and ξ = (ξ1, . . . , ξn),
then |ξ| ≤ 1 and

1
S

n∑
i,j=1

aij(x, y, u2 + ζ, Du2)ξiξj ≤
1
S

.

Since
n−1∑
i,j=1

aij(x, y, u2 + ζ, Du2)
δij

S
=

1
S

(1− ann(x, y, u2 + ζ, Du2))

and
Zh′′a(Z)

S(h′a(Z))3
= − 1

S
,

we have
n∑

i,j=1

aij(x, y, u2 + ζ, Du2)Dijw(x, y)

≤ 2
S
− 1

S

(
2 +

1
(h′a(Z))2

)
ann(x, y, u2 + ζ, Du2) <

2
S

.

Since |Dw(x, y)| < δ0 when (x, y) ∈ Ω1, we have Du2(x, y) ∈ K and so
ann(x, y, u2 + ζ, Du2) ≥ µ(K) if (x, y) ∈ Ω1. Set µ = µ(K). From (26), we
obtain 2

S ≤ µδ
2 . Notice that

E(ω, y, u2 + ζ, q) ≤ E(ω, y, u2, q) ≤ E(ω, y, k2, q)(31)

for all y ∈ IM and q ∈ R since ζ ≥ 0 and u2 = w + k2 ≥ 2ε + k2 > k2. Using
(24), (25) and (31), we have

Q(w + k2 + ζ)(x, y)

=
n−1∑
i,j=1

aijDijw + 2
n−1∑
i=1

ainDinw + (Dnnw + k′′2(y))ann + b
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<
µδ

2
+
(

k′′2(y) +
b(u2 + ζ, Du2)

ann(u2 + ζ, Du2)

)
ann(u2 + ζ, Du2)

=
µδ

2
+
[

b(u2 + ζ, Du2)
ann(u2 + ζ, Du2)

− E(u2 + ζ, Dnu2)

+ E(u2 + ζ, Dnu2)− E(u2, Dnu2) + E(u2, Dnu2)− E(u2, k
′
2)

+ E(u2, k
′
2)− E(k2, k

′
2) + E(k2, k

′
2) + k′′2(y)

]
ann

≤ µδ

2
+
[
δ

4
+

δ

4
− δ

]
ann(Du2)

≤ µδ

2
− µδ

2
= 0,

where we abbreviate ann = ann(u2 + ζ, Du2) = ann(x, y, u2 + ζ, Du2), b =
b(u2 + ζ, Du2) = b(x, y, u2 + ζ, Du2), E(u2, Dnu2) = E(ω, y, u2, Dnu2) =
E(ω, y, u2, Dnw + k′2(y)), E(u2, k′2(y)) = E(ω, y, u2, k

′
2(y)) and E(k2(y),

k′2(y)) = E(ω, y, k2(y), k′2(y)).
If (x, y) ∈ ∂Ω ∩ ∂Ω1, from (7.3), [14] and (23) we have

f(x, y) = φ(x, y) < kω(y) + ε ≤ k2(y) + 2ε = k2(y) + γ ≤ w(x, y) + k2(y).

Thus
f(x, y)− u2(x, y) < 0 on ∂Ω ∩ ∂Ω1.

If (x, y) ∈ Ω ∩ ∂Ω1, then |x− x0| =
√

2NA(H)eχ(H) −N2 and so

w(x, y) = 2ε + A(H)eχ(H) −
√(

h−1
a (y + M)

)2 − |x− x0|2

≥ 2ε + A(H)eχ(H)

−
√(

A(H)eχ(H)
)2 − 2NA(H)eχ(H) + N2

= 2ε + N.

Hence

f(x, y)− k2(y) ≤ ‖f − k2‖∞ = N ≤ w(x, y)− 2ε < w(x, y)

and so f(x, y) < u2(x, y) for (x, y) ∈ Ω ∩ ∂Ω1.
Let U0 = {(x, y) ∈ Ω1 : f(x, y) > u2(x, y)}. Since f < u2 on ∂Ω1, U0 is

a relatively compact subset of Ω1 and f = u2 on Ω1 ∩ ∂U0. Now define

Ru(x, y) =
n∑

ij=1

aij(x, y,Du)Diju(x, y) + b(x, y,Du)

by setting aij(x, y, q) = aij(x, y, f(x, y), q) and b(x, y, q) = b(x, y, f(x, y), q).
Let (x1, y1) be an arbitrary point in U0 and set ζ = f(x1, y1)−u2(x1, y1) > 0.
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Since Q(u2 + ζ) < 0 on Ω1, we have

Ru2(x1, y1) = Q(u2 + ζ)(x1, y1) < 0.

Since (x1, y1) is an arbitrary point in U0, we have Ru2 < 0 in U0. Recalling
that the ellipticity of R is not needed in Theorem 10.1 of [4] (as noted in
the proof of Theorem 3.1 of [4]), we see that f ≤ u2 on U0. Hence U0 = ∅
and so

f(x, y) ≤ u2(x, y) on Ω1.

Therefore,

f(x0, y) ≤ w(x0, y) + k2(y) ≤ 2M

H
+ k2(y) < 2ε + kω(y)

or f(x0, y)− k(y, ω) < 2ε.
Together with a similar argument using lower barriers and k1(y) (i.e.,

u1(x, y) = la(x, y) + k1(y) with Ψ(ρ) = 1), we then find that

|f(x0, y)− k(y, ω)| < 2ε.

Since x0 ∈ W is arbitrary, we finally have

|f(x, y)− k(y, ω)| ≤ 2ε for (x, y) ∈ Ω with x ∈ W.(32)

Now if xj

|xj | → ω as j → ∞, there exists N > 0 such that xj ∈ W . Then
from (32), for (xj , yj) ∈ Ω, we have

|f(xj , yj)− k(yj , ω)| ≤ 2ε if j ≥ N.

Since ε > 0 is arbitrary, the conclusion of Theorem 2.2 follows.

Proof of Theorem 2.3. Consider first the following:

Lemma 4.1. Suppose M > 0, I = (a, b) ⊂ IM , E = E(y, z, q) is a nonin-
creasing function of z for each (y, q) ∈ I ×R, and E, ∂E

∂z , ∂E
∂q ∈ C0(I ×R2).

Suppose also that there exists k ∈ C2(I) which satisfies

k′′(y) + E(y, k(y), k′(y)) = 0 for y ∈ I.

Then for each δ1 > 0, there is a number β > 0 such that if c ∈ R with
|c| < β, then there exists k(c) ∈ C2(I) satisfying

k′′(c)(y) + E(y, k(c)(y), k′(c)(y)) = c, k(c)(a) = k(a), k(c)(b) = k(b),

and
|k(y)− k(c)(y)| ≤ δ1 for y ∈ I.

Using Lemma 4.1, whose proof is given in the appendix, we see that the
hypotheses of Theorem 2.2 are satisfied and then Theorem 2.3 is proven.
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5. Examples.

There are many common examples of operators of the form (1), normalized
to satisfy (5), which satisfy (14). Some of these are the (normalized a la (5))
Laplace, Poisson, minimal surface, prescribed mean curvature, p-Laplace
(for C2 solutions), and heat (e.g., with t = x1) operators. A C2 solution of
a fully nonlinear equation may also be considered here when the appropiate
(normalized) quasilinear operator (i.e., [4] (17.10)) satisfies the hypotheses
of our Theorems (i.e., p. 444, [4]).

Example 5.1. Suppose n = 2, Ω = {(x, y) : x > 0,−M < y < M} for some
M > 0, h ∈ C0(Ω×R3), h(x, y, z, p, q) = m(y) + o(1) as x →∞ uniformly
for |y| ≤ M and z, p, q ∈ R, maxy∈IM

|
∫ y
0 m(s)ds| = α0 < 1, φ(x,±M) → 0

as x →∞, and Q is a mean curvature operator with Qu(x, y) equal to

(1 + u2
y)uxx − 2uxuyuxy + (1 + u2

x)uyy

2 + u2
x + u2

y

−
h(x, y, u, ux, uy)(1 + u2

x + u2
y)

3
2

2 + u2
x + u2

y

.

When f is a solution of (2) & (3), φ is bounded, and

2M |h(x, y, f(x, y), fx(x, y), fy(x, y))| ≤ β0 < 1

for all (x, y) ∈ Ω, the use of comparison arguments with Delaunay sur-
faces shows that f is bounded. Notice that a22(x, y, z, p, q) = 1+p2

2+p2+q2 and

E(ω, y, q) = −m(y)
(
1 + q2

) 3
2 . The Dirichlet problem for (13) is

k′′(y) = m(y)
(
1 + (k′(y))2

) 3
2 for |y| ≤ M with k(−M) = k(M) = 0.

(33)

Suppose m(y) > 0 for y ∈ R and
∫M
−M m(y) dy < 1. Theorem 2.4 of [18]

implies (33) has a unique classical solution k(y) and Theorem 2.3 implies

lim
x→∞

f(x, y) = k(y)(34)

when |y| ≤ M for any bounded solution f of (2) & (3). On the other hand,
if we had m(y) > 0 for y ∈ R and

∫M
−M m(y) dy ≥ 1, Theorem 2.3 (ii) of

[18] would imply (33) has no solution in C1(IM ) ∩ C2(IM ).

Example 5.2. Suppose n = 3, M = 1, Ω = SM , Q is defined by

Qu(x1, x2, y) =
1
3
(
ux1x1 + ux2x2 + uyy

)
− 1

3

(
u2

y +
x2

1

1 + |x|2

)
,

and φ(x,±1) = 0 for |x| ≥ 1. Notice that E(ω, y, z, q) = −(q2 + ω2
1) for

ω = (ω1, ω2) ∈ S1. The Dirichlet problem (13) here is k′′ω(y) = (k′ω(y))2 +ω2
1

with kω(−1) = kω(1) = 0 and its solution is

k(y, ω) = ln
(
sec(ω1y)

)
− ln

(
sec(ω1)

)
.
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If f ∈ C2(Ω)∩C0(Ω) is a bounded solution of (2) & (3), Theorem 2.3 implies,
for example, that

lim
r→∞

f(rω, y) = k(y, ω) = ln
(
sec(ω1y)

)
− ln

(
sec(ω1)

)
for |y| ≤ 1.

In the next example, the domain has the form Ω = U×IM with U a subset
of R2 which contains the first quadrant of the plane and whose boundary
oscillates sinusoidally in the second and fourth quadrants. The conclusion
of Theorem 2.2 is satisfied for directions into the (open) first quadrant but
not for directions into the (closed) second or fourth quadrant. The behavior
at infinity of a bounded solution in an “oscillatory direction” ω for such a
domain is an open question.

Example 5.3. Let n = 3, M = 1, and set h(r) = π
4 (1 + sin(r)). Let

Ω =
{

(r cos(θ), r sin(θ), y) ∈ R3 : r > 0,−h(r) < θ <
π

2
+ h(r), |y| < 1

}
.

Notice that the set of directions at infinity for Ω is T = {(cos(θ), sin(θ)) :
θ ∈ [−π

2 , π]}. Set T0 = {(cos(θ), sin(θ)) : θ ∈ (0, π
2 )} and T1 = T \ T0. Define

Q by Qu = 1
3(4u− u) and φ ≡ cosh(1); notice that E(ω, y, z, q) = −z. Let

f ∈ C2(Ω) ∩ C0(Ω) denote a bounded solution of (2) & (3).
Suppose first that ω ∈ T0. Then (8) and (13) yield

k′′ω(y)− kω(y) = 0 for − 1 < y < 1, kω(±1) = cosh(1),

and so kω(y) = cosh(y). Setting k1(y) = cosh((1+ε)y) and k2(y) = cosh((1−
ε)y) for ε > 0 sufficiently small shows that Assumption 2 is satisfied. Theo-
rem 2.2 then implies

f(x, y) → cosh(y)

as |x| → ∞ with x
|x| → ω uniformly for |y| ≤ 1.

Suppose second that ω ∈ T1. Notice that (8) requires kω(y) = cosh(1) for
all y ∈ [−1, 1]. However this constant function is not a solution of (13). In
fact, it is impossible to obtain a function k1(y) which satisfies (9) and (11)
when α is sufficiently small. (Notice that (9) implies k1(±1) ≤ cosh(1) + α

and (11) then implies k1(y) ≤
(
1 + α

cosh(1)

)
cosh(y). On the other hand,

(9) implies k1(y) ≥ cosh(1) − α and so cosh(1) − α ≤ k1(0) ≤ 1 + α
cosh(1) ;

this is impossible for α > 0 sufficiently small.) This means that the hy-
potheses of Theorem 2.2 are not satisfied when ω ∈ T1. (If the Dirichlet
data had satisfied φ(x, y) → cosh(y) as x → ∞, then Theorem 2.2 would
have been applicable for all directions ω ∈ T and our conclusion would
be that f(x, y) → cosh(y) as |x| → ∞ uniformly for |y| ≤ 1.) If we set
k1(y) = cosh(y) and k2(y) = cosh(1), the comparison argument in the Proof
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of Theorem 2.2 shows that for |y| ≤ 1 and ω ∈ T1,

cosh(y) ≤ lim inf
r→∞

f(rω, y) ≤ lim sup
r→∞

f(rω, y) ≤ cosh(1).

A general characterization of the behavior of a bounded solution of (2) &
(3) when the boundary oscillates in a manner similar to that considered here
would be very interesting.

Using our techniques, some structural conditions on Q which imply that
all solutions f ∈ C2(Ω) ∩ C0(Ω) of (2) & (3) are bounded can be obtained.
Although we lmit our discussion here primarily to domains in slabs SM ,
the geometric condition that Ω ⊂ SM can be weakened substantially (e.g.,
§5, [14]) without changing the conclusion that f(x, y) → kω(y) as |x| →
∞. Theorem 2.2 can also be applied to determine the asymptotic behavior
of solutions of Dirichlet problems in exterior domains for certain types of
operators.

Appendix.

Proof of Lemma 4.1. We may assume I = IM . Suppose first that a function
kc(y) satisfying the conclusion of Lemma 4.1 did exist. If we were to set
s(y) = kc(y)− k(y), then s(y) would satisfy |s(y)| ≤ δ1 for |y| ≤ M and

s′′(y) + k′′(y) + E(y, k(y) + s(y), k′(y) + s′(y)) = c

with s(−M) = 0, s(M) = 0.

If we define G(y, z, q) = E(y, k(y)+z, k′(y)+q)−E(y, k(y), k′(y)) and recall
that k′′(y) + E(y, k(y), k′(y)) = 0, we see that s(y) would satisfy

s(−M) = 0, s(M) = 0,(35)

s′′(y) + G(y, s(y), s′(y)) = c,(36)

and

|s(y)| ≤ δ1 for |y| ≤ M.(37)

Conversely, if we find a function s ∈ C2(I) which satisfies (36), (37), s(−M)
= 0, and s(M) = 0, then the function kc(y) = k(y) + s(y) satisfies the
conclusion of Lemma 4.1.

Let us rewrite (36) as

s′′(y) +
∂G

∂q
(y, 0, 0)s′(y) +

∂G

∂z
(y, 0, 0)s(y)

= c +
∂G

∂q
(y, 0, 0)s′(y) +

∂G

∂z
(y, 0, 0)s(y)−G(y, s(y), s′(y)).

We define a sequence {sn} by

s1(y) = 0 on |y| ≤ M
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and, for n ≥ 1,

s′′n+1(y) +
∂G

∂q
(y, 0, 0)s′n+1(y) +

∂G

∂z
(y, 0, 0)sn+1(y)(38)

= c +
∂G

∂q
(y, 0, 0)s′n(y) +

∂G

∂z
(y, 0, 0)sn(y)−G(y, sn(y), s′n(y))

with

sn+1(−M) = 0, sn+1(M) = 0.(39)

We claim that when |c| is small enough, the sequence sn(y) converges uni-
formly on [−M,M ] to a function s ∈ C2(I) which satisfies (36), (37), and
(35).

We require several estimates. Consider the boundary value problem

w′′(y) +
∂G

∂q
(y, 0, 0)w′(y) +

∂G

∂z
(y, 0, 0)w(y) = h(y),

w(−M) = 0, w(M) = 0.

Since E(y, z, q) is non-increasing on z, ∂G
∂z (y, 0, 0) = ∂E

∂z (y, k(y), k′(y)) ≤ 0
for all |y| ≤ M . Now we apply Theorem 3.7 (or the proof of Theorem 3.7)
in [4] to conclude that there is a constant c1 depending on E and k(y) such
that

|w(y)| ≤ c1|h|C0([−M,M ]) on |y| ≤ M ;(40)

for notational simplicity, we will write ‖u‖ or ‖u(y)‖ for the value of the
supremum norm |u|C0([−M,M ]) of a function u. Using the equation

w′′(y) +
∂G

∂q
(y, 0, 0)w′(y) = h(y)− ∂G

∂z
(y, 0, 0)w(y),(41)

we see that

w′(y) =
∫ y

−M
exp

(∫ t

y

∂G

∂q
(α, 0, 0)dα

)(
h(t)− ∂G

∂z
(t, 0, 0)w(t)

)
dt

+ B exp
(
−
∫ y

−M

∂G

∂q
(α, 0, 0)dα

)
where

B = −
∫M
−M

∫ y
−M exp (

∫ t
y

∂G
∂q (α, 0, 0)dα)(h(t)− ∂G

∂z (t, 0, 0)w(t))dt dy∫M
−M exp (−

∫ y
−M

∂G
∂q (α, 0, 0)dα)dy

.

Using (40), we see that for some constant c2,

|w′(y)| ≤ c2‖h‖ for |y| ≤ M.(42)
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Using (40), (42), and

w′′(y) = h(y)− ∂G

∂q
(y, 0, 0)w′(y)− ∂G

∂z
(y, 0, 0)w(y),

we conclude that there is a constant c3 depending only on M , G (hence E,
k) such that

|w(y)| ≤ c3‖h‖ for |y| ≤ M ;(43)

|w′(y)| ≤ c3‖h‖ for |y| ≤ M ;(44)

|w′′(y)| ≤ c3‖h‖ for |y| ≤ M.(45)

Setting w(y) = sn+1(y) in (43)-(45), for |y| ≤ M we obtain

|sn+1(y)| ≤ c3

(
|c|+

∥∥∥∥∂G

∂q
(y, 0, 0)s′n(y) +

∂G

∂z
(y, 0, 0)sn(y)

−G(y, sn(y), s′n(y))
∥∥∥∥)

|s′n+1(y)| ≤ c3

(
|c|+

∥∥∥∥∂G

∂q
(y, 0, 0)s′n(y) +

∂G

∂z
(y, 0, 0)sn(y)

−G(y, sn(y), s′n(y))
∥∥∥∥)

|s′′n+1(y)| ≤ c3

(
|c|+

∥∥∥∥∂G

∂q
(y, 0, 0)s′n(y) +

∂G

∂z
(y, 0, 0)sn(y)

−G(y, sn(y), s′n(y))
∥∥∥∥).

Now since ∂E
∂q (y, z, q) and ∂E

∂z (y, z, q) are continuous on [−M,M ] × R2,
∂E
∂q (y, z, q) and ∂E

∂z (y, z, q) are uniformly continuous on [−M,M ]×D for any
compact set D ⊂ R2. Since k(y) ∈ C2([−M,M ]), it follows that ∂G

∂q (y, z, q)
and ∂G

∂z (y, z, q) are uniformly continuous on [−M,M ]×[−1, 1]×[−1, 1]. Then
there is a constant γ > 0 such that∣∣∣∣∂G

∂q
(y, 0, 0)− ∂G

∂q
(y, α1, α2)

∣∣∣∣ ≤ 1
8c3

(46)

∣∣∣∣∂G

∂z
(y, 0, 0)− ∂G

∂z
(y, α1, α2)

∣∣∣∣ ≤ 1
8c3

(47)

for all |α1| ≤ γ, |α2| ≤ γ, |y| ≤ M . Now set

δ = min{δ1, γ}, δ2 =
3

4c3
δ.
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We claim that for |c| ≤ δ2,

|sn(y)| ≤ δ, |s′n(y)| ≤ δ, |s′′n(y)| ≤ δ(48)

for all n, |y| ≤ M . Indeed, if n = 1, (48) is obvious since s1(y) = 0. Now we
assume (48) holds for all integers up to n. In order to prove (48) for n + 1,
we need only show that

c3

(
|c|+

∥∥∥∥∂G

∂q
(y, 0, 0)s′n(y) +

∂G

∂z
(y, 0, 0)sn(y)−G(y, sn(y), s′n(y))

∥∥∥∥) ≤ δ.

Since G(y, 0, 0) = 0, we have from the mean value theorem

G(y, sn(y), s′n(y))

= G(y, sn(y), s′n(y))−G(y, 0, 0)

=
∂G

∂q
(y, θ(y)sn(y), θ(y)s′n(y))s′n(y) +

∂G

∂z
(y, θ(y)sn(y), θ(y)s′n(y))sn(y)

for some function θ(y) on [−M,M ] with |θ(y)| ≤ 1. Then from (46), (47)
and (48), we have∥∥∥∥∂G

∂q
(y, 0, 0)s′n(y) +

∂G

∂z
(y, 0, 0)sn(y)−G(y, sn(y), s′n(y))

∥∥∥∥
≤
∥∥∥∥∂G

∂q
(y, 0, 0)− ∂G

∂q
(y, θ(y)sn(y), θ(y)s′n(y))

∥∥∥∥ · ‖s′n‖

+
∥∥∥∥∂G

∂z
(y, 0, 0)− ∂G

∂z
(y, θ(y)sn(y), θ(y)s′n(y))

∥∥∥∥ · ‖sn‖ ≤
1

4c3
δ.

Hence

c3

(
|c|+

∥∥∥∥∂G

∂q
(y, 0, 0)s′n(y) +

∂G

∂z
(y, 0, 0)s′n(y)−G(y, sn(y), s′n(y))

∥∥∥∥)
≤ c3

(
|c|+ 1

4c3
δ

)
≤ c3

(
δ2 +

1
4c3

δ

)
= δ.

This implies (48) holds for all n.
We claim that the sequence sn(y) converges uniformly on [−M,M ]. Let

us set w(y) = sn+1(y)− sn(y). From (38), we have

w′′(y) +
∂G

∂q
(y, 0, 0)w′(y) +

∂G

∂z
(y, 0, 0)w(y) = h(y),

w(−M) = 0, w(M) = 0,

where the function h is defined by

h(y) =
∂G

∂q
(y, 0, 0)(sn(y)− sn−1(y))′ +

∂G

∂z
(y, 0, 0)(sn(y)− sn−1(y))

− (G(y, sn(y), s′n(y))−G(y, sn−1(y), s′n−1(y))).
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Thus from (43)-(45), we have the inequalities

|sn+1(y)− sn(y)| and |s′n+1(y)− s′n(y)| and |s′′n+1(y)− s′′n(y)|

≤ c3

∣∣∣∣∂G

∂q
(y, 0, 0)(sn(y)− sn−1(y))′ +

∂G

∂z
(y, 0, 0)(sn(y)− sn−1(y))

−(G(y, sn(y), s′n(y))−G(y, sn−1(y), s′n−1(y)))
∣∣∣∣
C0([−M,M ])

.

Setting r(y) = sn(y) − sn−1(y) for a moment and using the mean value
theorem, we see that the sum above is bounded by

c3

[∥∥∥∥∂G

∂q
(y, 0, 0)− ∂G

∂q
(y, sn(y) + η(y)r(y), s′n(y) + η(y)r′(y))

∥∥∥∥ ‖r′(y)‖

+
∥∥∥∥∂G

∂z
(y, 0, 0)− ∂G

∂z
(y, sn(y) + η(y)r(y), s′n(y) + η(y)r′(y))

∥∥∥∥ ‖r(y)‖
]
,

for some functions η(y) on [−M,M ] with |η(y)| ≤ 1. From (46) and (47),
we see that this sum is bounded by

1
8
‖s′n(y)− s′n−1(y)‖+

1
8
‖sn(y)− sn−1(y)‖;

hence for |y| ≤ M,

|sn+1(y)− sn(y)| ≤ 1
8
‖s′n − s′n−1‖+

1
8
‖sn − sn−1‖,

|s′n+1(y)− s′n(y)| ≤ 1
8
‖s′n − s′n−1‖+

1
8
‖sn − sn−1‖, and

|s′′n+1(y)− s′′n(y)| ≤ 1
8
‖s′n − s′n−1‖+

1
8
‖sn − sn−1‖.

Setting

C = ‖s2(y)− s1(y)‖+ ‖s′2(y)− s′1(y)‖+ ‖s′′2(y)− s′′1(y)‖
and using the inequalities above, we observe that an induction argument
yields

|sn+1 − sn|C0([−M,M ]) ≤ C

(
1
4

)n−1

,

|s′n+1 − s′n|C0([−M,M ]) ≤ C

(
1
4

)n−1

,

|s′′n+1 − s′′n|C0([−M,M ]) ≤ C

(
1
4

)n−1

,

for all n ≥ 2.
Therefore sn(y), s′n(y) and s′′n(y) converge uniformly on [−M,M ]. Let

s(y) = lim
n−→∞

sn(y).
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Then it is easy to see s(y) is in C2([−M,M ]) and satisfies (36)-(37). This
completes the proof.

Acknowledgement. The authors would like to thank Robert Finn and
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