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A bounded linear operator T defined on a Hilbert space H
is said to be supercyclic if there exists a vector x ∈ H such
that the set {λT nx : n ∈ N, λ ∈ C} is dense in H. In the
present work, two open questions posed by N. H. Salas and
J. Zemánek respectively, are solved. Namely, we will exhibit
that the classical Volterra operator V and the identity plus
Volterra operator I + V are not supercyclic.

1. Introduction.

This paper deals with the classical Volterra operator V which was introduced
in 1896. It is defined on the Hilbert space L2[0, 1] by

V f(x) =
∫ x

0
f(s) ds.

An operator T on a Hilbert space H is said to be supercyclic if there exists
a vector x ∈ H such that the projective orbit {λTnx : λ ∈ C , n ∈ N}
is dense in H. The concept of supercyclicity was introduced originally in
[HW] by Hilden and Wallen. Supercyclicity stands in the midway between
hypercyclicity and cyclicity. An operator is said to be hypercyclic if there
exists a vector whose orbit under T is dense. On the other hand, if the linear
span of some orbit is dense, the operator is called cyclic.

We have two goals:
a) To show that V cannot be supercyclic on L2[0, 1], and
b) the identity plus Volterra operator I +V is not supercyclic on L2[0, 1].

The first question was posed by N. H. Salas in [Sa] the second one by J.
Zemánek in personal communication. In Section 2 we will renew acquain-
tance with the Volterra operator by proving that V and I + V are not
hypercyclic, however they are cyclic. Section 3 is devoted to prove our main
result.

Volterra operator has been studied by several authors. The norm of
Volterra operator is 2/π (see [Ha, Problem 149]). The problem’s book of P.
R. Halmos contains several nice results (some of them not so elementary)
related with Volterra operator. The asymptotic behaviour of the norm ‖V n‖
is described in [LR]. The most interesting fact about the Volterra operator
is the determination of its invariant subspace lattice (see [Co, Chapter 4],
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and [Br], [Dix], [Don], [Ka] and [Sar]). Although Volterra operator is
more than a hundred years old however still there exist several open ques-
tions, for example, it is not known the exact norm ‖V n‖ (see [LR]); in [Ts]
appear new results about Volterra operator.

2. Hypercyclicity and cyclicity. Elementary facts.

The Volterra operator is quasinilpotent. Thus the orbit of every vector
converges to zero. Therefore V cannot be hypercyclic.

For the identity plus Volterra case the argument is not so easy. The
following result was pointed to the authors by J. Zemánek:

Proposition 2.1. Identity plus Volterra operator is not Hypercyclic on
L2[0, 1].

Proof. The proof is based in this fact: The inverse of (I + V ) is power
bounded (see [Ha, Problem 150]). Thus the orbit of any vector under (I +
V )−1 is bounded, therefore (I + V )−1 cannot be hypercyclic. The result
follows from a result of Herrero and Kitai which asserts that an invertible
operator is hypercyclic if and only if its inverse is hypercyclic (see [HK]). �

However both operators are cyclic. Basically this fact is consequence of
Weierstrass’s Theorem.

Proposition 2.2. Volterra and identity plus Volterra operators are cyclic.

Proof. Let us denote by L2
R[0, 1] the subspace {f ∈ L2[0, 1] : such that

f [0, 1] ⊂ R}. The orbit of the identity function 1 under V is the set

Orb(V, 1) =
{

1, x,
x2

2
, . . . ,

xn

n!
, . . .

}
.

By Weierstrass’s Theorem, the linear span of Orb(V, 1) is dense in L2
R[0, 1].

That is, V is cyclic on L2
R[0, 1]. Pick f ∈ L2[0, 1] and ε > 0. The function

f = u+ iv with u, v ∈ L2
R[0, 1], therefore there exists polynomials pu, pv such

that ‖pu(V )1− u‖2 < ε/2 and ‖pv(V )1− v‖2 < ε. Thus

pu(x) = u0 + u1x + · · ·+ unxm pv(x) = v0 + v1x + · · ·+ vmxm

with ui, vi ∈ R, let us consider p(z) =
∑m

k=0 akz
k with ak = uk + ivk,

k = 0, . . . ,m, and compute

‖f − p(V )(1)‖2 = ‖u + iv − pu(V )(1)− ipv(V )(1)‖2

= ‖u− pu(V )(1)‖2 + ‖v − pv(V )(1)‖2 < ε,

therefore 1 is a cyclic vector for V . For the case of I + V the proof is
similar. �
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3. (Non) Supercyclicity.

The adjoint of Volterra operator is defined by

V ?f(x) =
∫ 1

x
f(s) ds,

that is, it is an integral operator. It easy to compute that σp(V ?) = ∅.
Observe that Volterra operator is defined on complex valued functions. The
following result which appear in [LM] will reduce our problem to real func-
tions.

Theorem 3.1 (Positive-Supercyclicity’s Theorem). Let T be a bounded lin-
ear operator defined on a separable Banach space B. If σp(T ?) = ∅ then T
is supercyclic if and only if there exists a vector x ∈ B such that {rTnx :
r > 0 , n ∈ N} is dense in B.

Theorem 3.2. Volterra and the identity plus Volterra operators are not
supercyclic on L2[0, 1].

Proof. Let us denote by T = V or I + V . The proof will be done in several
steps:

(1) If T is supercyclic on L2[0, 1] then T is supercyclic on L2
R[0, 1].

Proof. Let us denote by f = u+ iv a supercyclic vector for T . Observe that
T (L2

R[0, 1]) ⊂ L2
R[0, 1] and Tnf = Tnu + iTnv. It is easy to see (using the

positive-supercyclicity’s Theorem) that the function u is supercyclic for T
on L2

R[0, 1].

(2) If f ∈ L2
R[0, 1] is a continuous function (more precisely, there exists a

continuous function in the coset determined by f) and f is a supercyclic
vector for T then the point 0 is an accumulation point of zeros of f .

Proof. Observe that if f is a continuous function so that f is positive (re-
spectively negative) on [0, δ] then the function V f(x) is also positive (re-
spectively negative) on [0, δ]. Since Tf is a continuous function we obtain
that the orbit under T of f is positive (negative) a.e. [0, δ]. By way of
contradiction suppose that δ ∈ (0, 1] is the smaller zero of f and without
loss of generality suppose that f is positive on (0, δ). In this situation the
function −1 is separated more than δ from the set

{cTnf : c > 0 , n ∈ N}.

Therefore f cannot be supercyclic for T .

(3) If f ∈ L2
R[0, 1] is a continuous function, and f is a supercyclic vector for

T ? then the point 1 is an accumulation point of zeros of f .
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Proof. The proof of (3) is analogous. It is sufficient to observe that if f is a
continuous function on [0, 1] and f is positive on [δ, 1] with δ ∈ [0, 1) then
the orbit under T ? of f is positive a.e. [δ, 1].

(4) The operator T is supercyclic if and only if T ? is supercyclic.

Proof. Let us consider the isomorphism R : L2[0, 1] → L2[0, 1] defined by
Rf(x) = f(1 − x). Observe that T = RT ?R−1. Since Supercyclicity is
invariant under similarity we obtain (4).

(5) Suppose that V is supercyclic. Then there exists a supercyclic vector f
for V which is so that the point 1 is an accumulation point of zeros of V nf
for each integer n. Analagously, if I + V is supercyclic then there exists a
supercyclic vector f for (I + V ) such that the point 1 is an accumulation
point of zeros of the function V (I + V )nf for each integer n.

Proof. Let us suppose that V is supercyclic, let us denote by G the set of
supercyclic vectors for V . It is well-known that the set of supercyclic vectors
for a supercyclic bounded linear operator is a G-δ dense subset. By (4) let
us denote by G? the set of supercyclic vectors for V ?. Since V is continuous
the set V −n(G?) is also a G-δ dense subset. Therefore the intersection
H =

⋂∞
n=1 V −n(G?)

⋂
G contains a dense subset. Pick f ∈ H. Clearly f

is supercyclic for V , on the other hand if n ≥ 1, V nf ∈ G? and V nf is a
continuous function. Therefore by (3) the point 1 is an accumulation point
of zeros of V nf .

For the second part let us consider the set
⋂∞

n=1(I + V )−nV −1G?
⋂

G
where G and G? denote now the sets of supercyclic vectors for (I + V ) and
(I + V )? respectively. The rest of the proof runs as before.

(6) The Volterra and the identity plus Volterra operators are not supercyclic
on L2

R[0, 1].

Proof. We first prove that Volterra operator is not supercyclic. It is sufficient
to show that the orbit V nf of a possible supercyclic vector f is orthogonal
to the constants, that is, 〈V nf, 1〉 = 0 for all n. Fix ε > 0. If V is supercyclic
let us consider the supercyclic function f which guarantee (5). For n ≥ 1 let
us denote by cn a zero of V n+1f with cn ≥ 1− ε. Since V n+1f is a primitive
function of V nf by applying Barrow’s formula we have:

|〈V nf, 1〉|2 =
(∣∣∣∣∫ cn

0
V nf(s) ds

∣∣∣∣ +
∣∣∣∣∫ 1

cn

V nf(s) ds

∣∣∣∣)2

=
∣∣∣∣∫ 1

cn

V nf(s) ds

∣∣∣∣2
≤ (1− cn)

∫ 1

cn

|V nf(s)|2 ds

≤ (1− cn)‖V nf‖2 ≤ ε‖V nf‖2.



CYCLIC PROPERTIES OF VOLTERRA OPERATOR 161

Since ε > 0 is arbitrarily small (and independent of n) we obtain 〈V nf, 1〉 = 0
for all n, that is f is not cyclic, a contradiction. For the case of I + V the
proof is similar.

Thus, by (1) and (6) the proof of Theorem 3.2 is established. �

Observe that although the results are stated in the space L2[0, 1] the
proofs runs as well for the spaces Lp[0, 1], 1 ≤ p < ∞.

When this paper was being accepted for publication, we were kindly in-
formed by Prof. Joel H. Shapiro about the reference [GM] where the authors
have obtained the Theorem 3.2 independently.

The authors are deeply grateful to professor Joel Shapiro since the first
day that read ours humble work. We want to also thank M. Cepedello Boiso
for interesting comments.

References

[Br] M.S. Brodskii, On a problem of I.M. Gelfand, Uspekhi Mat. Nak., 12 (1957), 129-
132, MR 20 #1229.

[Co] J.B. Conway, A Course in Operator Theory, Rhode Island, Amer. Math. Soc., 2000,
MR 2001d:47001, Zbl 0936.47001.

[Dix] J. Dixmier, Les operateurs permutables á l’operateur integral, Portugal Math., 8
(1949), 73-84, Zbl 0036.35703.

[Don] W.F. Donoghue, The latice of invariant subspaces of quasi-nilpotent completely
continuous transformation, Pacific J. Math., 7 (1957), 1031-1035, MR 19,1066f,
Zbl 0078.29504.

[GM] E. Gallardo and A. Montes, Volterra operator is not supercyclic, Integral Equations
and Operator Theory, to appear.

[Ha] P.R. Halmos, A Hilbert Space Problem Book, New York, Springer Verlag, 1967,
MR 34 #8178, Zbl 0144.38704.

[HK] D.A. Herrero and C. Kitai, On invertible hypercyclic operators, Proc. Amer. Math.
Soc., 116 (1992), 873-875, MR 93a:47023, Zbl 0780.47006.

[HW] H.M. Hilden and L.J. Wallen, Some cyclic and non-cyclic vectors of certain opera-
tors, Indiana Univ. Math. J., 23 (1974), 557-565, MR 484796, Zbl 0274.47004.

[Ka] G.K. Kalisch, On similarity, reducing manifolds, and unitary equivalence of certain
Volterra operators, Ann. Math., 66 (1957), 481-494, MR 19,970a, Zbl 0078.09602.

[LM] F. León-Saavedra and V. Müller, Rotations of hypercyclic and supercyclic operators,
preprint.

[LR] G. Little and J.B. Reade, Estimates for the norm of the n-th indefinite integral,
Bull. London Math. Soc., 30 (1998), 539-542, MR 99g:47068, Zbl 0931.47032.

[Sa] N.H. Salas, Supercyclicity and weighted shifts, Studia Math., 135 (1999), 55-74,
MR 2000b:47020, Zbl 0940.47005.

[Sar] D. Sarason, A remark on the Volterra operator, J. Math. Anal. Appl., 12 (1965),
244-246, MR 33 #580, Zbl 0138.38801.

[Ts] D. Tsedenbayar, On the power boundedness of certain Volterra operator pencils,
Studia Math., 156 (2003), 59-66, CMP 1 961 061.

http://www.ams.org/mathscinet-getitem?mr=20:1229
http://www.ams.org/mathscinet-getitem?mr=2001d:47001
http://www.emis.de/cgi-bin/MATH-item?0936.47001
http://www.emis.de/cgi-bin/MATH-item?0036.35703
http://www.ams.org/mathscinet-getitem?mr=19:1066f
http://www.emis.de/cgi-bin/MATH-item?0078.29504
http://www.ams.org/mathscinet-getitem?mr=34:8178
http://www.emis.de/cgi-bin/MATH-item?0144.38704
http://www.ams.org/mathscinet-getitem?mr=93a:47023
http://www.emis.de/cgi-bin/MATH-item?0780.47006
http://www.ams.org/mathscinet-getitem?mr=48
http://www.emis.de/cgi-bin/MATH-item?0274.47004
http://www.ams.org/mathscinet-getitem?mr=19:970a
http://www.emis.de/cgi-bin/MATH-item?0078.09602
http://www.ams.org/mathscinet-getitem?mr=99g:47068
http://www.emis.de/cgi-bin/MATH-item?0931.47032
http://www.ams.org/mathscinet-getitem?mr=2000b:47020
http://www.emis.de/cgi-bin/MATH-item?0940.47005
http://www.ams.org/mathscinet-getitem?mr=33:580
http://www.emis.de/cgi-bin/MATH-item?0138.38801
http://www.ams.org/mathscinet-getitem?mr=1961061
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