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Consider a wildly ramified G-Galois cover of curves φ : Y →
X branched at only one point over an algebraically closed field
k of characteristic p. In this paper, given G such that the
Sylow p-subgroups of G have order p, I show it is possible
to deform φ to increase the conductor at a wild ramification
point. As a result, I prove that all sufficiently large conductors
occur for covers φ : Y → P1

k branched at only one point with
inertia Z/p. For the proof, I show there exists such a cover
with small conductor under an additional hypothesis on G
and then use deformation and formal patching to transform
this cover.

1. Introduction.

1.1. Results. Let X be a smooth connected proper curve with marked
points {xi} over an algebraically closed field k of characteristic p. Consider
a Galois cover φ : Y → X of smooth connected curves branched only at
{xi}. Abhyankar’s Conjecture (proved by Raynaud [10] and Harbater [4])
determines exactly which groups G can be the Galois group of φ. An open
problem is to determine which inertia groups and filtrations of higher ramifi-
cation groups can be realized for such a cover φ. More simply, it is unknown
which integers can be realized as the genus of Y .

The main results of this paper are for the case that φ : Y → P1
k is branched

at only one point. Such covers exist if and only if G is a quasi-p group, which
means that G is generated by p-groups. Harbater [3] proved that the Sylow
p-subgroups of G can be realized as the inertia groups of such a cover φ.
Under the assumption that the Sylow p-subgroups of G have order p, the
filtration of higher ramification groups is determined by one integer j for
which p - j, namely by the lower jump or conductor. In Theorem 3.2.4, I
prove in this case that all sufficiently large conductors occur for such covers
of the affine line. Theorem 3.2.4 involves the concept of the p-weight which
is defined in Section 3.1.

Theorem 3.2.4. Let G be a finite quasi-p group whose Sylow p-subgroups
have order p. There exists an integer J depending explicitly on p, the p-
weight of G, and the exponent of the normalizer of a Sylow p-subgroup of G
with the following property: If j ≥ J and p - j then there exists a G-Galois
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cover φ : Y → P1
k branched at only one point over which it has inertia group

Z/p and conductor j.

The first part of the proof is to show that all sufficiently large conductors
will occur. To do this, I show the following more general result in Theo-
rem 2.2.2: Suppose φ : Y → X is a G-Galois cover with inertia group I
of the form Z/p o µm and conductor j at a ramification point; then it is
possible to deform φ to increase this conductor. To do this, I construct a
family of covers so that φ is isomorphic to the normalization of one fibre of
the family. The techniques consist of local deformations and formal patch-
ing theorems of Harbater and Stevenson [5]. Since k is algebraically closed,
it is then possible to use another fibre of this family to find another cover
with the same group G and inertia group I but with a larger conductor. For
certain applications, it is necessary to use ramification data of two covers
and deform semi-stable curves in order to enlarge the Galois group and to
change the inertia group, while simultaneously enlarging the conductor; see
Theorem 2.3.7.

The second part of the proof is to find a relatively small integer J (de-
pending only on the group theory of G) for which there exists a G-Galois
cover φ : Y → P1

k branched at only one point over which it has inertia group
Z/p and conductor J . For this I use the following result which says roughly
speaking that there exists such a cover of the affine line with very small
conductor when G has p-weight one. (See 3.2.1 for the definition of jmin(I),
which is a small set of integers depending only on I and not on G consisting
of the minimal possible conductors for a cover of the affine line with inertia
I ' Z/p o µm.)

Theorem 3.2.2. Let G be a finite quasi-p group of p-weight one whose
Sylow p-subgroups have order p 6= 2. For some I ' Z/poµm ⊂ G and some
j ∈ jmin(I), there exists a G-Galois cover φ : Y → P1

k of smooth connected
curves branched at only one point over which it has inertia group I and
conductor j. In particular, genus (Y ) ≤ 1 + |G|(p− 1)/2p.

This result was announced in [7]. The idea behind its proof is to reverse
the process in Section 2 to decrease the conductor of a G-Galois cover φ :
Y → P1

k branched at only one point. This is done by analyzing the stable
model of a family of covers with bad reduction over an equal characteristic
discrete valuation ring. This is motivated by the work of Raynaud [11] in
unequal characteristic.

1.2. Notation and background. Let k be an algebraically closed field of
characteristic p. Let R ' k[[t]] be an equal characteristic complete discrete
valuation ring with residue field k and fraction field K ' k((t)). For each
m ∈ N with gcd(m, p) = 1, choose an mth root of unity ζm ∈ k such that
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ζm2 = ζm1
m2m1

. Let G be a finite group and let S be a chosen Sylow p-
subgroup of G. The group G is quasi-p if it is generated by all its Sylow
p-subgroups.

If X is a scheme over R, we assume that the morphism f : X → Spec(R)
is separated, flat and of finite type. If ξ is a point of a scheme X, the germ
X̂ξ of X at ξ is defined to be the spectrum of the complete local ring of
functions of X at ξ. Suppose a scheme X is reduced and connected, but not
necessarily irreducible. A morphism φ : Y → X of schemes is a (possibly
branched) cover if φ is finite and generically separable. A G-Galois cover is
a cover φ : Y → X along with a choice of homomorphism G → AutX(Y ) by
which G acts simply transitively on each generic geometric fibre of φ (again
allowing branching). If φ : Y → X is a G-Galois cover and G ⊂ G′, define
the induced cover IndG′

G (Y ) → X to be the disconnected G′-Galois cover
consisting of (G′ : G) copies of Y indexed by the left cosets of G with the
induced action of G′.

Consider a wildly ramified G-Galois cover of curves φ : Y → X with
branch locus B. See [13, Chapter IV] for information about the higher
ramification groups of φ. In particular, suppose ξ ∈ B is a closed point and
η ∈ φ−1(ξ). The inertia group I of φ at η is of the form I = P o µm where
P is a p-group and p - m. In the case that I ' Z/poµm, the conductor of φ
at η is the integer j = val(q(πη)− πη)− 1 where πη is a uniformizer of Y at
η and q has order p in I. In this case, the conductor j is the unique lower
jump in the filtration of higher ramification groups and the upper jump is
σ = j/m ∈ Q. Up to isomorphism, these objects do not depend on the choice
of η above ξ. If ξ is not a closed point of X, the inertia group, filtration of
higher ramification groups, and conductor for φ at η are the corresponding
objects over the generic point of η.

This paper frequently uses the following technique of Harbater and Steven-
son [5] (also see [9] for the case that R 6' k[[t]]). Let X be a projective
k-curve that is connected and reduced but not necessarily irreducible. Let
S be a finite closed subset of X which contains the singular locus of X.

Definition 1.2.1. A thickening problem of covers for (X, S) consists of the
following data:

(a) A cover f : Y → X of geometrically connected reduced projective
k-curves;

(b) for each s ∈ S, a Noetherian normal complete local domain Rs con-
taining R such that t is contained in the maximal ideal of Rs, along
with a finite generically separable Rs-algebra As;

(c) for each s ∈ S, a pair of k-algebra isomorphisms Fs : Rs/(t) → ÔX,s

and Es : As/(t) → ÔY,s which are compatible with the inclusion mor-
phisms.



166 R.J. PRIES

Definition 1.2.2. A thickening problem is G-Galois if f and Rs ⊂ As are
G-Galois and the isomorphisms Fs are compatible with the G-Galois action
(for all s ∈ S). A thickening of X is a projective normal R-curve X∗ such
that X∗

k ' X. A thickening problem is relative if the data for the problem
also includes a thickening X∗ of X, so that X∗ is a trivial deformation of X
away from S and so that the pullback of X∗ over the complete local ring at
a point s ∈ S is isomorphic to Rs.

Definition 1.2.3. A solution to a thickening problem of covers is a cover
f∗ : Y ∗ → X∗ of projective normal R-curves, where X∗ is a thickening
of X, whose closed fibre is isomorphic to f , whose pullback to the formal
completion of X∗ along X ′ = X−S is a trivial deformation of the restriction
of f over X ′, and whose pullback over the complete local ring at a point
s ∈ S is isomorphic to Rs ⊂ As (and such that everything is compatible
with the isomorphisms above). (Note that X∗ is a thickening of X.)

Theorem 1.2.4 (Harbater, Stevenson). Every (G-Galois) thickening prob-
lem for covers has a (G-Galois) solution. The solution is unique if the
thickening problem is relative.

Proof. [5, Theorem 4]. �

2. Deformation of covers.

Consider a G-Galois cover φ : Y → X of smooth connected proper k-curves.
Let ξ be in the branch locus of φ and let η ∈ φ−1(ξ). The goal in this
section is to deform the cover φ with precise control over the ramification
behavior near ξ. To do this it is first necessary to deform the I-Galois
cover φ̂ : Ŷη → X̂ξ of germs of curves near ξ with such control. We assume
throughout that p strictly divides the order of the inertia group I.

2.1. Covers of complete local rings. Let I be a semi-direct product
Z/p o µm with p - m. Let n′ be the order of the prime-to-p part of the
center of I. Let U = Spec(k[[u]]) and let b be the closed point of U . The
next results describe the structure of I-Galois covers φ : X → U of germs
of curves with lower jump j in the filtration of higher ramification groups
above b.

Definition 2.1.1. Suppose φ : X → U is an I-Galois cover of germs of
curves such that X is connected but not necessarily normal. Let r1 be the
number of connected components of the normalization of X and assume that
p - r1. Define the inertia group of φ to be the inertia group I1 of a closed
point in the normalization. The order of I is pm = pm1r1 where pm1 is
the order of I1. The conductor (respectively upper jump) of φ is defined to
be the conductor (respectively upper jump) of a ramification point in the
normalization.
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Lemma 2.1.2. Let I ' Z/p o µm and let I1 ⊂ I have index r1 with p - r1.
Write m = r1m1. Suppose that φ : X → U is an I-Galois cover of connected
germs of curves with inertia I1 and conductor j.

i) There exists an automorphism A of U such that the equations for A∗φ
away from b are:

um
1 = ur1 , xp − x = u−j

1 .

ii) The Galois action on the generic fibre is given by the following equa-
tions for some γ with gcd(γ, m) = 1; (after possibly changing the choice
of q):

c(u1) = ζγ
mu1, c(x) = ζ−γj

m x, q(u1) = u1, q(x) = x + 1.

iii) The conductor j satisfies p - j and gcd(j, m) = n′. The upper jump is
σ = j/m1.

Proof. First consider the case that Y is normal (i.e., r1 = 1). By [8, Lemma
1.4.2], there exists f(u) ∈ k[[u]]∗ with degree j so that the equations for φ

away from u = 0 are um
1 = u and xp−x = u−j

1 f(u). The proof uses Kummer
theory and Artin-Schreier Theory. To finish the proof of i) consider the
automorphism A of k[[u]] such that A(u) = uf(u)m/j . This automorphism
exists since f(u) is a jth power in k[[u]]∗. Then A(u1) = u1f(u)1/j . After
this automorphism of the base, the equations for A∗φ are um

1 = u and
xp − x = u−j

1 .
Now consider the case that r1 6= 1. The normalization of φ is a dis-

connected cover whose components are Galois with group I1. Thus the
normalization has equations:

vr1 = 1, um1
1 = vu, xp − x = u−j

1 .

The equations for A∗φ in i) are a blow-down of these by the relation
uv = um1

1 . Properties ii)-iii) follow directly from [13, Chapter IV] and [8,
Lemma 1.4.2]. �

The next lemma allows one to induce a given I1-Galois cover up to a
reducible connected I-Galois cover if the restriction from Lemma 2.1.2 (iii)
is satisfied. This will be used in Proposition 2.3.4 to patch together covers
with different inertia groups.

Lemma 2.1.3. Suppose I1 ⊂ I ' Z/p o µm with index r1 where p - r1. Let
m = m1r1. Suppose there exists an I1-Galois cover φ of connected normal
germs of curves with conductor j. Assume n′ = gcd(m, j). Then there
exists a connected reducible I-Galois cover φind with conductor j which is
isomorphic to IndI

I1(φ) away from the closed point.



168 R.J. PRIES

Proof. Let c1 = cr1 . By Lemma 2.1.2, there is an automorphism A of U

so that the equations for A∗φ are um1
1 = u, xp − x = u−j

1 ; and its I1-
Galois action is given by c1(u1) = ζγ

m1u1, c1(x) = ζ−γj
m1 x, q(u1) = u1 and

q(x) = x + 1 for some γ with gcd(γ, m1) = 1. The equations for IndI
I1(A

∗φ)
are vr1 = 1, um1

1 = uv and xp − x = u−j
1 .

Let φind
A be the blow down of IndI

I1(A
∗φ) which identifies the r1 ramifica-

tion points. This yields a connected reducible I-Galois cover φind
A whose

equations and I-Galois action are the same as in Lemma 2.1.2 (i) and
(ii). This Galois action is well-defined by the condition on n′. Let φind =
(A−1)∗φind

A and note that φind is isomorphic to IndI
I1(φ) away from the closed

point by construction. �

2.2. Deformation of smooth curves. In this section, we show that it is
possible to increase the conductor at a branch point while preserving the
inertia and Galois group. This result was announced in [7]. Let R = k[[t]]
and K = k((t)). Let b be the closed point of U = Spec(k[[u]]). Let UR =
Spec(R[[u]]) and UK = UR ×R K = Spec(k[[u, t]][t−1]).

Proposition 2.2.1. Let I ' Z/p o µm. Suppose there exists an I-Galois
cover φ : X → U of normal connected germs of curves with conductor j.
Then for i ∈ N with p - (j + im), there exists an I-Galois cover φR : XR →
UR of irreducible germs of R-curves, whose branch locus consists of only the
R-point bR = b×k R, such that:

1. The normalization of the special fibre of φR (t = 0) is isomorphic to φ
away from b.

2. The generic fibre φK : XK → UK of φR is an I-Galois cover of normal
connected curves whose branch locus consists of only the K-point bK =
bR ×R K over which it has inertia I and conductor j + im.

Proof. After an automorphism A of k[[u]], the equations for A∗φ are given
by: um

1 = u, xp − x = u−j
1 . Consider the normal cover φ′

R : X ′
R → UR given

generically by the equations:

um
1 = u, xp − x = u

−(j+im)
1 (t + ui).

The I-Galois action on the variables is given by the same expressions as on
the closed fibre and the cover is irreducible. The curve X ′

R is singular only
above the point (u, t) = (0, 0). The normalization of the special fibre agrees
with A∗φ. The cover φ′

R is branched only at the R-point u = 0 since u1 = 0
is the only pole of the function u

−(j+im)
1 (t + ui). Taking the restriction of

φK over Spec(K[[u]]) where t+ui is a unit, we see that φK has inertia I and
conductor j + im over bK . Pulling back the cover φ′

R by the automorphism
A−1×k R of R[[u]] changes none of these properties and thus yields the cover
φR. �
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Let Xk be a proper k-curve. The next theorem uses Propositon 2.2.1 and
Theorem 1.2.4 to deform a given cover of Xk to a family of covers φR of Xk.
This family can be defined over a variety Θ of finite type over k. We then
specialize to a fibre of the family over another k-point of Θ to get a cover φ′

with new ramification data.

Theorem 2.2.2. Suppose there exists a G-Galois cover φ : Y → Xk of
smooth connected curves with branch locus B. Suppose φ has inertia group
I ' Z/p o µm and conductor j above ξ1 ∈ B with p - m. Let i ∈ N+ be
such that p - (j + im). Then there exist G-Galois covers φR : YR → XR and
φ′ : Y ′ → Xk such that:

1. The curves YR and Y ′ are irreducible and YK and Y ′ are smooth and
connected.

2. After normalization, the special fibre φk of φR is isomorphic to φ away
from ξ1.

3. The branch locus of the cover φR (respectively φ′) consists exactly of
the R-points ξR = ξ ×k R (respectively the k-points ξ) for ξ ∈ B.

4. For ξ ∈ B, ξ 6= ξ1, the ramification behavior for φR (respectively φ′)
at ξR (respectively ξ) is identical to that of φ at ξ.

5. The cover φK (respectively φ′) has inertia I and conductor j + im at
the K-point ξ1,K (respectively at ξ1).

6. The genus of Y ′ and of the fibres of YR is g′Y = genus(Y ) + i|G|(p −
1)/2p.

Proof. In the notation of Theorem 1.2.4, let X∗ = XR and let S = {ξ1}.
Let η ∈ φ−1(ξ1). Consider the I-Galois cover φ̂ : Ŷη → X̂ξ1 . Applying
Proposition 2.2.1 to φ̂, there exists a deformation φ̂R : ŶR → X̂R of φ̂
with the desired properties. In particular, φ̂K has inertia I ' Z/p o µm

and conductor j + im over ξ1,K . Consider the inclusion Rs → As of rings
corresponding to the disconnected G-Galois cover IndG

I (φ̂R).
The covers φk and IndG

I (φ̂R) and the isomorphism given by Proposi-
tion 2.2.1 (1) constitute a relative G-Galois thickening problem as in Defini-
tion 1.2.1. The (unique) solution to this thickening problem (Theorem 1.2.4)
yields the G-Galois cover φR : YR → XR. Recall from Definition 1.2.3 that
the cover φR is isomorphic to IndG

I (φ̂R) over X̂R,ξ1 . Also, φR is isomorphic
to the trivial deformation φtr : Ytr → Xtr of φ away from ξ1. Thus YR is
irreducible since Y is irreducible and YK is smooth since Ytr,K and ŶK are
smooth.

The data for the cover φR is contained in a subring Θ ⊂ R of finite type
over k, with Θ 6= k since the family is nonconstant. Since k is algebraically
closed, there exist infinitely many k-points of Spec(Θ). The closure L of the
locus of k-points x of Spec(Θ) over which the fibre φx is not a G-Galois cover
of smooth connected curves is closed, [2, Proposition 9.29]. Furthermore,
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L 6= Spec(Θ) since YK is smooth and irreducible. Let φ′ : Y ′ → Xk be the
fibre over a k-point not in L. Note that Y ′ is smooth and irreducible by
definition. The other properties follow immediately from the compatibility
of φR with IndG

I (φ̂R) over X̂R,ξ1 and with φtr : Ytr → Xtr away from ξ1.
The genus of Y ′ and of the fibres of YR increases because of the extra con-

tribution to the Riemann-Hurwitz formula. In particular, there are |G|/mp
ramification points above ξ1,K , each of which has im extra nontrivial higher
ramification groups. Thus the degree of ramification Deg(ξ1) over ξ1,K in-
creases by |G|(im)(p− 1)/mp. �

Theorem 2.2.2 can be used to increase the conductor of a cover of proper
curves while preserving the inertia and Galois group. For some applications,
however, it is necessary to change the Galois group, the prime-to-p part of
the inertia group, or the congruence value of the conductor. To do this, it
is necessary to deform covers of semistable curves.

2.3. Deformation of semi-stable curves. In this section, we deform cov-
ers of semi-stable curves with control over the ramification information. The
motivation for Theorem 2.3.7 is that it allows us to use two wildly ramified
covers to produce another whose Galois group, inertia group and conductor
at a point are determined from the given ones. In Section 3, we use this the-
orem to produce a cover with complicated Galois group and relatively small
conductor. See [1] for an application in which the prime-to-p part of the
inertia group, and the congruence value of the conductor are changed using
this theorem. Since the notation involved in Theorem 2.3.7 is complicated,
we will start with a corollary.

Corollary 2.3.1. Let G be a group generated by subgroups G1 and G2. Let
φ1 : X → P1

k and φ2 : Y → P1
k be Galois covers of smooth connected curves

each branched at only one point. Suppose φi has group Gi, inertia Ii, and
conductor ji respectively. Then there exists a G-Galois cover φ′ : Y ′ → P1

k
of smooth connected curves, branched at only one point with inertia I ′ and
conductor j′ as follows:

1. Purely wild: Suppose I1 = I2 = Z/p. Then I ′ = Z/p and j′ =
j1 + j2 + ε. Here ε = 0 if p - (j1 + j2); if p|(j1 + j2), then ε = 2 if p 6= 2
and ε = 3 if p = 2.

2. Admissible: Suppose I1 ' I2 and j1 = γj2 for some γ ≡ −1 mod m.
Write γ = νm − 1. Assume that p - (j1 + j2). Then I ′ = Z/p and
j′ = (j1 + j2)/m = νj2.

3. Different inertia: More generally, suppose I1 ⊂ I2 = Z/p o µm

with index r for some r with p - r. Let e = j1r + j2 and let g =
gcd(m, e/ gcd(j1, j2)). Assume that j1 = γj2 for some γ such that
gcd(γ, m) = 1. Assume that p - e. Then I ′ is the unique subgroup of
I2 with order pm/g and j′ = e/g.
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The second case is called admissible since the prime-to-p ramification
disappears.

Proof. The proof is immediate from Theorem 2.3.7 and Proposition 2.3.5.
�

Notation 2.3.2. Let U = Spec(k[[u]]) and V = Spec(k[[v]]). For e ∈ N+,
we define Ωe

uv = k[[u, v, t]]/(uv − te) and let Se
uv = Spec(Ωe

uv). Let ιu : U →
Se

uv and let ιv : V → Se
uv be the natural inclusions. Let b ∈ Se

uv be the
k-point (u, v, t) = (0, 0, 0). Suppose I ' Z/p o µm = Z/p o 〈c〉. Let n′ be
the order of the prime-to-p part of the center of I. For i = 1, 2, suppose
Ii = Z/poµmi ⊂ I with index ri where p - ri. Note that m = m1r1 = m2r2.

Let φ1 : X → U , φ2 : Y → V be Galois covers of normal connected germs
of curves. Suppose the cover φi has inertia (and Galois) group Ii ' Z/poµmi

and conductor ji for i = 1, 2. Let g′ = gcd(j1, j2). Let e = j1r1 + j2r2, and
let g = gcd(m, e/g′). Let e′ = e/g′, j′1 = j1/g′ and j′2 = j2/g′.

Numerical hypotheses: Suppose that n′ = gcd(m, j1) = gcd(m, j2). Sup-
pose p - e. Suppose that j′1 ≡ γj′2 mod m for some γ such that gcd(γ, m) = 1
and 1 ≤ γ < m. Suppose that gcd(j′2,m) = 1.

The first condition is necessary to dominate each cover by an I-Galois
cover. The other three conditions imply that p - (e/g); gcd(j′1,m) = 1; and
g = gcd(m, γr1 + r2). Also, when j1 = γj2 and p - (γ + 1) for some γ with
gcd(γ, m) = 1 then the three last conditions are satisfied.

Proposition 2.3.4 constructs an I-Galois cover φR : WR → Se′
uv with spec-

ified ramification from the covers φ1 and φ2. Although WR will be flat over
R and normal, its special fibre Wk will be singular at the point w = φ−1

R (b).
The following lemma will be used in the proof of Proposition 2.3.4:

Lemma 2.3.3. Suppose ` = `1 +`2 with `i ∈ N+ and a ∈ k. Then d0 ∈ Ω`
uv

where

d0 =
(u + at`2)` − u` − (at`2)`

u`2t
.

Proof. It is sufficient to show that the binomial coefficient ci = uit`2(`−i)/u`2t
∈ Ω`

uv for 1 ≤ i ≤ `− 1. Since t` = uv,

ci = ui−`2(uv)`2t−`2i−1 = uiv`2t−`2i−1.

Since Ω`
uv is normal, it is sufficient to check that c`

i ∈ Ω`
uv. Here

c`
i = u`iv``2(uv)−`2i−1 = ui(`−`2)−1v`2(`−i)−1.

Thus c`
i ∈ Ω`

uv since `− `2 ≥ 1 and `− i ≥ 1. �
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Proposition 2.3.4. Consider the pair (φ1, φ2) from in Notation 2.3.2 satis-
fying the numerical hypotheses. There exists an I-Galois cover φR : WR →
Se′ of (possibly disconnected) germs of R-curves and an isomorphism i :
Se′

uv → Se′ such that:

1. The branch locus of φR consists of one R-point, denoted bR, which
specializes to b.

2. After normalization, the pullbacks of the special fibre of φR to U and
V , namely ι∗ui∗φk and ι∗vi

∗φk, are isomorphic to a disjoint union of
copies of respectively φ1 and φ2 away from the branch point b.

3. The generic fibre φK : XK → Se′
K = Se′ ×R K of φR is an I-Galois

cover of (possibly disconnected) germs of curves branched at exactly
the K-point bK = bR ×R K.

4. The cover φK has g ramification points above bK , each with inertia
group IK ' Z/p o 〈cg〉 = Z/p o µm/g and conductor e/g = (j1r1 +
j2r2)/g.

5. The curve WR is irreducible if and only if gcd(r1, r2) = 1. The curve
WK is irreducible if and only if g = 1.

Proof. The proof is to construct φR and then verify its properties.

The equations for φind
1 and φind

2 : Applying Lemma 2.1.2, there exist au-
tomorphisms Au of k[[u]] and Av of k[[v]] which fix the closed points
of U and V and such that the pullbacks A∗

uφ1 and A∗
vφ2 are given by

the equations in Lemma 2.1.2 (i).
Since n′ = gcd(m, j1) = gcd(m, j2), Lemma 2.1.3 implies that there

exist connected reducible I-Galois covers φind
1 and φind

2 which are iso-
morphic respectively to A∗

uφ1 and A∗
vφ2 away from the branch point.

The equations for these covers are:

φind
1 : um

1 = ur1 , xp − x = u−j1
1 ;

φind
2 : vm

1 = vr2 , yp − y = v−j2
1 .

After possibly changing c and q once and for all, the I-Galois action
of φind

1 and φind
2 is given (for some γ such that gcd(γ, m) = 1 and some

a ∈ Fp) by:

c(u1) = ζmu1, c(x) = ζ−j1
m x, q(x) = x + 1,

c(v1) = ζγ
mv1, c(y) = ζ−γj2

m y, q(y) = y + a.

Note that the normalization of φind
1 (resp. φind

2 ) is isomorphic to a
disjoint union of copies of A∗

uφ1 (resp. A∗
vφ2) away from the closed

point.
The equations for φR: Let g′ = gcd(j1, j2) and e′ = j′1r1 + j′2r2 be as in

Notation 2.3.2. There exists a1 ∈ k such that ag′

1 = am since k is
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algebraically closed. Consider the cover φ′
R : WR → Se′

uv given by:

wm
1 = uj′1r1 + a1v

j′2r2 + d0t, zp − z = (1 + d1t)w
−g′

1 .

For any choice of the variables d0, d1 ∈ Ωe′
uv, the cover φ′

R reduces
to φind

1 and φind
2 on the components of the special fibre. To see this,

note that mod(v, t) the equations for ι∗ui∗φ′
R are wm

1 = uj′1r1 and zp −
z = w−g′

1 . After making the identification w1 7→ u
j′1
1 and z 7→ x, a

normalization of these equations is isomorphic to φind
1 . (Specifically,

we take a normalization of u
j′1m
1 = uj′1r1 and xp − x = u

−g′j′1
1 = u−j1

1 .)
Likewise, mod(u, t) the equations for ι∗vi

∗φ′
R are wm

1 = a1v
j′2r2 and

zp − z = w−g′

1 . After making the identification w1 7→ a
1/m
1 v

j′2
1 and

z 7→ y/a, this simplifies to v
j′2m
1 = vj′2r2 and yp − y = a(a1/m

1 v
j′2
1 )−g′ =

v−j2
1 . A normalization of these equations is isomorphic to φind

2 . By the
numerical hypotheses that j′1 ≡ γj′2 mod m and gcd(j′1,m) = 1, there
is a well-defined I-Galois action on φ′

R which reduces correctly:

c(w1) = ζ
j′1
mw1, c(z) = ζ−j1

m z, q(z) = z + 1.

In conclusion, after normalization, the pullbacks of the special fibre of
φ′

R to U and V , namely ι∗ui∗φk and ι∗vi
∗φk, are isomorphic to a disjoint

union of copies of respectively A∗
uφ1 and A∗

vφ2 away from the branch
point b.

The cover φR will be the composition of φ′
R with a change of base.

Namely, suppose A−1
u (u) = udu and A−1

v (v) = vdv for du ∈ k[[u]]∗

and dv ∈ k[[v]]∗. Recall that Ωe′
uv = k[[u, v, t]]/(uv − te

′
). Let Ωe′ =

k[[u, v, t]]/(uvdudv − te
′
) and let Se′ = Spec(Ωe′). There exists an

isomorphism A : Ωe′ → Ωe′
uv which reduces to Au on U and Av on V .

Consider the pullback of the cover φ′
R by A. In other words, consider

the cover φR : WR → Se′ corresponding to the composition Ωe′ A→
Ωe′

uv → OW ′ . Most properties for φR in Proposition 2.3.4 are automatic
by the construction of φ′

R. Since A is an isomorphism, to finish the
proof it is sufficient to verify Properties 3)-5) for φ′

R.
The branch locus: Note that e′ = j′1r1 + j′2r2 is the sum of two positive

integers. Let

d0 =
(u + a2t

j′2r2)e′ − ue′ − a1t
j′2r2e′

uj′2r2t
.

By Lemma 2.3.3, d0 ∈ Ωe′
uv. Rewrite the first equation for φ′

R as:

wm
1 = u−j′2r2(ue′ + a1(uv)j′2r2 + d0tu

j′2r2).

Since uv = te
′
, this simplifies to: wm

1 = u−j′2r2(ue′ + a1(tj
′
2r2)e′ +

d0tu
j′2r2).
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For this choice of d0 and for a2 = a
1/e
1 , the equations on the generic

fibre are:

wm
1 = u−j′2r2(u + a2t

j′2r2)e′ , zp − z = (1 + d1t)w
−g′

1 .

Note that in Ωe′
uv,K the function u has no zero or pole and 1 +

d1t has no poles. Thus φ′
K has a unique branch point given by the

coordinates u = −a2t
j′2r2 and v = −(te

′−j′2r2)/a2 = −tj
′
1r1/a2. This

K-point specializes to the branch point (u, v) = (0, 0) of φk. Thus φR

is branched at exactly one R-point for this choice of d0.
Irreducibility: Consider the equations for the cover φ′

R:

wm
1 = u−j′2r2(u + a2t

j′2r2)e′ , zp − z = (1 + d1t)w
−g′

1 .

Note that if m, e′ and j′2r2 share no common factors then the first
equation is irreducible; the second is irreducible since the right-hand
side is not of the form αp − α. Recall that j′1 and j′2 are relatively
prime to m and thus to r2. Since gcd(m, j′2r2) = r2, the curve WR

is irreducible if and only if 1 = gcd(e′, r2) = gcd(r1, r2). Let g =
gcd(m, j′1r1 + j′2r2) = gcd(m, e′). We see that WK is irreducible if and
only if g = 1 from the following equations for the normalization of φ′

K :

wg
2 = 1, w

m/g
1 = u−j′2r2/g(u + a2t

j′2r2)e′/g, zp − z = (1 + d1t)w
−g′

1 .

Ramification information: The first equation indicates that normaliza-
tion of the generic fibre has g components and thus g points above the
branch point each with inertia group IK = Z/p o 〈cg〉. The second
equation indicates that w1 is an (e′/g)th power of a uniformizer. Thus
the third equation indicates that the lower conductor on the generic fi-
bre is e′g′/g = e/g. Thus the cover of the generic fibre has inertia group
IK ' Z/po〈cg〉 = Z/poµm/g and has conductor e/g = (j1r1+j2r2)/g.

�

It is more difficult to deform the covers φ1 and φ2 together if p divides
(j1r1 + j2r2)/g. This is done in the following proposition in the case that
m = 1 and p|(j1 + j2). The conductor on the generic fibre will be slightly
bigger than (j1r1 + j2r2)/g.

Proposition 2.3.5. Let φ1 : X → U , φ2 : Y → V be Z/p-Galois covers
of normal connected germs of curves with conductors j1 and j2 respectively.
Suppose that p|(j1 + j2). Let e = j1 + j2 + ε where ε = 2 if p 6= 2 and ε = 3
if p = 2. Then there exists a Z/p-Galois cover φR : WR → Se ' Se

uv of
irreducible germs of R-curves such that:

1. The branch locus of the cover φR consists of exactly one R-point, de-
noted bR.
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2. After normalization, the pullbacks of the special fibre of φR to U and
V , namely ι∗ui∗φk and ι∗vi

∗φk, are isomorphic to φ1 and φ2 away from
the branch point.

3. The generic fibre φK : XK → Se
K = Se ×R K of φR is an I-Galois

cover of smooth irreducible germs of curves whose branch locus consists
of the point bK = bR ×R K.

4. The cover φK has inertia Z/p and conductor e over the unique branch
point bK .

Proof. The proof is essentially the same as for Proposition 2.3.4. For p 6= 2
one can deform the equations xp − x = u−j1 and yp − y = v−j2 using

w = uj1+1 + a1v
j2+1 + d0t, zp − z = (u + v + d1t)/w.

(Here a1 = am.) These equations and the Galois action reduce correctly on
the components of the special fibre. In particular,

mod(v, t) : w1 7→ uj1+1
1 , z 7→ x; mod(u, t) : w1 7→ avj2+1

1 , z 7→ y/a.

Since uv = te = tj1+j2+2, for the same choice of d0 as in the proof of
Proposition 2.3.4, the equations can be rewritten as:

w = u−(j2+1)(u + tj2+1)j1+j2+2, zp − z = (u + v + d1t)/w.

Since p - e, the conductor is equal to e. �

Notation 2.3.6. Let G be a quasi-p group with Sylow p-subgroup S. As-
sume S ' Z/p. Let I ' Z/poµm ⊂ G and let r = |G|/mp. Let φ1 : X → P1

k

and φ2 : Y → P1
k be two (possibly disconnected) G-Galois covers each

branched at only one point. Let u (respectively v) be a local parameter
at the branch point of φ1 (respectively φ2). Suppose the cover φi has inertia
Ii ' Z/p o µmi ⊂ I and conductor ji for i = 1, 2 above u = 0 and v = 0
respectively. Let the genus of X and Y be g1 and g2 respectively.

Let P e′
R be an R-curve whose generic fibre is isomorphic to P1

K , whose
special fibre consists of two projective lines Pu and Pv meeting transversally
at a point b where (u, v) = (0, 0), and which satisfies P̂R,b ' Se′

uv.

The next theorem uses Propositon 2.2.1 and Theorem 1.2.4 to deform
the covers φ1 and φ2 to a family of covers φR of P e′

R branched at only one
R-point. This family can be defined over a variety Θ of finite type over k.
We then specialize to a fibre of the family over another k-point of Θ to get
a cover φ′ with new ramification data.

Theorem 2.3.7. Consider the pair (φ1, φ2) as in Notation 2.3.2 and 2.3.6.
Suppose that φ1 and φ2 satisfy the numerical hypotheses. Then there exist
G-Galois covers of curves φR : YR → P e′

R and φ′ : Y ′ → P1
k such that:

1. After normalization, the pullbacks of the special fibre of φR to Pu and
Pv are isomorphic respectively to φ1 and φ2 away from b.
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2. The branch locus of the cover φR (respectively φ′) consists of exactly
one R-point denoted bR which specializes to b (respectively of exactly
one point b′).

3. There are g ramification points of φK (respectively φ′) above the branch
point bK (respectively above b′). These have inertia group IK ' Z/p o
〈cg〉 = Z/p o µm/g and conductor e/g = (j1r1 + j2r2)/g.

4. The curves YK and Y ′ are smooth of genus g1 + g2− 1 + |G| − r(pm +
g − r1 − r2)/2.

5. Suppose G1 and G2 are the stabilizers of a connected component of
X and Y respectively. Then YR and Y ′ are connected if G1 and G2

generate G.

Proof. After doing the appropriate set-up, the proof is identical to that of
Theorem 2.2.2. Let X∗ = P e′

R and let S = {b}. Let S ' Z/p be a chosen
Sylow p-subgroup of G. Then there exist points η1 ∈ φ−1

1 (u) and η2 ∈ φ−1
2 (v)

with inertia groups Ii ' S o µmi . Consider the Ii-Galois covers of germs of
curves φ̂1 : X̂η1 → U and φ̂2 : Ŷη2 → V .

Applying Proposition 2.3.4 to the pair (φ̂1, φ̂2) we see there exists an I-
Galois cover φ̂R : WR → Se′ with all the desired properties at the unique
branch point bK . Namely, there are g ramification points above the branch
point over K. The inertia group at one of these points is of the form IK '
Z/p o 〈cg〉 and has conductor e/g. Consider the inclusion Rs → As of rings
corresponding to the disconnected G-Galois cover IndG

I (φ̂R).
Consider the cover φk of the special fibre of P e′

R which restricts to φ1 over
Pu and to φ2 over Pv. The covers φk and IndG

I (φ̂R) and the isomorphisms
given by Proposition 2.3.4 (2) constitute a relative G-Galois thickening prob-
lem as in Definition 1.2.1. The (unique) solution to this thickening problem
(Theorem 1.2.4) yields the G-Galois cover φR. Recall from Definition 1.2.3
that the cover φR is isomorphic to IndG

I (φ̂R) over P̂R,b. Thus the deforma-
tion φR has the desired properties near the branch point bR. Also, the cover
φR is isomorphic to the trivial deformation φtr of φ away from b, which
completes the proof of Properties 1)-3) for φR. The fact that YK is smooth
follows because both WK and φtr are smooth.

If g′ is the genus of the fibres of YK , the Riemann-Hurwitz formula implies:

2g1 − 2 = −2|G|+ rr1[(pm1 − 1) + j1(p− 1)],

2g2 − 2 = −2|G|+ rr2[(pm2 − 1) + j2(p− 1)],

2g′ − 2 = −2|G|+ rg[(pm/g − 1) + e(p− 1)/g].

Using the fact that e = j1r1 + j2r2 it follows that:

g′ = g1 + g2 − 1 + |G| − r(pm + g − r1 − r2)/2.

Note that pm + g− r1− r2 is always even. Finally, if G1 and G2 generate G
then the special fibre of YR is connected. Thus YK is connected.
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As in the proof of Theorem 2.2.2, the cover φR can be defined over Spec(Θ)
for some k 6= Θ ⊂ R of finite type over k. Also one can choose a fibre φ′ :
Y ′ → P1

k over a k-point of Θ so that φ′ is a G-Galois cover and Y ′ is smooth
with the same number of connected components as YK , [2, Proposition
9.29]. Properties (2)-(5) for φ′ follow immediately from the corresponding
properties for φK . �

Remark 2.3.8. These patching results do not need to be restricted to the
case X = P1

k or the case of only one branch point. In general, one can
consider G-Galois covers φ1 : Y1 → X1 and φ2 : Y2 → X2. Suppose φ1 and
φ2 each have a branch point with inertia group contained in I ' Z/p o µm

whose ramification data satisfies the numerical hypotheses. Using Propo-
sition 2.3.4, one can construct a cover φ : Z → W with specified inertia
behavior above one point. The genus of W will be the sum of genus(X1)
and genus(X2) and φ will be branched at |B1|+ |B2| − 1 points.

Remark 2.3.9. One would like to know whether the above constructions
are optimal in the following sense: Given the covers φ1 and φ2, with upper
jumps σ1 = j1/m1 and σ2 = j2/m2, in Theorem 2.3.7 we construct a de-
formation so that the generic fibre is a cover φK branched at exactly one
point with upper jump ση = σ1 +σ2; would it have been possible to get any
smaller upper jump on the generic fibre? The key formula [7, Theorem 3.11]
indicates that the result in Theorem 2.3.7 is almost optimal since the upper
jump on the generic fibre must satisfy ση ≥ σ1 +σ2− 1. In other words, the
singularity for φk is not too severe. The following lemma gives another way
to measure this singularity.

Consider the cover φR : YR → P1
R constructed in Theorem 2.2.2 (respec-

tively φR : YR → P e′
R constructed in Theorem 2.3.7 or Corollary 2.3.1).

Choose y ∈ φ−1
R (∞k) (respectively φ−1

R (0, 0)). Let πy : Ỹy,k → Ŷy,k be the
normalization of Ŷy,k and let Ôy → Õy be the corresponding extension of
rings. Let δy = dimk(Õy/Oy) and let my = #π−1

Y (y). Let µy = 2δy−my +1.

Lemma 2.3.10.
i) In Theorem 2.2.2, µy = (jη − jb)(p− 1) = im(p− 1).
ii) In Theorem 2.3.7 and Corollary 2.3.1 (2-3), µy = 1 + mp− g.
iii) In Corollary 2.3.1 (1), µy = p + ε(p− 1).

Proof. The proof uses a formula of Kato [6] which compares the local rami-
fication and the singularities for the cover φ̂R of germs of curves. The details
are omitted. �

3. Applications to ramification questions.

Let G be a finite quasi-p group. Let S be a chosen Sylow p-subgroup of G and
suppose S has order p. Let k be an algebraically closed field of characteristic
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p. All covers in this section are smooth, connected and proper. We now show
that for all sufficiently large j ∈ N with p - j, there exists a G-Galois cover
φ : Y → P1

k branched at only one point with inertia Z/p and conductor
j. The method is to first show the existence of such a cover with small
conductor under an additional hypothesis on G. We then use group theory
to determine which conductors are sufficiently large enough to realize with
formal patching.

3.1. P -Weight. In this section, we measure the complexity of the group
G.

Definition 3.1.1. Let G(S) ⊂ G be the subgroup generated by all proper
quasi-p subgroups G′ such that G′ ∩ S is a Sylow p-subgroup of G′. The
group G is p-pure if G(S) 6= G.

Note that this definition is independent of the choice of S. This condition
was introduced in [10]. Note that when |S| = p, then G is p-pure if and
only if G is not generated by all proper quasi-p subgroups G′ ⊂ G such that
S ⊂ G′. Some examples of p-pure quasi-p groups with |S| = p are PSL2(Fp),
and the semi-direct product (Z/rZ)l o Z/p where the action is irreducible.
When p = 11, M11 and M22 are quasi-11 and 11-pure. Every finite quasi-p
group can be generated from p-pure ones.

Definition 3.1.2. Consider all subgroups G′ ⊂ G such that G′ is quasi-p
and p-pure and such that G′ ∩ S is a Sylow p-subgroup of G′. The p-weight
ω(G) of G is the minimal number of such subgroups G′ of G which are
needed to generate G.

Lemma 3.1.3. The p-weight ω(G) of G is a finite number independent of
the choice of S.

Proof. The proof uses induction on |G| to show that G can be generated by
p-pure quasi-p subgroups G′′ with G′′ ∩ S = Sylp(G′′). This statement is
true if G ' Z/p. For then G contains no proper quasi-p subgroups and so
{1} = G(S) 6= G. Thus G ' Z/p is p-pure and ω(G) = 1.

Now given G, suppose that the hypothesis is true for any quasi-p group
G′ such that p ≤ |G′| < |G|. If G(S) 6= G then G is p-pure and so ω(G) = 1.

If G(S) = G then by definition G is generated by its proper quasi-p
subgroups G′ ⊂ G with G′ ∩ S = Sylp(G′). Since |G′| < |G| the induction
hypothesis states that each G′ is generated by p-pure quasi-p subgroups G′′

with G′′∩Sylp(G′) = Sylp(G′′). Note that Sylp(G′′) = G′′∩(G′∩S) = G′′∩S.
Thus each G′′ satisfies the necessary conditions and the collection of G′′

generate G. Thus the p-weight is the minimum size among all sets of p-pure
quasi-p subgroups G′′ with S ∩G′′ = Sylp(G′′) which generate G.

To show that ω(G) is independent of S, consider another Sylow p-subgroup
S0 of G. Let ω0(G) be the p-weight with respect to S0. Since the Sylow
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p-subgroups are all conjugate, there exists some g ∈ G with S0 = gSg−1.
Suppose G is generated by a set {G′′} of p-pure quasi-p subgroups with
S ∩ G′′ = Sylp(G′′). Note that S0 ∩ (gG′′g−1) = Sylp(gG′′g−1). Each sub-
group gG′′g−1 is still quasi-p and p-pure (with respect to its Sylow). Also
G is generated by the set of gG′′g−1. Thus ω0(G) ≤ ω(G). Reversing the
roles of S and S0, ω(G) ≤ ω0(G). �

3.2. Conductors. Let φ : Y → P1
k be a G-Galois cover which is branched

at only one point. Such a cover exists if and only if G is a quasi-p group
which means that G is generated by p-groups, [10]. Suppose φ has inertia
group I ' Z/p o µm and conductor j. When G 6= Z/p, there is a small set
of values jmin(I), depending only on I, consisting of the minimal possible
conductors for φ. Let n′ be the order of the prime-to-p part of the center of
I. Let n be such that m = nn′.

Definition 3.2.1. Define jmin(I) = {jmin(I, a)| 1 ≤ a ≤ n, gcd(a, n) = 1}
where jmin(I, a) = 2m + n′ if a = 1 and n = p− 1 and jmin(I, a) = m + an′

otherwise.

A geometric interpretation for the set jmin(I) is that φ has a non-isotrivial
deformation in equal characteristic p if and only if j 6∈ jmin(I), [8, Theorem
3.1.11]. Suppose 1 ≤ a ≤ n and j ≡ an′ mod m. If G 6= Z/p then j ≥
jmin(I, a), by [8, Lemma 1.4.3]. Note that if j ∈ jmin(I) then p - j and
j ≤ m(2 + 1/(p− 1)).

Theorem 3.2.2. Let G be a finite p-pure quasi-p group whose Sylow p-
subgroups have order p 6= 2. For some I ' Z/p o µm ⊂ G and some
j ∈ jmin(I), there exists a G-Galois cover φ : Y → P1

k of smooth connected
curves branched at only one point over which it has inertia group I and
conductor j. In particular, genus(Y ) ≤ 1 + |G|(p− 1)/2p.

Proof. For the convenience of the reader we briefly recall the outline of the
proof from [7, Theorem 4.5]. By Abhyankar’s Conjecture [10, 6.5.3], for
some I0 of the form Z/p o µm0 and some j0, there exists a G-Galois cover
φ0 : Y0 → P1

k with group G which is branched at only one point with inertia
group I0 and conductor j0. If j0 6∈ jmin(I), there exists a non-isotrivial
deformation of φ0 in equal characteristic p by [8, Theorem 3.1.11]. This
deformation yields a cover φK with bad reduction by [8, Theorem 3.3.7].

Let φ : Y → X be the stable model of φK . See [7, Section 3] for infor-
mation on the structure of φ, which is very similar to that in the unequal
characteristic case in [10, Section 6], [11, Sections 2-3], and [12]. In par-
ticular, the special fibre Xk is a tree of projective lines and the restriction
of φ over any terminal component of Xk is separable. Since G is p-pure
and has no (nontrivial) normal p-subgroups, for some terminal component
Pb of Xk, the curve Yb = φ−1(Pb) is connected. For this component, the
restriction φb : Yb → Pb ' P1

k is a G-Galois cover branched at only one
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point. If φb has inertia group Ib ' Z/p o µmb
⊂ NG(S) and conductor jb

then jb/mb < j0/m0 by [7, Theorem 3.11]. We reiterate this process until
finding such a cover with inertia group Ib = Z/p o µmb

and conductor jb

satisfying jb/mb ≤ 2 + 1/(p − 1) which implies jb ∈ jmin(I). The condition
on genus(Y ) follows directly from Definition 3.2.1 and the Riemann-Hurwitz
formula. �

Lemma 3.2.3. Suppose there exists a G-Galois cover φ : Y → P1
k branched

at only one point with inertia group I ' Z/p o Z/m and conductor j. Then
for any I ′ ⊂ I of the form I ′ = Z/p o µm′ and for any j′ ≡ j mod m′ with
j′ ≥ j and p - j′, there exists a G-Galois cover φ′ : Y → P1

k of smooth
connected curves branched at only one point with inertia I ′ and conductor
j′.

Proof. Let r be the index of I ′ in I. Consider the cover f : X → P1
k which

is cyclic of order r and branched at 0 and ∞. By Abhyankar’s Lemma, the
cover f∗φ is a G-Galois cover φ′ : Y ′ → P1

k which is branched at only one
point with inertia group Z/p o µm′ . The cover f∗φ is connected since f and
φ are disjoint. The conductor of f∗φ still equals j. Thus the statement is
immediate from Theorem 2.2.2. �

Let G be a quasi-p group with |S| = p and with p-weight ω. By Lem-
ma 3.1.3, G can be generated by a collection of ω proper p-pure quasi-p
subgroups G′ such that G′ ∩ S = Sylp(G′). We give sufficient conditions for
the conductor of a G-Galois cover φ : Y → P1

k branched at only one point
with inertia Z/p.

Theorem 3.2.4. Let G be a finite quasi-p group whose Sylow p-subgroups
have order p 6= 2. Let ω be the p-weight of G. Let me be the exponent of the
normalizer NG(S) of S in G divided by p. Let j ∈ N+ satisfy gcd(j, p) = 1.
Suppose j ≥ me(2 + 1/(p − 1))ω if p - ω and j ≥ me(2 + 1/(p − 1))ω + 2
if p|ω. Then there exists a G-Galois cover φ : Y → P1

k of smooth connected
curves which is branched at only one point over which it has inertia Z/p and
conductor j.

Proof. Note that me(2 + 1/(p − 1)) is not necessarily an integer. In this
proof the phrase “cover of this type” indicates that the cover in question is
a smooth connected cover of the projective line branched at only one point
with inertia I = Z/p.

By Theorem 2.2.2, given G as above it is sufficient to prove the following:
For some J ∈ Z such that p - J and J ≤ me(2 + 1/(p − 1)) there exists a
G-Galois cover φ of this type with conductor j = Jω if p - ω and conductor
j = Jω + 2 if p|ω. The proof will proceed by induction on ω.

If ω = 1 then G is quasi-p and p-pure. By Theorem 3.2.2, for some
I ' Z/p o µm ⊂ G there exists a G-Galois cover φ : Y → P1

k branched
at only one point with inertia group I and conductor j ∈ jmin(I). Recall
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that if j ∈ jmin(I) then j = m(2 + 1/(p − 1)) or j ≤ 2m. Also m ≤ me.
Let I ′ = Z/p. By Lemma 3.2.3, there exists a G-Galois cover φ′ : Y → P1

k
branched at only one point with inertia Z/p and conductor j. Choose J = j
and note that p - J and J ≤ me(2 + 1/(p− 1)).

Now suppose that ω > 1. By the inductive hypothesis, for all quasi-p
groups G′ having p-weight ω′ where ω′ < ω and p - ω′, there exists J ′ such
that gcd(J ′, p) = 1 and such that J ′ ≤ me′(2 + 1/(p− 1)) (where me′ is the
exponent of NG′(S) divided by p) and there exists a G′-Galois cover φ′ of
this type with conductor j′ = J ′ω′.

Choose w1 ≥ 1 and w2 ≥ 1 such that p - w1w2 and w1 + w2 = ω. (If
ω 6≡ 1 mod p, then choose w1 = 1 and w2 = ω − 1. If ω ≡ 1 mod p, then
choose w1 = 2 and w2 = ω − 2.)

Since G has p-weight ω > 1, G can be generated by ω proper p-pure
quasi-p groups G′

1, . . . , G
′
ω with S ⊂ G′

i for all 1 ≤ i ≤ ω. Let G1 ⊂ G be
the subgroup generated by G′

i for 1 ≤ i ≤ w1. Let G2 ⊂ G be the subgroup
generated by G′

i for w1 + 1 ≤ i ≤ w2. Then G1 and G2 are quasi-p groups
since they are generated by quasi-p groups. For i = 1, 2, the order of a Sylow
p-subgroup of Gi is p since S ⊂ Gi ⊂ G. By construction, ω(G1) ≤ w1 and
ω(G2) ≤ w2. But in fact, ω(G1) = w1 and ω(G2) = w2 since the p-weight of
G is only ω. For i = 1, 2, let mei be the exponent of NGi(S) divided by p.

By the inductive hypothesis, for i = 1, 2, there exists Ji such that p - Ji

and Ji ≤ mei(2+1/(p−1)) and there exists a Gi-Galois cover φi of this type
with conductor Jiwi. Let me be the exponent of the normalizer of NG(S)
divided by p and note that me ≥ mei . Let J = max{J1, J2} and note that
p - J and J ≤ me(2 + 1/(p − 1)). Using Theorem 2.2.2 to increase the
conductor of φi for i = 1, 2 we find a Gi-Galois cover φ′

i of this type with
conductor Jwi.

By Corollary 2.3.1 (1), in the case that p - ω, there exists a G-Galois
cover φ of this type with conductor j = Jw1 + Jw2 = Jω; in the case
that p|ω, there exists a G-Galois cover φ of this type with conductor j =
Jw1 + Jw2 + 2 = Jω + 2. (In particular, the covers are connected since
G1 and G2 generate G, Theorem 2.3.7 (5).) This completes the proof by
induction. �

Example 3.2.5. Let G = PSL2(Fp). Then G is quasi-p and p-pure and its
Sylow p-subgroups have order p. The normalizer of a Sylow is of the form
I∗ ' Z/p o µm∗ where m∗ = (p − 1)/2 and µm∗ acts faithfully on Z/p. By
Corollary 3.2.2, for some m|m∗, there exists a G-Galois cover φ : Y → P1

k
of smooth connected curves branched only at ∞ with inertia I ' Z/p o µm

and conductor j ∈ jmin(I). In this case j ≤ 2m ≤ 2m∗ < p.
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