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The matrix Ap condition extends several results in weighted
norm theory to functions taking values in a finite-dimensional
vector space. Here we show that the matrix Ap condition
leads to Lp-boundedness of a Hardy-Littlewood maximal
function, then use this estimate to establish a bound for the
weighted Lp norm of singular integral operators.

1. Preliminaries.

Weighted Norm theory forms a basic component of the study of singular
integrals. Here one attempts to characterize those measure spaces over which
a broad class of singular integral operators remain bounded. For the case
of singular integral operators on C-valued functions in Euclidean space, the
answer is given by the Hunt-Muckenhoupt-Wheeden theorem [10]. It states
that the necessary and sufficient condition for boundedness in Lp(dµ) is
that dµ = W (x) dx and the function W satisfies the Ap condition, namely:( 1
|B|

∫
B

W dx
)1/p( 1

|B|

∫
B

W−p′/pdx
)1/p′

≤ C for all balls B ⊂ Rn.

The Ap condition requires considerable interpretation in order to apply
it to weighted measures of Cd-valued functions. First, the weight W (x)
should take values in the space of positive d × d Hermitian forms. This
raises concerns about the order in which products are taken, since matrices
need not commute, and also what it means for the quantity on the left-
hand side to be uniformly bounded. Trĕıl′ [21] conjectured that the correct
statement of the matrix A2 condition should be

sup
B

∥∥∥∥∥
(

1
|B|

∫
B

W dx

)1/2( 1
|B|

∫
B

W−1dx

)1/2
∥∥∥∥∥ < ∞

where exponents 1/2 indicate operator powers of a nonnegative matrix. This
was subsequently proven in [23] and again in [24].

If p is different from 2, the matrix Ap condition cannot be written in
terms of averages of operator powers of weight W . Averages still play a
crucial role, however it is more accurate to regard W (x) as a Banach space
norm on Cd rather than a matrix. A correct formulation of the matrix
Ap condition, which is also the subject of this note, first appeared in [12]
and [25]. Because their statements do not appear similar, it is especially
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202 MICHAEL GOLDBERG

important to understand what properties matrix Ap weights share with their
scalar counterparts. This is discussed further in the next section.

Boundedness estimates on singular integral operators were originally ob-
tained by way of the Hardy-Littlewood maximal function M . If a scalar
weight W possesses the A∞ property (several equivalent definitions are
given in [18]), then the Lp norm of any singular integral is dominated by
the Lp norm of M via a distributional argument commonly known as the
good-λ inequality. The Ap condition is specifically required to ensure that
‖Mf‖Lp(W ) ≤ C‖f‖Lp(W ).

Some of these techniques fail to generalize to the case of vector-valued
functions with matrix weights. There is no known analogue of the A∞
property to create simultaneous estimates for every exponent p. The weak-
Lp(W ) spaces used to prove boundedness of the Hardy-Littlewood maximal
function are not well defined in this setting. In general, much of the ability
to compare objects and dominate one by another is lost when the objects are
vectors rather than scalars. The theory of matrix weights has consequently
evolved along much different lines. One fundamental technique employed
in both [23] and [25] is to choose a good basis (often inspired by Haar
functions) in Lp(W ) and consider the integral operator as a matrix acting
on the coefficient space. Estimates may then be made separately on the
matrix and on the coefficient embedding operator. Even in the scalar case
these ideas have yielded new results and new ways of approaching weighted
norm problems.

In this note we attempt to tackle the difficulties of extending the classical
theory, or else circumvent them. Some arguments may be borrowed nearly
word for word, some remain intact only if they are presented in a specific
manner. Our hope is to discover which properties of scalar Ap weights
admit some generalization to the case of vector-valued functions and matrix
weights, leading to a more complete understanding of the matrix Ap class.

Let T be a singular integral operator associated to kernel K(x) in the
sense that Tf(x) =

∫
Rn K(x − y)f(y) dy for almost every x outside the

support of f . The following regularity hypotheses are to be assumed for K:

|K(x)| ≤ C|x|−n and |∇K(x)| ≤ C|x|−n−1(1)

and additionally we suppose that for some choice of p, 1 < p < ∞, the
bound ‖Tf‖Lp ≤ A‖f‖Lp holds for all f ∈ Lp. One may then apply T
to functions taking values in Cd by allowing it to act separately on each
coordinate function, that is: (Tf)j = Tfj . This new operator, also denoted
by T , is a singular integral operator whose associated convolution kernel is
K times the identity matrix.

In a similar manner, define the truncated operators Tε to be convolution
with Kε(x) = χ{|x|>ε}K(x) for all ε > 0. Note that T and the Tε all commute
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with pointwise multiplication by any constant matrix Λ, in other words
ΛTf = T (Λf).

A matrix weight W is a function on Rn taking values in d × d positive-
definite matrices, with weighted norm space Lp(W ) defined by

‖f‖p
Lp(W ) =

∫
Rn

|W 1/pf |pdx.(2)

One is often concerned with the relationship between a weight and its
average over arbitrary balls. The most straightforward notion of an average,
WB = 1

|B|
∫
B W dx, turns out to be useful only in the study of L2(W ). With

any exponent p 6= 2, this does not properly respect the structure of the
underlying Lp-space. The following definitions are needed instead:

A metric ρ = ρx( · ) denotes a family of Banach space norms on Cd,
indexed by x ∈ Rn. The weighted norm space Lp(ρ) is given by

‖f‖p
Lp(ρ) =

∫
Rn

[
ρx(f(x))

]p
dx.

Note that for any matrix weight W , Lp(W ) is isometrically equivalent to
Lp(ρ) with the metric ρx(e) = |W 1/p(x)e|. Given a ball B ⊂ Rn and an
exponent p > 1, let ρp,B be defined by the formula

ρp,B(e) =
(

1
|B|

∫
B

[
ρx(e)

]p
dx

)1/p

.

This will be our method for averaging the metric ρ over a ball B.
The dual metric ρ∗ is defined pointwise in x to be

ρ∗x(e) = sup
f∈Cd

|(e, f)|
ρx(f)

.

One immediate consequence is that (e, f) ≤ ρ∗x(e)ρx(f).

Proposition 1.1. For any e ∈ Cd and any ball B ⊂ Rn,

ρ∗p′,B(e) ≥ (ρp,B)∗(e).

Proof. Given two vectors e, f ∈ Cd,

(e, f) ≤ 1
|B|

∫
B

ρ∗x(e)ρx(f) dx

≤
(

1
|B|

∫
B

[
ρ∗x(e)

]p′
dx

)1/p′

·
(

1
|B|

∫
B

[
ρx(f)

]p
dx

)1/p

= ρ∗p′,B(e)ρp,B(f).

In other words, ρ∗p′,B(e) ≥ (e, f)
ρp,B(f)

. The proof is completed by taking the

supremum over all f ∈ Cd. �
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A metric ρ is called an Ap metric if there exists some constant C < ∞ so
that the opposite statement

ρ∗p′,B(e) ≤ C(ρp,B)∗(e) for all balls B ⊂ Rn(3)

is also true. Since the averages over cubes and balls in Rn differ by no
more that a fixed constant, Ap metrics satisfy an analogous condition for
cubes, and vice versa. Stated either way, the Ap condition characterizes an
important class of weighted measures.

Theorem 1 (Nazarov, Trĕıl′ [12], Volberg [25]). Let d < ∞. The follow-
ing statements are equivalent:

1) The Hilbert Transform is bounded on Lp(ρ).
2) ρ is an Ap metric.

We will prove this theorem again for metrics which are induced by some
matrix weight W . There is no loss of generality because for fixed dimension
d < ∞ every metric can be uniformly approximated by matrix weights.

Proposition 1.2. Let d < ∞. Given a Banach space norm ρx on Cd, there
exists a positive selfadjoint matrix Wx such that

ρx(e) ≤ |Wx(e)| ≤
√

d · ρx(e) for all e ∈ Cd.(4)

Proof. Let O represent the unit ball of ρx, and E the ellipsoid of maximal
volume contained in O. There exists a positive selfadjoint matrix Wx such
that Wx(E) is the standard unit ball in Cd. The image Wx(O) is a convex
balanced set containing the unit ball, and containing no ellipsoid of greater
volume.

If there exists a point v ∈ Wx(O) with |v| >
√

d, then by convexity the
boundary of Wx(O) can only be tangent to the unit sphere at points w such
that

(w,v) ≤ 1
|v|

<
1√
d
.

For some δ > 0 the ellipsoid with major axis length eδ in the direction of
v and minor axes length e−δ/(|v|2−1) in every direction perpendicular to v
is also contained in Wx(O). This has strictly greater volume than the unit
ball, contradicting the property of Wx(O) stated above. �

It is now possible to state the Ap condition in terms of matrix weights,
though some precision is lost in the process. Given a matrix weight W and
a ball B ⊂ Rn, define a Banach space norm XB on Cd by considering the
Lp(W ) norm of characteristic functions on B.

‖v‖XB
= |B|−1/p‖χBv‖Lp(W ).

By Proposition 1.2 there exists a positive-definite d × d matrix VB such
that ‖v‖XB

≤ |VBv| ≤ d1/2‖v‖XB
. From a heuristic standpoint, VB might
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be considered an “Lp average” of W 1/p over ball B. With p′ = p
p−1 the dual

exponent to p, let V ′
B be an Lp′ average of W−1/p. In summary, matrices

VB, V ′
B enjoy the following properties:

|VBv| ∼ |B|−1/p‖χBW 1/pv‖Lp(5)

|V ′
Bv| ∼ |B|−1/p′‖χBW−1/pv‖Lp′ .

Remark. The definition of VB and V ′
B depends implicitly on the method

used to approximate Banach space norms by matrices. For the purposes of
our discussion, VB and V ′

B may be any two matrices satisfying (5).

The statement about weights taking the place of Proposition 1.1 is
|VBV ′

Be| ≥ |e| for all vectors e ∈ Cd and balls B ⊂ Rn.
A matrix weight W satisfies the matrix Ap condition if VBV ′

B are uniformly
bounded as operators on Cd; that is

‖VBV ′
B‖ ≤ C < ∞ for all balls B ⊂ Rn.(6)

The exact value of C depends on the choice of VB and V ′
B, and is therefore

determined here only up to a factor of d.
Our approach to Theorem 1 is styled after Coifman and Fefferman’s proof

[5] in the scalar (d = 1) case. Two technical problems arise immediately:
First that general d × d matrices do not commute with one another, and
second the matter of defining a maximal operator for vector-valued func-
tions. To choose pointwise a vector with the largest `2(Cd) magnitude is
clearly wrong because the effect of weight W (x) may depend strongly on
the direction. In the special case where W is uniformly nonsingular (i.e.,
‖W (x)‖·‖W−1(x)‖ ≤ C for all x) this can be controlled by a constant factor,
but we have no such a priori assumptions about W .

For this reason our analysis will take place primarily in unweighted Lq

spaces, following [4]. Rather than deal with T directly, we consider the
action of W 1/pTW−1/p on functions in Lq(dx). With the family of truncated
operators W 1/pTεW

−1/p in mind, we define the maximal truncated operator
(W 1/pT )∗ to be

(W 1/pT )∗f(x) = sup
ε>0

|W 1/pTεf(x)|(7)

with the convention that f = W−1/pg and g is a function in Lq(dx). One
estimate from the scalar theory that remains wholly intact is the bound

|W 1/pTW−1/pg|(x) ≤ |(W 1/pT )∗W−1/pg|(x) + C|g(x)|.(8)

The constant C depends only on our choice of operator T but not on the
function g. This will allow us to infer the boundedness of T by controlling
the behavior of its truncations. Our primary results are the following four
theorems, numbered according to the section in which they appear:
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Four Theorems.
(3.2) If W is a matrix Ap weight, there exists δ > 0 such that the vector
Hardy-Littlewood maximal function Mw (defined in Section 3) is a bounded
operator from Lq(Rn;Cd) to Lq(R;R) whenever |p− q| < δ.
(4.2): Given a singular integral operator T as above, and a weight W ∈ Ap,
there exists δ > 0 such that (W 1/pT )∗W−1/p is a bounded operator from
Lq(Rn;Cd) to Lq(R;R) whenever |p− q| < δ.

(5.1): Consequently W 1/pTW−1/p is bounded on Lq(Rn;Cd) for this range
of exponents q.
(5.2): In particular, T is bounded on Lp(W ) if W ∈ Ap. With one additional
hypothesis on the structure of T , the converse statement is also true.

Remark. The exponent W 1/p is used throughout, even when we are con-
sidering functions under an Lq norm with q 6= p. This places us squarely in
the setting of [25], where the Ap metric W 1/p is the basic object of study.
Theorem 5.1 then asserts that any Ap metric is also an Aq metric for all q
in some open interval containing p.

2. Properties of Ap weights.

We would like first to characterize the matrix Ap class in a more transparent
manner by borrowing a lemma from [12]:

Proposition 2.1. A metric ρx satisfies the Ap condition if and only if the
operators f → χB

1
|B|
∫
B f dx are uniformly bounded on Lp(ρ). In fact, the

uniform bound is equal to the Ap constant of ρ.

Proof. The Lp(ρ) norm of χB
1
|B|
∫
B f dx is given by

1
|B|

(∫
B

[
ρy

(∫
B

f dx

)]p

dy

)1/p

,

which in turn is equal to |B|−1/p′ρp,B

( ∫
B f dx). Therefore

sup
‖f‖Lp(ρ)=1

∥∥χB
1
|B|
∫
B f dx

∥∥
Lp(ρ)

= sup
f

sup
e∈Cd

|B|−1/p′
∫
B(e, f(x)) dx

(ρp,B)∗(e)

= sup
e∈Cd

|B|−1/p′
‖χBe‖Lp′ (ρ∗)

(ρp,B)∗(e)

= sup
e∈Cd

ρ∗p′,B(e)

(ρp,B)∗(e)
.

Equality between the first and second lines takes place because Lp(ρ) is
the dual space of Lp′(ρ∗). �
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Corollary 2.2. Let ρ be an Ap metric. For any vector v ∈ Cd, ρx(v)p is a
scalar Ap weight with constant less than or equal to that of ρ.

Proof. Let φ be any scalar function and consider f = φv. The weighted
norm of f is ‖f‖Lp(ρ) = (

∫
B φp [ρx(v)]pdx)1/p. Proposition 2.1 applied to

f states that all maps φ → χB
1
|B|
∫
B φdx are uniformly bounded on the

Lp space with measure [ρx(v)]pdx, with norms less than the Ap constant of
ρ. We now apply Proposition 2.1 again, this time in the scalar setting, to
conclude that [ρx(v)]p is a scalar Ap weight whose constant is also less than
the Ap constant of ρ. �

Corollary 2.3. If W is a matrix Ap weight, then ‖W‖ is a scalar Apweight.

Proof. Let ei be the standard unit basis for Cd. Since W (x) is a nonnegative
and selfadjoint operator at each point x,

‖W (x)‖ = ‖W 2/p(x)‖p/2 ∼ [tr(W 2/p(x))]p/2(9)

=

(
d∑

i=1

|W 1/p(x)ei|2
)p/2

∼
d∑

i=1

|W 1/p(x)ei|p

pointwise in x. By Corollary 2.2, each individual function |W 1/p(x)ei|p is a
scalar Ap weight, therefore their sum is as well. �

Remarks. Both of these corollaries are proven in [23] for the case p = 2,
and are adapted here with minimal alteration.

From this point forward we will work exclusively in the language of matrix
weights. While our primary definition of Ap weights (6) is decidedly less
elegant than that of Ap metrics (3), the ability to use notaion and theorems
from linear algebra makes it a worthwhile sacrifice.

One crucial feature in the theory of scalar Ap weights is the presence of
“Reverse Hölder” inequalities estimating the average of W 1+ε in terms of
the average of W . We will employ inequalities of a similar character as the
centerpiece of our analysis.

Proposition 2.4. Let W be an Ap weight. Then there exist δ > 0 and
constants Cq such that for all balls B ⊂ Rn,

1
|B|

∫
B
‖W 1/p(y)V ′

B‖qdy ≤ Cq, all q < p + δ(10)

1
|B|

∫
B
‖VBW−1/p(y)‖qdy ≤ Cq, all q < p′ + δ.(11)
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Proof. We will verify only the first of these statements. The second one is
proven in an identical manner with the starting point that W−p′/p is an Ap′

weight.
By Corollary 2.2, all functions of the form |W 1/p(y)V ′

Be|p are scalar Ap

weights with Ap norms bounded uniformly in e. It is therefore possible to
choose q and Cq so that the Reverse Hölder inequality

1
|B|

∫
B
|W 1/p(y)V ′

Be|qdy ≤ Cq

(
1
|B|

∫
B
|W 1/p(y)V ′

Be|pdy

)q/p

is satisfied for all e ∈ Cd.
Let ei once again be the standard unit basis for Cd. It is useful to re-

member that the norm of any d × d matrix M (not necessarily Hermitian)
is controlled by its action on the vectors ei via the formula

‖M‖ ≤ d1/2 sup
i
|Mei|.

We may now estimate the desired integral:
1
|B|

∫
B
‖W 1/p(y)V ′

B‖qdy ≤ 1
|B|

∫
B

(
d1/2 sup

i
|W 1/p(y)V ′

Bei|
)q

dy

≤ dq/2
d∑

i=1

1
|B|

∫
B
|W 1/p(y)V ′

Bei|qdy

≤ Cq

d∑
i=1

(
1
|B|

∫
B
|W 1/p(y)V ′

Bei|pdy

)q/p

∼ Cq

d∑
i=1

|VBV ′
Bei|q ≤ d · Cq‖VBV ′

B‖q ≤ Cq.

�

Note. In later sections we will also use the slightly weaker inequality

|B|−1

∫
B
‖W 1/p(y)V −1

B ‖qdy ≤ Cq, all q < p + δ(12)

whose proof follows the above calculations almost word for word.

3. The Hardy-Littlewood maximal function.

There is a wide variety of possible maximal functions to choose from, each
of which has its own advantages and limitations. In [4] we first considered
an auxiliary maximal function M ′

w, given by

M ′
wg(x) = sup

x∈B

1
|B|

∫
B
|VBW−1/p(y)g(y)| dy.(13)
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Although the intuitive meaning of M ′
w is unclear, one may approach it with

the classical tools of weak-type inequalities and interpolation. A direct ap-
plication of the second reverse Hölder inequality (11) proves the following
lemma:

Lemma 3.1. Let W be an Ap weight. Then there exists δ > 0 such that

‖M ′
wg‖Lq ≤ Cq‖g‖Lq(Rn;Cd), all g ∈ Lq, all q > p− δ.

Sketch of Proof. The operators g 7→ χB
1
|B|
∫
B |VBW−1/pg| dy are uniformly

bounded in Lq if p− δ < q. This is a consequence of (11) together with the
inequality∫

B
|VBW−1/p(y)g(y)| dy ≤

(∫
B
‖VBW−1/p(y)‖q′dy

)1/q′

‖g‖Lq

One may use the Vitali Covering Lemma to obtain a weak-type (q, q) es-
timate on the associated maximal function M ′

w. The lemma then follows
from the Marcinkiewicz Interpolation Theorem. �

The vector Hardy-Littlewood maximal function Mw is defined as

Mwg(x) = sup
x∈B

1
|B|

∫
B
|W 1/p(x)W−1/p(y)g(y)|dy.(14)

The following equivalent definition of Mw is often quite useful:

Mwg(x) = M
(
|W 1/p(x)W−1/p(·)g(·)|

)
(x).(15)

Here M denotes the classical Hardy-Littlewood maximal operator acting
on scalar-valued functions. The only difference between Mw and M ′

w is the
presence of a weight W 1/p(x) rather than an average weight VB over a ball
containing x. The reverse Hölder inequalities suggest that Ap weights are
often pointwise comparable to their averages, in which case ‖Mwg‖ would be
controlled by ‖M ′

wg‖. For a range of exponents near p, this line of reasoning
can be made precise.

Theorem 3.2. Let W be an Ap weight. Then there exists δ > 0 such that

‖Mwg‖Lq ≤ Cq‖g‖Lq(Rn;Cd), all g ∈ Lq, all |p− q| < δ.

Proof. Let us suppose for a moment that the suprema defining Mwg and
M ′

wg are taken over cubes in some dyadic grid. The entire preceding dis-
cussion holds for maximal functions over cubes, so in particular we can still
estimate ‖M ′

wg‖ via Lemma 3.1. For each point x, choose a (dyadic) cube
Rx such that

Mwg(x) ≤ 2|Rx|−1

∫
Rx

|W 1/p(x)W−1/p(y)g(y)|dy

≤ 2‖W 1/p(x)V −1
Rx
‖ ·
(
|Rx|−1

∫
Rx

|VRxW−1/p(y)g(y)|dy

)
.



210 MICHAEL GOLDBERG

For each integer j, define {Sj} to be the collection of dyadic cubes R = Rx

that are maximal with respect to the property

2j ≤ |R|−1

∫
R
|VRW−1/p(y)g(y)|dy < 2j+1.

Maximality insures that whenever Mwg(x) 6= 0 the cube Rx is contained in
some Sj with

|Rx|−1

∫
Rx

|VRxW−1/p(y)g(y)|dy ≤ 2|Sj |−1

∫
Sj

|VSjW
−1/p(y)g(y)|dy.

When j is fixed, the disjoint union ∪jSj is contained in the set where
M ′

wg(x) ≥ 2j .
Consider the functions NQ(x) = sup

x∈R⊂Q
‖W 1/p(x)V −1

R ‖, defined on their

respective cubes Q. By virtue of the preceding two statements, the inequality
Mwg(x) ≤ 4 · 2j+1NSj (x) must hold for some number j (this is trivial at the
points where Mwg(x) = 0). It follows that

‖Mwg‖q
Lq ≤ C

∞∑
j=−∞

2jq
∑
Sj

∫
Sj

(
NSj (x)

)q
dx.(16)

By Lemma 3.3 below, we can continue the estimate as follows:

‖Mwg‖q
Lq ≤ C

∞∑
j=−∞

2jq
∑
Sj

|Sj |

≤ C
∞∑

j=−∞
2jq |{M ′

wg ≥ 2j}| ≤ C‖M ′
wg‖q

Lq .

The proof is then complete by Lemma 3.1. �

Lemma 3.3. Let W be a matrix Ap weight and functions NQ(x) be defined
as above. Then there exist δ > 0 and Cq < ∞ such that for all dyadic Q,∫

Q

(
NQ(x)

)q
dx ≤ Cq|Q| for all q < p + δ.

Proof. We present an informal argument here, assuming that
∫
Q N q

Q ≤ B|Q|
with some finite B then deriving an a priori bound for B. This may be
readily adapted into a rigorous proof.

Let A < ∞ be a large constant to be specified later. Denote by {Rj}
the set of maximal cubes satisfying ‖VQV −1

Rj
‖ > A. Outside of ∪jRj ,

NQ(x) ≤ A‖W 1/p(x)V −1
Q ‖. Thus

∫
Q\∪jRj

(
NQ(x)

)q
dx ≤ C|Q|, seen by ap-

plying reverse Hölder inequality (12).
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We claim that
∑

j |Rj | < 1
2 |Q| if A is sufficiently large. Remember first

that ‖VQV −1
Rj
‖ = ‖V −1

Rj
VQ‖ ≤ C‖V ′

Rj
VQ‖, by Proposition 1.1. It follows that

|Rj | · ‖VQV −1
Rj
‖p′ ≤ C sup

|e|=1
|Rj | · |V ′

Rj
VQe|p′(17)

∼ C sup
|e|=1

∫
Rj

|W−1/p(y)VQe|p′dy

≤ C

∫
Rj

‖W−1/p(y)VQ‖p′dy.

The cubes Rj are disjoint from one another, so

Ap′
∑

j

|Rj | < C

∫
∪jRj

‖W−1/p(y)VQ‖p′dy

≤ C

∫
Q
‖W−1/p(y)VQ‖p′ ≤ C|Q|.

This estimate shows that for A large enough,
∑

j |Rj | < 1
2 |Q|, and the value

of A may be chosen independently of Q.
Inside each cube Rj , we may assume that NQ(x) = NRj (x), otherwise the

bound NQ(x) ≤ A‖W 1/p(x)V −1
Q ‖ still holds. Then∫

∪jRj

(
NQ(x)

)q =
∑

j

∫
Rj

(
NRj (x)

)q ≤ B
∑

j

|Rj | <
1
2
B|Q|.(18)

Putting these pieces together, we would discover that B ≤ C + 1
2B, where

C < ∞ is determined by the constants in the reverse Hölder inequality. �

This concludes the proof that matrix Ap weights enjoy Lq-boundedness
of the dyadic Hardy-Littlewood maximal function for a range of exponents
|q − p| < δ. There is a standard argument employing two incompatible
dyadic grids [7] for extending results of this kind to the general setting.
Thus the Hardy-Littlewood maximal function as we originally defined it (as
a supremum over balls containing x) is bounded in Lq for the same range of
exponents q.

4. A distributional inequality.

Proposition 4.1. Let W be a matrix Ap weight and fix q < p + δ. Then
there exist positive constants 0 < b < 1, c > 0 depending only on q, the Ap
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“norm” of W , and the dimensions d, n such that∣∣∣{x ∈ Rn : (W 1/pT )∗f(x) > α;(19)

max
(
M ′

w(W 1/pf)(x),Mw(W 1/pf)(x)
)

< cα
}∣∣∣

<
1
2
bq
∣∣{x ∈ Rn : (W 1/pT )∗f(x) > bα}

∣∣
for all f ∈ C∞

c (Rn;Cd).

From this point onward we follow as closely as possible in the footsteps of
Coifman and Fefferman [5], decomposing the set where (W 1/pT )∗f > bα into
a union of cubes and proving the desired inequality on each cube separately.
Our decomposition uses a slightly modified version of the Whitney covering
lemma, stated below.

Covering Lemma. Given a set E ⊂ Rn of finite (Lebesgue) measure, there
exists a collection {Qj} of pairwise disjoint cubes such that:

i) E ⊂ ∪jQj up to sets of measure zero,
ii) |Qj ∩ E| ≥ 1

2 |Qj |,
iii) |3Qj ∩ Ec| ≥ Cn|3Qj |.

A simple consequence of Statements i) and ii) is that
∑

j |Qj | ≤ 2|E|.

Proof. Let {Qj} be the collection of dyadic cubes maximal under the prop-
erty that |Q ∩ E| ≥ 1

2 |Q|. Then Conditions ii) and iii) hold with constant
Cn = 1

2 · (
2
3)n. The first condition also holds because as ε → 0, the ratio

|B(x, ε) ∩ E|/|B(x, ε)| → 1 at almost every x ∈ E. �

Proof of Proposition 4.1. Write f = W−1/pg and let

E = {x ∈ Rn : (W 1/pT )∗f(x) > bα}.

Apply the covering lemma to obtain cubes {Qj} with the specified prop-
erties. It suffices to verify that in each cube Q = Qj there is a distributional
inequality

∣∣{x ∈ Q : (W 1/pT )∗f(x) > α ; max
(
M ′

wg(x),Mwg(x)
)

< cα
}∣∣ < 1

4
bq|Q|.

(20)

For this we use a construction similar to the one in [5]. Let O be the ball
with the same center as Qj and radius 5 diam (Q). By the covering lemma
and inequality (11), there exists a point x ∈ 3Q such that

(W 1/pT )∗f(x) < bα and ‖VOW−1/p(x)‖ < C.

Let B = B
(
x, 3 diam(Qj)

)
. Since B ⊂ O and is of comparable size,

‖VBV −1
O ‖ is bounded by a constant and hence ‖VBW−1/p(x)‖ < C.
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Assume
∣∣{x ∈ Q : M ′

wg(x) < cα}
∣∣ ≥ 1

4bq|Q|, otherwise the proposition is
trivially satisfied. Then there exists a point y ∈ Q such that

M ′
wg(y) < cα and ‖VBW−1/p(y)‖ ≤ Cb−1.

Write f1 = χBf and f2 = χBcf . By the sublinearity of (W 1/pT )∗, the set
where (W 1/pT )∗f(x) > α is contained in the union of sets {(W 1/pT )∗fi(x) >
α/2}, i = 1, 2.

The operator T∗ is weak-type (1, 1). This fact is easily obtained from the
scalar case when d is finite, but is also true in general [17]. Consequently,∣∣∣{(VBT )∗f1(x) >

α

2R

}∣∣∣ ≤ AR

α
‖VBf1‖L1(Rn;Cd).

Here we are using the property that operator T∗ commutes with multiplica-
tion by any constant matrix, in this case VB. Furthermore,

‖VBf1‖L1 =
∫

B
|VBf(y)|dy ≤ |B|M ′

wg(y) ≤ Ccα|Q|

with the end result that
∣∣{x ∈ Q : (VBT )∗f1(x) > α

2R}
∣∣ ≤ CcR|Q|.

It follows that |{x ∈ Q : (W 1/pT )∗f1(x) > α
2 }| ≤ (CcR + C ′R−p)|Q|

for all R > 0, because the Reverse Hölder inequality (10) guarantees that
‖W 1/p(x)V −1

B ‖ < R except on a set of measure less than C ′R−p. Taking the
infimum over R,∣∣{x ∈ Q : (W 1/pT )∗f1(x) > α/2}

∣∣ ≤ C0c
p/(p+1)|Q|.(21)

For the second estimate, we begin by noting that the point x is chosen
so that (W 1/pT )∗f(x) < bα and ‖VBW−1/p(x)‖ < C. Then (VBT )∗f(x) <

Cbα. Our estimate for |{(W 1/pT )∗f2(x) > α/2}| relies on the following
inequality which holds for all x ∈ Q:

(VBT )∗f2(x) ≤ (VBT )∗f(x) + C ′M
(
|VBf |

)
(y)(22)

≤ Cbα + C ′‖VBW−1/p(y)‖ ·M
(
|W 1/pf |

)
(y)

≤ Cbα + C ′‖VBW−1/p(y)‖ ·Mwg(y)

≤ (Cb + C ′b−1c)α.

In the preceding expressions M(·) denotes the scalar Hardy-Littlewood max-
imal function.

Imitating the method for the |(W 1/pT )∗f1| estimate, we see that∣∣{x ∈ Q : (W 1/pT )∗f2(x) > R(Cb + C ′b−1c)α}
∣∣ ≤ AR−r|Q|

where r may be chosen so that q < r < p + δ. Once again (10) has been
invoked, this time to guarantee that ‖W 1/pV −1

B ‖ > R only on a set of
measure less than CR−r|B|. Set R equal to (4bC)−1. Then∣∣{x ∈ Q : (W 1/pT )∗f2(x) > (1/4 + C1b

−2c)α}
∣∣ ≤ C2b

r|Q|.(23)
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Statement (20) is then verified by choosing b < (8C2)1/q−r and c suffi-
ciently small. Summing over all cubes Qj proves the proposition. �

Corollary 4.2. With c as in Proposition (4.1),∥∥(W 1/pT )∗f
∥∥q

Lq ≤ 2c−q
∥∥max

(
M ′

w(W 1/pf),Mw(W 1/pf)
)∥∥q

Lq

for all f ∈ C∞
c (Rn;Cd).

Proof. If both sides of (19) are multiplied by qαq−1 and integrated over the
the interval 0 ≤ α < ∞, the resulting inequality is∫

Rn

(
[(W 1/pT )∗f ]q − c−q max

(
[M ′

w(W 1/pf)]q, [Mw(W 1/pf)]q
))

+
dx

≤ 1
2

∫
Rn

[(W 1/pT )∗f ]q dx

from which it follows that

‖(W 1/pT )∗f‖q
Lq −

1
cq

∥∥max
(
M ′

w(W 1/pf),Mw(W 1/pf)
)∥∥q

Lq

≤ 1
2
‖(W 1/pT )∗f‖q

Lq .

The remaining task is to verify that the Lq norm of (W 1/pT )∗f is finite.
A key estimate is the fact that T∗f(x) ≤ Cf (1+ |x|)−n for all f ∈ C∞

c , where
Cf depends on f . Then

(W 1/pT )∗f(x) ≤ C‖W‖1/p(1 + |x|)−n.

There are many ways to show that the expression on the right-hand side is
in Lq, all exploiting the fact that ‖W‖ is a scalar Ap weight. One possibility
is to choose any nontrivial (scalar) function φ ≥ 0 ∈ C∞

c . We have shown
in Theorem 3.2 that ‖W‖1/pM(‖W‖−1/pφ) ∈ Lq whenever |p− q| < δ.

On the other hand, C(1 + |x|)−n ≤ M(‖W‖−1/pφ), which completes the
proof. �

5. The main theorem.

Theorem 5.1. Let T be a linear operator whose associated convolution ker-
nel K(x) satisfies the hypotheses in (1), and which acts separately on each
coordinate function of f (in other words, (Tf)j = Tfj). Let W be a matrix
Ap weight.

There exists δ > 0 such that W 1/pTW−1/p is a bounded operator on
Lq(Rn;Cd) whenever |q − p| < δ.

Proof. As in the scalar case, the truncated operators Tε possess a weak
limit T0, and T = T0 + A, where A is a bounded pointwise multiplier. In
dimensions d > 1, A = A(x) is a matrix-valued function, but the hypothesis
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(Tf)j = Tfj requires A(x) to be a scalar L∞ function multiplied by the
identity matrix.

The function W 1/p T W−1/p g is dominated pointwise by g and
(W 1/pT )∗(W−1/pg), as in Equation (8):

|W 1/pTW−1/pg(x)| = |W 1/pT0W
−1/pg(x) + A(x)g(x)|

≤ |(W 1/pT )∗(W−1/pg)(x)|+ C|g(x)|.

The triangle inequality for Lq-norms immediately yields the result

∥∥W 1/pTW−1/pg
∥∥

Lq ≤
∥∥(W 1/pT )∗W−1/pg

∥∥
Lq + C‖g‖Lq .(24)

For all g such that W−1/pg ∈ C∞
c , the right-hand side is controlled by

‖g‖Lq . Observe that W q/p is a locally integrable matrix-valued function.
Then C∞

c (Rn;Cd) is a dense subset of Lq(W q/p). The map f ∈ Lq(W q/p) →
g = W 1/pf ∈ Lq(dx) is an invertible isometry, so its image W 1/p(C∞

c ) is
dense in Lq. Thus the boundedness of W 1/pTW−1/p may then be extended
to all functions g ∈ Lq(Rn;Cd), |p− q| < δ. �

A converse statement, with some minor modifications, is also true.

Theorem 5.2. Suppose that T is a convolution operator as above, with the
additional nondegeneracy hypothesis that there exists some unit vector u ∈
Rn such that |K(ru)| ≥ a|r|−n, all r ∈ R \ {0}. If T is a bounded operator
on Lp(W ), then W is an Ap weight.

In order to prove this theorem we first need a result about integral oper-
ators with bounded and compactly supported kernels:

Proposition 5.3. Let S be an integral operator Sf(x) =
∫
Rn S(x, y)f(y)

whose (scalar) kernel S(x, y) is supported in B × B and satisfies the bound
|S(x, y)| ≤ |B|−1 for all (x, y) ∈ B ×B.

The norm of S as an operator on Lp(W ) is less than Cd‖VBV ′
B‖, where Cd

is a dimensional constant independent of the particular choice of S. In the
special case S0(x, y) = |B|−1χB×B, the operator norm of S0 is also greater
than C−1

d ‖VBV ′
B‖.

Proof. This is a straightforward calculation similar to those found in Sec-
tion 2. Let f be any function in Lp(W ). We first estimate the size of



216 MICHAEL GOLDBERG

W 1/p(x)Sf(x) pointwise for each x.

|W 1/p(x)Sf(x)| =
∣∣∣∣W 1/p(x)

∫
B

S(x, y)f(y) dy

∣∣∣∣
=
∣∣∣∣∫

B
S(x, y)W 1/p(x)f(y) dy

∣∣∣∣
≤ |B|−1

∫
B
|W 1/p(x)f(y)|dy

≤ |B|−1

(∫
B

∥∥W 1/p(x)W−1/p(y)
∥∥p′

dy

)1/p′

· ‖f‖Lp(W ).

As in Section 2, we now introduce an orthonormal basis of vectors ei span-
ning Cd. (∫

B
‖W 1/p(x)W−1/p(y)‖p′dy

)1/p′

≤

(∫
B

(
d1/2 sup

i
|W−1/p(y)W 1/p(x)ei|

)p′

dy

)1/p′

≤ d1/2

(
d∑

i=1

∫
B
|W−1/p(y)W 1/p(x)ei|p

′
dy

)1/p′

≤ Cd

(
d∑

i=1

|B| · |V ′
BW 1/p(x)ei|p

′

)1/p′

≤ Cd|B|1/p′‖V ′
BW 1/p(x)‖

which leads to the estimate

|W 1/p(x)Sf(x)| ≤ Cd|B|−1/p‖V ′
BW 1/p(x)‖ · ‖f‖Lp(W ).

Then for all ‖f‖Lp(W ) ≤ 1, it follows that

‖Sf‖Lp(W ) ≤ C

(
|B|−1

∫
B
‖V ′

BW 1/p(x)‖pdx

)1/p

(25)

≤ Cd

(
|B|−1

∫
B

(
d1/2 sup

i
|W 1/p(x)V ′

Bei|
)p)1/p

≤ Cd

(∑
i

|B|−1

∫
B
|W 1/p(x)V ′

Bei|p
)1/p

∼ Cd

(∑
i

|VBV ′
Bei|p

)1/p

≤ Cd‖VBV ′
B‖.
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The second assertion is a restatement of Proposition 2.1. �

Proof of Theorem 5.2. First, let ε > 0 be small enough so that 2ε + ε2 <
1
2C−2

d . There exists a number t0 < ∞ such that

|K(v)−K(rt0u)| ≤ ε|K(rt0u)| whenever v ∈ B(rt0u, 2r), all r ∈ R \ {0}.
(26)

This is seen to be true because |K(rt0u)| ≥ a
tn0 |r|n

but |∇K(x)| ≤ C
tn+1
0 rn+1

for all x ∈ B(rt0u, r). It suffices to choose t0 > 2C
εa .

Let B denote the ball B(y, r) in Rn, and B′ the translated ball B′ =
B(y + rt0u, r). We wish to consider the operator SB defined by

SBf = χBT
(
χB′T (χBf)

)
.

This is an integral operator whose kernel

SB(x, y) = χB×B

∫
B′

K(x− z)K(z − y) dz

is supported in B×B. If T acts boundedly on Lp(W ), so too does SB with
operator norm less than or equal to ‖T‖2.

The restrictions
{
x, y ∈ B, z ∈ B′} guarantee that z − y ∈ B(rt0u, 2r)

and x− z ∈ B(−rtou, 2r). Thus the values of K(z− y) and K(x− z) do not
vary much over the region of integration. Using the bounds established in
(26), we rewrite SB(x, y) as the sum of a characteristic function and a small
remainder:

SB(x, y) = |B|K(rt0u)K(−rt0u)χB×B + S1(x, y),(27)

where |S1(x, y)| ≤ 1
2C−2

d |B| · |K(rt0u)K(−rt0u)|.
According to Proposition 5.3, the first term corresponds to an operator

with norm at least C‖VBV ′
B‖. In terms of other constants, C is proportional

to a2t−2n
0 C−1

d . The operator corresponding to the second term has norm no
more than half as great. It follows that ‖SB‖ ≥ 1

2C‖VBV ′
B‖. Then

‖VBV ′
B‖ ≤ 2C−1‖SB‖ ≤ 2C−1‖T‖2 < ∞(28)

for all balls B ⊂ Rn, and W is an Ap weight. �

Corollary 5.4. If W is a matrix Ap weight, there exists δ > 0 such that
W q/p is an Aq weight whenever |q − p| < δ. In other words, an Ap metric
is also an Aq metric for all |q − p| < δ.

Remarks. We could have proven this statement directly in Section 2, using
the reverse Hölder inequality to show that operators f → χB

1
|B|
∫
B f dx

are uniformly bounded on Lq(W q/p). To do so would have added another
computation without simplifying the subsequent discussion in any way.
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Recall that a matrix weight W ∈ Ap if and only if the averaging operators
AB defined by

ABf = χB
1
|B|

∫
B

f dx

are uniformly bounded on Lp(W ). An equivalent statement is that the con-
jugated operators W 1/pABW−1/p are uniformly bounded on the unweighted
space Lp(Cd). It is trivial to observe that AB are uniformly bounded on
L∞(Cd) with norm 1. By interpolation on the analytic family of operators1{

W (1−z)/pABW (z−1)/p, 0 ≤ Re(z) ≤ 1
}

we find that W 1/rABW−1/r are uniformly bounded on Lr(dx) for all r > p,
leading to another result well-known in the scalar case:

Proposition 5.5. If W is a matrix Ap weight, then W is also a matrix Ar

weight for all r > p.

One crucial difference must be noted. We cannot use the reverse Hölder
inequality in this setting to extend the range of exponents to r > p − δ. If
we could, then by Corollary 5.4 and Proposition 5.5 for each weight W ∈ Ap

there would exist numbers r < q < p such that W q/r ∈ Aq ⊂ Ap. Instead,
counterexamples are known; in [1] a matrix A2 weight W is constructed for
which W s 6∈ A2 for any s > 1.

On a speculative note, perhaps this (suspected) lack of self-improvement
is related to the absence of a unifying matrix A∞ class whose elements are
all contained in some Ap with p finite. We do not claim to have proven
anything here, nor have we investigated thoroughly the union of the Ap-
weight classes in search of a common A∞ property. It has been suggested
[25] that the scalar A∞ condition generalizes instead to an entire spectrum
of Ap,∞ conditions, one for each exponent p, in the matrix setting.

6. The case d = ∞.

Most of the estimates in the preceding discussion fail when the dimension d
is infinite. Banach space norms may not be representable by matrices, and
traces (when defined at all) are no longer comparable to operator norms.
Most importantly, the main theorem is false. Gillespie et al. [9] have con-
structed operator A2 weights W for which the Hilbert Transform is un-
bounded on L2(W ).

The test function f in their counterexample is constructed out of Haar
functions on different length-scales, with the signs chosen so that each new
piece contributes positively to the overall L2(W ) norm of Tf . Linearity of
T is needed to ensure that the whole of Tf will be equal to the sum of the

1Following [16], with the slight modification Fz(ψ) = |ψ|
α(z)

α
−1ψ.
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various parts, and also to bound from below an expectation over choices
of signs. When applied to merely sublinear operators such as a maximal
function, the argument is less successful. We do not presently know if the
Hardy-Littlewood maximal operator Mw is bounded or not.
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