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QUANTUM LENS SPACES AND GRAPH ALGEBRAS

Jeong Hee Hong and Wojciech Szymański

We construct the C∗-algebra C(Lq(p;m1, . . . ,mn)) of con-
tinuous functions on the quantum lens space as the fixed point
algebra for a suitable action of Zp on the algebra C(S2n−1

q ),
corresponding to the quantum odd dimensional sphere. We
show that C(Lq(p;m1, . . . ,mn)) is isomorphic to the graph

algebra C∗
(
L

(p;m1,...,mn)
2n−1

)
. This allows us to determine the

ideal structure and, at least in principle, calculate the K-
groups of C(Lq(p;m1, . . . ,mn)). Passing to the limit with
natural imbeddings of the quantum lens spaces we construct
the quantum infinite lens space, or the quantum Eilenberg-
MacLane space of type (Zp, 1).

0. Introduction.

Classical lens spaces L(p;m1, . . . ,mn) are defined as the orbit spaces of
suitable free actions of finite cyclic groups on odd dimensional spheres (e.g.,
see [13]). In the present article, we define and investigate their quantum
analogues. The C∗-algebras of continuous functions on the quantum lens
spaces were introduced earlier by Matsumoto and Tomiyama in [18], but our
construction leads to different (in general) algebras. (The very special case of
the quantum 3-dimensional real projective space was investigated by Podleś
[20] and Lance [17], in the context of the quantum SO(3) group.) The
starting point for us is the C∗-algebra C(S2n−1

q ), q ∈ (0, 1), of continuous

functions on the quantum odd dimensional sphere. If n = 2 then C(S3
q )

is nothing but C(SUq(2)) of Woronowicz [27]. The construction in higher
dimensions is due to Vaksman and Soibelman [26], and from a somewhat
different perspective to Nagy [19]. (See also the closely related construction
of representations of the twisted canonical commutation relations due to
Pusz and Woronowicz [21].) We define the C∗-algebra C(Lq(p;m1, . . . ,mn))
of continuous functions on the quantum lens space as the fixed point algebra
for a suitable action of the finite cyclic group Zp on C(S2n−1

q ). This definition
depends on the deformation parameter q ∈ (0, 1), as well as on positive
integers p ≥ 2 andm1, . . . ,mn. We normally assume that each ofm1, . . . ,mn

is relatively prime to p. On the classical level, this guarantees freeness of
the action. In the special case p = 2, m1 = · · · = mn = 1 we recover
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quantum odd dimensional real projective spaces, defined and investigated
in our earlier article [11].

The key technical result on which this article depends is Theorem 4.4
of [11], which gives an explicit isomorphism between C(S2n−1

q ) and the
C∗-algebra C∗(L2n−1) corresponding to the directed graph L2n−1. Thus,
C(Lq(p;m1, . . . ,mn)) is isomorphic to the fixed point algebra C∗(L2n−1)Λ,
corresponding to a suitable action Λ : Zp → Aut(C∗(L2n−1)). This allows
us to employ in our investigations of the quantum lens spaces the huge and
comprehensive machinery developed for dealing with Cuntz-Krieger algebras
of directed graphs (cf. [6, 5, 16, 12, 15, 14, 2, 9, 24, 10, 22, 25, 1] and
references there).

In order to understand the fixed point algebra C∗(L2n−1)Λ we first look
at the crossed product C∗(L2n−1)oΛZp. By virtue of the results of [14] this
crossed product itself is isomorphic to the C∗-algebra of the skew product
graph L2n−1 ×c Zp, corresponding to a suitable labelling c of the edges of
L2n−1 by elements of Zp. The action Λ is saturated and, hence, C∗(L2n−1)Λ

is isomorphic to a full corner of C∗(L2n−1×c Zp). This allows us, at least in
principle, to calculate the K-groups of C(Lq(p;m1, . . . ,mn)).

Our main result, Theorem 2.5, shows that C(Lq(p;m1, . . . ,mn)) itself is

isomorphic to the graph algebra C∗
(
L

(p;m1,...,mn)
2n−1

)
, corresponding to a fi-

nite graph L
(p;m1,...,mn)
2n−1 . As a corollary, we easily deduce the ideal structure

of C(Lq(p;m1, . . . ,mn)). We believe that on the basis of Theorem 2.5 one
should be able to determine isomorphisms between the C∗-algebras of con-
tinuous functions on the quantum lens spaces, but this work is not carried
in the present article.

1. Preliminaries.

1.1. Definition. We recall the definition of the C∗-algebra corresponding
to a directed graph [9]. Let E = (E0, E1, r, s) be a directed graph with
(at most) countably many vertices E0 and edges E1, and range and source
functions r, s : E1 → E0, respectively. C∗(E) is, by definition, the universal
C∗-algebra generated by families of projections {Pv | v ∈ E0} and partial
isometries {Se | e ∈ E1}, subject to the following relations:

(G1) PvPw = 0 for v, w ∈ E0, v 6= w.
(G2) S∗eSf = 0 for e, f ∈ E1, e 6= f .
(G3) S∗eSe = Pr(e) for e ∈ E1.

(G4) SeS
∗
e ≤ Ps(e) for e ∈ E1.

(G5) Pv =
∑

e∈E1: s(e)=v

SeS
∗
e for v ∈ E0, provided {e ∈ E1 | s(e) = v} is finite

and nonempty.
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Universality in this definition means that if {Qv | v ∈ E0} and {Te | e ∈ E1}
are families of projections and partial isometries, respectively, satisfying
Conditions (G1)–(G5), then there exists a C∗-algebra homomorphism from
C∗(E) to the C∗-algebra generated by {Qv | v ∈ E0} and {Te | e ∈ E1}
such that Pv 7→ Qv and Se 7→ Te for v ∈ E0, e ∈ E1.

It follows from the universal property that there exists the gauge action
γ : T→ Aut(C∗(E)) such that γt(Pv) = Pv and γt(Se) = tSe, for all v ∈ E0,
e ∈ E1, t ∈ T.

1.2. K-theory. The K-theory of a graph algebra C∗(E) can be calculated
as follows: Let VE be the collection of all those vertices which are not sinks
and emit finitely many edges, and let ZVE and ZE0 be free abelian groups
on free generators VE and E0, respectively. We have

K0(C∗(E)) ∼= coker(KE),

K1(C∗(E)) ∼= ker(KE),

where KE : ZVE → ZE0 is the map defined on generators as

KE(v) =

 ∑
e∈E1: s(e)=v

r(e)

− v.
(See [5, Proposition 3.1], [16, Corollary 6.12], [22, Theorem 3.2], [24, Propo-
sition 2] and [7, Theorem 3.1].)

1.3. Ideals. We assume that E is a row-finite graph (i.e., each vertex of
E emits only finitely many edges) without sinks, since this is all we need
in the present article. At first we describe closed 2-sided ideals of C∗(E)
invariant under the gauge action, as well as the corresponding quotients
[5, 12, 16, 2, 1, 10]. To this end we consider hereditary and saturated
subsets of E0. A subset X ⊆ E0 is hereditary and saturated if the following
two conditions are satisfied:

(HS1) If v ∈ X, w ∈ E0 and there exists a path from v to w then w ∈ X.

(HS2) If v ∈ E0 and for each e ∈ E1 with s(e) = v we have r(e) ∈ X, then
v ∈ X.

We denote by ΣE the collection of all hereditary and saturated subsets
of E0. Any hereditary and saturated set X gives rise to a gauge invariant
ideal generated by {Pv | v ∈ X} and denoted JX . The quotient C∗(E)/JX is
naturally isomorphic to C∗(E/X), where E/X denotes the restriction of the
graph E to E0 \X. There exists a bijection between ΣE and the collection
of all gauge invariant ideals of C∗(E), given by the following two maps:

X 7→ JX , J 7→ {v ∈ E0 | Pv ∈ J}.
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We now turn to the description of primitive ideals of the graph algebra
C∗(E) corresponding to a row-finite graph E with no sinks [12, 16, 2, 1, 10].
Key objects used in the classification of primitive ideals of graph algebras
are maximal tails, defined as follows: A nonempty subset M ⊆ E0 is called
a maximal tail if the following three conditions are satisfied:

(MT1) If v ∈ E0, w ∈M and there is a path in E from v to w then v ∈M .

(MT2) If v ∈ M then there exists an edge e ∈ E1 such that s(e) = v and
r(e) ∈M .

(MT3) For any v, w ∈ M there is a y ∈ M such that there exist paths in E
from v to y and from w to y.

The collection M(E) of all maximal tails is a disjoint union of its two
subcollections Mγ(E) and Mτ (E), defined as follows: A maximal tail M
belongs to Mγ(E) if and only if every vertex simple loop (e1, e2, . . . , ek)
(where ei ∈ E1, r(ei) = s(ei+1), r(ek) = s(e1) and r(ei) 6= r(ej) for
i 6= j) whose all vertices s(ei) belong to M has an exit e ∈ E1 (that is,
s(e) ∈ {s(e1), . . . s(ek)} but e 6∈ {e1, . . . , ek}) with r(e) ∈ M . Otherwise M
belongs to Mτ (E). It can be shown that each maximal tail from Mγ(E)
gives rise to a primitive ideal of C∗(E) invariant under the gauge action,
and each maximal tail from Mτ (E) gives rise to a circle of primitive ideals
none of which is invariant under the gauge action. Let Prim(C∗(E)) denote
the set of all primitive ideals of C∗(E). If E is a finite graph with no sinks
then there exists a bijection

Mγ(E) ∪ (Mτ (E)× T)↔ Prim(C∗(E)).

A complete description of the closure operation in the hull-kernel topology
is also available. See [12, 16, 2, 1, 10] for the details.

We finish this section with the following lemma, which will be needed
in the proof of Theorem 2.5. Recall that a closed 2-sided ideal J of a C∗-
algebra A is essential if and only if for each nonzero element a of A we have
aJ 6= {0}.

Lemma 1.1. If E is a row-finite graph and X 6= ∅ is a hereditary and
saturated subset of E0 then JX is an essential ideal of C∗(E) if and only if
for each vertex v ∈ E0 \X there exists a path in E from v to a vertex in X.

Proof. Suppose that for each vertex v ∈ E0 \ X there exists a path in E
from v to a vertex in X. With the gauge action γ : T → Aut(C∗(E)), the
formula Γ(b) =

∫
t∈T γt(b)dt (the integration with respect to the normalized

Haar measure) defines a faithful conditional expectation from C∗(E) onto
the fixed point algebra C∗(E)γ . Let a 6= 0 be an element of C∗(E) and let
J ′ be the closed 2-sided ideal of C∗(E) generated by Γ(a∗a). Since J ′ is a
nonzero gauge invariant ideal there exists a vertex v ∈ E0 such that Pv ∈ J ′
(cf. [2, Theorem 4.1]). If α is a path from v to a vertex in X then Sα ∈ JX
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and PvSα 6= 0. Consequently, {0} 6= Γ(a∗a)JX =
(∫
t∈T γt(a

∗a)dt
)
JX . Thus,

there exists a t ∈ T such that γt(a
∗a)JX 6= {0}. Since γt(JX) = JX this

implies aJX 6= {0}. Therefore, the ideal JX is essential, as required. The
converse implication is trivial. �

1.4. Quantum odd dimensional spheres. For n = 1, 2, . . . and q ∈
(0, 1) the C∗-algebra C(S2n−1

q ) of continuous functions on the quantum

sphere S2n−1 is given in [26] as the universal C∗-algebra generated by ele-
ments z1, z2, . . . , zn, subject to the following relations:

zjzi = qzizj for i < j,(1)

z∗j zi = qziz
∗
j for i 6= j,(2)

z∗i zi = ziz
∗
i + (1− q2)

∑
j>i

zjz
∗
j for i = 1, . . . , n,(3)

n∑
i=1

ziz
∗
i = I.(4)

It is shown in [11, Theorem 4.4] that the C∗-algebra C(S2n−1
q ) is isomor-

phic with a graph algebra C∗(L2n−1). The graph L2n−1 has n vertices
{v1, . . . , vn} and n(n+ 1)/2 edges

⋃n
i=1{ei,j | j = i, . . . , n} with s(ei,j) = vi

and r(ei,j) = vj . It is a finite graph without sinks. For example, if n = 3
then the corresponding graph L5 looks as follows:
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The isomorphism φ : C(S2n−1
q ) → C∗(L2n−1) is given explicitly on the

generators as

φ : zn 7→
∑

k1,...,kn−1∈N
qk1+···+kn−1T (k1, . . . , kn−1)Sen,nT (k1, . . . , kn−1)∗,(5)

φ : zi 7→
∑

k1,...,ki∈N
qk1+···+ki−1

(√
1− q2(ki+1) −

√
1− q2ki

)
×(6)

× T (k1, . . . , ki)

 n∑
j=i

Sei,j

T (k1, . . . , ki)
∗,
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for i = 1, . . . , n− 1. Here for k1, . . . , ki ∈ N we denoted

(7) T (k1, . . . , ki) =

 n∑
j=1

Se1,j

k1 n∑
j=2

Se2,j

k2

. . .

 n∑
j=i

Sei,j

ki

,

an element of C∗(L2n−1).

2. Quantum lens spaces.

We begin by recalling the definition of the classical lens spaces [13]. Namely,
for n = 1, 2, . . . let S2n−1 = {(y1, . . . , yn) ∈ Cn |

∑n
i=1 |yi|2 = 1} be

the sphere of dimension 2n − 1. We fix an integer p ≥ 2 and n integers
m1, . . . ,mn. If θ = e2πi/p then

(8) (y1, . . . , yn) 7→ (θm1y1, . . . , θ
mnyn)

is a homeomorphism of S2n−1 which gives rise to an action of Zp, the cyclic
group of order p, on S2n−1. The (generalized) lens space L(p;m1, . . . ,mn)
of dimension 2n − 1 is defined as the orbit space of this action. It is nor-
mally assumed that each of m1,m2, . . . ,mn is relatively prime to p. This
assumption is equivalent to freeness of the action (8).

We now turn to the quantum case. With the sole exception of Lemma 2.1,
we always assume that each of m1,m2, . . . ,mn is relatively prime to p. The
universal property of C(S2n−1

q ) implies that the assignment

(9) Λ̃ : zi 7→ θmizi,

for i = 1, . . . , n, gives rise to an automorphism Λ̃ of C(S2n−1
q ) of order p.

For q ∈ (0, 1) we define the C∗-algebra C(Lq(p;m1, . . . ,mn)) of continuous
functions on the quantum lens space as the fixed point algebra corresponding
to this automorphism, i.e.,

(10) C(Lq(p;m1, . . . ,mn)) = C(S2n−1
q )Λ̃.

Let φ : C(S2n−1
q )→ C∗(L2n−1) be the isomorphism given by (5)-(6). Setting

Λ = φΛ̃φ−1 we get

Λ : Pvi 7→ Pvi ,(11)

Λ : Sei,j 7→ θmiSei,j ,(12)

for i = 1, . . . , n and j = i, . . . , n. This gives

(13) C(Lq(p;m1, . . . ,mn)) = C(S2n−1
q )Λ̃ ∼= C∗(L2n−1)Λ.

Actions of this type have been studied by Kumjian and Pask [14]. Let
c : L1

2n−1 → Zp be a labeling of the edges of L2n−1 such that c(Sei,j ) = mi.
The skew product graph L2n−1 ×c Zp is defined so that its vertices are
L0

2n−1 × Zp and its edges are L1
2n−1 × Zp with s(ei,j ,m) = (vi,m−mi) and
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r(ei,j ,m) = (vj ,m), for m ∈ Zp, i = 1, . . . , n and j = i, . . . , n. We note that
through each vertex of this graph passes precisely one vertex simple loop
(composed of p edges), and for any two vertices (vi,m), (vj , k) there exists
a path from (vi,m) to (vj , k) if and only if i ≤ j. For example, if n = 2,
p = 3, m1 = 1 and m2 = 2 then L3 ×c Z3 looks as follows:
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By virtue of [14, Corollary 2.5] there exists a C∗-algebra isomorphism

(14) C∗(L2n−1 ×c Zp) ∼= C∗(L2n−1)×Λ Zp.

Let U be a unitary in C∗(L2n−1)×Λ Zp such that Up = I and UxU∗ = Λ(x)

for all x ∈ C∗(L2n−1). For m = 0, 1, . . . , p − 1 let Qm = 1
p

∑p−1
i=0 θ

imU i be

the spectral projection of U . The isomorphism (14) is given explicitly by

P(vi,m) 7→ PviQm,(15)

S(ei,j ,m) 7→ Sei,jQm,(16)

for i = 1, . . . , n, j = i, . . . , n and m = 0, . . . , p− 1.
We have

(17) Q0(C∗(L2n−1)×Λ Zp)Q0 = C∗(L2n−1)ΛQ0,

and the map C∗(L2n−1)Λ → C∗(L2n−1)ΛQ0, x 7→ xQ0, is a C∗-algebra
isomorphism. On the other hand, the isomorphism (14) (cf. Formulae (15)
and (16)) identifies Q0 =

∑n
i=1 PviQ0 with the projection

∑n
i=1 P(vi,0) in

C∗(L2n−1 ×c Zp). Consequently, there is a C∗-algebra isomorphism

(18) C(Lq(p;m1, . . . ,mn)) ∼=

(
n∑
i=1

P(vi,0)

)
C∗(L2n−1×c Zp)

(
n∑
i=1

P(vi,0)

)
.

In the following lemma we only require that m1 be relatively prime to
p and no assumptions on the remaining parameters m2, . . . ,mn are made
whatever. The lemma says that if m1 is relatively prime to p then the action
Λ is saturated, as expected.

Lemma 2.1. If m1 is relatively prime to p then for each vertex (vk,m)
there exists a path in L2n−1 ×c Zp from (v1, 0) to (vk,m). Thus, Formula
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(18) gives an isomorphism between the C∗-algebra C(Lq(p;m1, . . . ,mn)) and
a full corner of C∗(L2n−1 ×c Zp).

Proof. Let k ∈ {1, . . . , n}, m ∈ Zp, and let r be a positive integer such that
rm1 = m in Zp. Then

((e1,1,m1), (e1,1, 2m1), . . . , (e1,1, (r − 2)m1), (e1,1, (r − 1)m1), (e1,k, rm1))

is the desired path. Consequently,

S(e1,1,m1)S(e1,1,2m1) . . . S(e1,1,(r−2)m1)S(e1,1,(r−1)m1)S(e1,k,rm1)

is a partial isometry in C∗(L2n−1 ×c Zp) whose domain projection equals
P(vk,m) and whose range projection is majorized by P(v1,0). Thus all projec-
tions P(vk,m), k = 1, . . . , n, m ∈ Zp, belong to the ideal of C∗(L2n−1 ×c Zp)
generated by

∑n
i=1 P(vi,0). Since I =

∑n
k=1

∑
m∈Zp P(vk,m) in C∗(L2n−1 ×c

Zp), Formula (18) implies that the C∗-algebra C(Lq(p;m1, . . . ,mn)) is iso-
morphic to a full corner of C∗(L2n−1 ×c Zp), as claimed. �

Lemma 2.1 implies that C(Lq(p;m1, . . . ,mn)) and C∗(L2n−1 ×c Zp) are
strongly Morita equivalent [23, Chapter 3]. Consequently, the K-groups of
these two C∗-algebras are isomorphic [4, 8]. In order to calculate the K-
groups of C∗(L2n−1 ×c Zp) we assume that each of m1, . . . ,mn is relatively
prime to p. For short, we write Φ for the map KL2n−1×cZp which deter-
mines these K-groups (cf. Section 1.2). Thus, the K0 and K1 groups of
C∗(L2n−1 ×c Zp) are isomorphic to the cokernel and kernel, respectively, of
the endomorphism Φ of the free abelian group with a basis (L2n−1 ×c Zp)0,
given by

(19) Φ : (vi,m) 7→

 n∑
j=i

(vj ,m+mi)

− (vi,m).

Proposition 2.2. If each of m1, . . . ,mn is relatively prime to p then

K1(C(Lq(p;m1, . . . ,mn))) ∼= Z.

Proof. By Lemma 2.1 it sufficies to calculate the K1-group of C∗(L2n−1 ×c
Zp), which is isomorphic to the kernel of the map Φ from (19). Let λmi ∈ Z,
for i = 1, . . . , n and m ∈ Zp, be such that Φ(

∑n
i=1

∑
m∈Zp λ

m
i (vi,m)) = 0.

This can only happen if
∑i

j=1 λ
m−mj
j = λmi for each i ∈ {1, . . . , n} and m ∈

Zp. Setting i = 1, we get λm1 = λ0
1 for all m ∈ Zp, because m1 is relatively

prime to p. Then, considering i = 2, we get λ0
1+λm−m2

2 = λm2 for all m ∈ Zp.
Summing this identity over m we see that λ0

1 = 0. Consequently, λm2 = λ0
2

for all m ∈ Zp. Again, we use here the fact that m2 is relatively prime to
p. Continuing inductively in this manner we get λmi = 0 for i = 1, . . . , n− 1
and λmn = λ0

n for m ∈ Zp. Thus, the kernel of Φ is isomorphic to Z, as
claimed. �
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It is also possible to calculate the cokernel of the map Φ and, therefore,
the K0 group of C(Lq(p;m1, . . . ,mn)). This is a simple matter if n = 2, and
we get

K0(C(Lq(p;m1,m2))) ∼= Z⊕ Zp,
similarly to the result of Matsumoto and Tomiyama [18]. However, if n ≥ 3
then the calculation becomes a bit more elaborate. We illustrate with a
particular case.

Proposition 2.3. If n = 3, m2 = m3 and both m1 and m2 are relatively
prime to p then

K0(C(Lq(p;m1,m2,m3))) ∼=
{

Z⊕ Z2p ⊕ Z p
2

if p is even,

Z⊕ Zp ⊕ Zp if p is odd.

Proof. We must determine the cokernel of Φ. It is easy to see that {(vi, 0) |
i = 1, 2, 3} together with the range of Φ generate the entire group Z(L5 ×c
Zp)0. Now let di, λ

m
i ∈ Z, for i = 1, 2, 3 and m ∈ Zp, be such that

Φ(
∑3

i=1

∑
m∈Zp λ

m
i (vi,m)) =

∑3
i=1 di(vi, 0). This is equivalent to

di =

 i∑
j=1

λ
−mj
j

− λ0
i ,(20)

0 =

 i∑
j=1

λ
m−mj
j

− λmi , for m 6= 0.(21)

If i = 1 then (21) gives λm1 = λ0
1 for all m ∈ Zp and then d1 = 0 by

(20). If i = 2 then substituting m = km2 in (21), with k = 1, . . . , p− 1, we

get λkm2
2 = kλ0

1 + λ0
2 for all k = 0, . . . , p − 1. Then (20) yields d2 = pλ0

1.
If i = 3 then substituting m = km2 in (21), with k = 1, . . . , p − 1, we

get λkm2
3 = k(k+1)

2 λ0
1 + kλ0

2 + λ0
3 for all k = 0, . . . , p − 1. Then (20) yields

d3 = p(p+1)
2 λ0

1 + pλ0
2. Thus, (v1, 0) has infinite order in the cokernel. If p is

even then (v2, 0) and 2(v2, 0) + (v3, 0) generate a subgroup of the cokernel
isomorphic to Z2p ⊕ Z p

2
. If p is odd then (v2, 0) and (v3, 0) generate a

subgroup of the cokernel isomorphic to Zp ⊕ Zp. �

We now show that C(Lq(p;m1, . . . ,mn)) itself is isomorphic to a graph

algebra. The following construction of the graph L
(p;m1,...,mn)
2n−1 and the argu-

ment of Theorem 2.5, below, are similar to [25, Section 4 and Lemma 6].
Again, we assume that each of m1, . . . ,mn is relatively prime to p.

At first we define the graph L
(p;m1,...,mn)
2n−1 , as follows: The vertices of the

graph L
(p;m1,...,mn)
2n−1 are {v1, v2, . . . , vn}. The edges of L

(p;m1,...,mn)
2n−1 consist of

all finite (vertex simple) paths α = ((ei1,j1 , k1), . . . , (eir,jr , kr)) in L2n−1×cZp
such that k1 = mi1 , ka 6= 0 for a 6= r, kr = 0 and (vja , ka) 6= (vjb , kb) for
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a 6= b. The source and range functions are defined as s(α) = vi1 and
r(α) = vjr . We note that this is a finite graph without sinks, through each
vertex there passes precisely one vertex simple loop (composed of a single
edge), and for each pair of vertices vi, vj there exists a path from vi to vj if
and only if i ≤ j. For example, if n = 2, p = 3, m1 = 1 and m2 = 2 then

L
(3;1,2)
3 looks as follows:

L
(3 ; 1,2)
3

• •
..........................

....................
.................

...............
.............
............
.......................................................................................................................................................................................................................................................

.................................
.........................

......................
....

........................ ..................

........................ ..................

...........................
...........
.........
........
........
.......
.......
.......
.......
.......
.......
.......
........
.........
...........

...................
................................................................................................................................................................................. ...........................

...........
.........
........
........
.......
.......
.......
.......
.......
.......
.......
........
.........
...........

...................
.................................................................................................................................................................................

........................ .................. ........................ ..................

v1 v2

The following Lemma 2.4 essentially follows from [25, Lemma 5]. How-
ever, for the sake of completeness and reader’s convenience, we give a self-
contained proof.

Lemma 2.4. If each of m1, . . . ,mn is relatively prime to p then for any
l ∈ {1, . . . , n} and any m ∈ Zp we have

P(vl,m) =
∑
α

S(ei1,j1 ,k1) . . . S(eir,jr ,kr)
S∗(eir,jr ,kr) . . . S

∗
(ei1,j1 ,k1)

(in C∗(L2n−1×cZp)), where the summation extends over all α = ((ei1,j1 , k1),
. . . , (eir,jr , kr)), vertex simple paths in L2n−1×cZp such that i1 = l, k1−mi1=
m, ka 6= 0 for a 6= r, kr = 0 and (vja , ka) 6= (vjb , kb) for a 6= b.

Proof. For ν = 1, 2, . . . we define Aν to be the collection of all vertex simple
paths α = ((ei1,j1 , k1), . . . , (eir,jr , kr)) in L2n−1 ×c Zp such that the length
of α is not greater than ν (and nonzero), i1 = l, k1 −mi1 = m, ka 6= 0 for
a 6= r, kr = 0 and (vja , ka) 6= (vjb , kb) for a 6= b, and let Bν be the collection
of all paths β = ((ei1,j1 , k1), . . . , (eir,jr , kr)) such that the length of β equals
ν, i1 = l, k1 −mi1 = m, ka 6= 0 for a = 1, . . . , r and (vja , ka) 6= (vjb , kb) for
a 6= b. We show, by induction on ν, that

(22) P(vl,m) =
∑
α∈Aν

SαS
∗
α +

∑
β∈Bν

SβS
∗
β.

Indeed, the collection of all edges in L2n−1×cZp with source equal to (vl,m)
is the union of A1 and B1. Thus, (22) holds with ν = 1 by virtue of (G5).
Now suppose (22) holds for some ν. If β = ((ei1,j1 , k1), . . . , (eir,jr , kr)) in Bν ,
then applying Condition (G5) at the range vertex of β, equal to (vjr , kr),
we get

(23) SβS
∗
β = SβP(vjr ,kr)

S∗β =
n∑

d=jr

SβS(ejr,d,kr+mjr )S
∗
(ejr,d,kr+mjr )S

∗
β.
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Let β′ = ((ei1,j1 , k1), . . . , (eir,jr , kr), (ejr,d, kr+mjr)). We claim that (vd, kr+
mjr) 6= (vja , ka) for a = 1, . . . , r. This is obvious if d 6= jr. For d = jr
let b be the smallest index such that jb = jr. Since β is a path we have
jb = jb+1 = · · · = jr and kb+h = kb + hmjb for h = 1, . . . , r − b. Since mjb
is relatively prime to p it follows that kr + mjr 6∈ {kb, . . . , kr}, as claimed.
Thus β′ ∈ (Aν+1 \Aν)∪Bν+1. Consequently, from the inductive hypothesis,
Formula (23) and the above discussion we get

P(vl,m) =
∑
α∈Aν

SαS
∗
α +

∑
β∈Bν

SβS
∗
β

=
∑
α∈Aν

SαS
∗
α +

∑
β′∈(Aν+1\Aν)

Sβ′S
∗
β′ +

∑
β′∈Bν+1

Sβ′S
∗
β′

=
∑

α∈Aν+1

SαS
∗
α +

∑
β∈Bν+1

SβS
∗
β,

and the inductive step follows.
Since L2n−1 ×c Zp is a finite graph there exists a ν large enough so that

Bν = ∅. With this ν Formula (22) gives the lemma. �

Theorem 2.5. If each of the numbers m1, . . . ,mn is relatively prime to p

then the C∗-algebra C(Lq(p;m1, ...,mn)) is isomorphic to C∗
(
L

(p;m1,...,mn)
2n−1

)
.

Proof. At first we observe that there exists a C∗-algebra homomorphism

ψ : C∗
(
L

(p;m1,...,mn)
2n−1

)
→

(
n∑
i=1

P(vi,0)

)
C∗(L2n−1 ×c Zp)

(
n∑
i=1

P(vi,0)

)
such that

ψ : Pvl 7→ P(vl,0),

ψ : Sα 7→ S(ei1,j1 ,k1)S(ei2,j2 ,k2) . . . S(eir,jr ,kr)
,

for all l = 1, . . . , n and for all α = ((ei1,j1 , k1), . . . , (eir,jr , kr)), vertex sim-
ple paths in L2n−1 ×c Zp such that k1 = mi1 , ka 6= 0 for a 6= r, kr =
0 and (vja , ka) 6= (vjb , kb) for a 6= b. Due to the universal property of

C∗
(
L

(p;m1,...,mn)
2n−1

)
, to this end it sufficies to verify that the elements {ψ(Pvl),

ψ(Sα)} of C∗(L2n−1 ×c Zp) satisfy Conditions (G1)–(G5) for the graph

L
(p;m1,...,mn)
2n−1 . But it is obvious that Conditions (G1)–(G4) are satisfied, and

Condition (G5) is equivalent to Lemma 2.4 with m = 0.
For surjectivity of ψ it sufficies to show that:

(i) If α is a path in L2n−1 ×c Zp such that both s(α) and r(α) are in
{(vi, 0) | i = 1, . . . , n} then Sα belongs to the range of ψ.

(ii) If α, β are two paths such that r(α) = r(β) and both s(α) and s(β)
are in {(vi, 0) | i = 1, . . . , n} then SαS

∗
β belongs to the range of ψ.
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To this end we first note that any loop in L2n−1 ×c Zp must pass through
a vertex of the form (vi, 0). Now let α = ((ei1,j1 , k1), . . . , (eir,jr , kr)) be
a path as in (i). Let a1 < a2 < · · · < aν = r be all the indices for
which kat = 0. We also set a0 = 0. For each t = 1, . . . , ν the path
αt = ((ei1+at−1 ,j1+at−1

, k1+at−1), . . . , (eiat ,jat , kat)) is an edge of the graph

L
(p;m1,...,mn)
2n−1 . Hence, Sα = Sα1 . . . Sαν belongs to the range of ψ, since each

Sαt does. Now let α and β be two paths as in (ii). Let α = ((ei1,j1 , k1), . . . ,
(eir,jr , kr)). By virtue of Part (i) it sufficies to consider the case kr 6=
0. Let µ be the greatest index such that kµ = 0, or 0 if such an in-
dex does not exist. We set α1 = ((ei1,j1 , k1), . . . , (eiµ,jµ , kµ)) and α2 =
((eiµ+1,jµ+1 , kµ+1), . . . , (eir,jr , kr)). We have Sα = Sα1Sα2 and Sα1 is in the
range of ψ by Part (i) (if µ = 0 then α1 = ∅ and Sα1 = I). Further-
more, for µ + 1 ≤ a, b ≤ r we have (vja , ka) 6= (vjb , kb) if a 6= b. We have
an analogous factorization Sβ = Sβ1Sβ2 , with Sβ1 in the range of ψ. Let
P(vjr ,kr)

=
∑

x SxS
∗
x be the decomposition as in Lemma 2.4. Then we have

SαSβ = Sα1Sα2P(vjr ,kr)
S∗β2S

∗
β1 =

∑
x

Sα1Sα2SxS
∗
xS
∗
β2S
∗
β1 .

Consequently, SαSβ belongs to the range of ψ, since Sα1 , Sβ1 and all Sα2Sx
and Sβ2Sx do. This completes the proof of surjectivity of ψ.

Now we show that the homomorphism ψ is injective. Our argument is
essentially the same as in [5, Remark 3]. Since for each i ∈ {1, . . . , n − 1}
there exists a path from vi to vn, the ideal J of C∗

(
L

(p;m1,...,mn)
2n−1

)
generated

by Pvn is essential by Lemma 1.1. Thus, it sufficies to show that J∩ker(ψ) =

{0}. To this end, we notice that in the graph L
(p;m1,...,mn)
2n−1 the vertex vn emits

a unique edge, which we call e, and the range of this edge is vn. Since there
are infinitely many paths from other vertices to vn it follows (cf. [15] and
[5, Remark 3]) that

J ∼= PvnJPvn ⊗K = C∗(Se)⊗K ∼= C(T)⊗K.

Hence, in order to prove injectivity of ψ it sufficies to show that C∗(Se) ∩
ker(ψ) = {0}. This follows from the fact that

ψ(Se) = S(en,n,mn)S(en,n,2mn) . . . S(en,n,pmn)

is a partial unitary with full spectrum (cf. [15]). �

With help of Theorem 2.5 it is easy to determine the ideal structure of
C(Lq(p;m1, . . . ,mn)). For example, we have seen in the proof of Theo-

rem 2.5 that the ideal of C∗
(
L

(p;m1,...,mn)
2n−1

)
generated by Pvn is isomorphic

to C(T) ⊗ K. The corresponding quotient is C∗
(
L

(p;m1,...,mn−1)
2n−3

)
, and this

C∗-algebra is in turn isomorphic to C(Lq(p;m1, . . . ,mn−1)). Thus, there
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exists an exact sequence
(24)

0→ C(T)⊗K → C(Lq(p;m1, . . . ,mn))→ C(Lq(p;m1, . . . ,mn−1))→ 0.

Using the exact sequence (24) or the general results about graph algebras,
outlined in Section 1.3, it is easy to understand the primitive spectrum of
C(Lq(p;m1, . . . ,mn)). Therefore, we omit the proof of the following propo-
sition:

Proposition 2.6. If each of m1, . . . ,mn is relatively prime to p then the
primitive ideal space of C(Lq(p;m1, . . . ,mn)) consists of n disjoint copies
C1, . . . , Cn of the circle. The hull-kernel topology restricted to each of the
circles coincides with the natural one. The closure of a point in Ck contains
C1∪· · ·∪Ck−1. Thus, Prim(C(Lq(p;m1, . . . ,mn))) and Prim(C(S2n−1

q )) are
homeomorphic (cf. [11, Section 4.1]).

Concluding remarks. For a fixed integer p ≥ 2 the infinite lens space
L(p;∞) is defined as the inductive limit of the lens spaces L(p; 1n), corre-
sponding to the natural imbeddings L(p; 1n) ↪→ L(p; 1n+1). (If m1 = · · · =
mn = 1 then we simply write L(p; 1n) instead of L(p; 1, . . . , 1).) It turns out
that L(p;∞) is identical with the Eilenberg-MacLane space of type (Zp, 1)
[3].

The results of the previous section lead to quantum versions of this clas-
sical topological setting. Namely, the inclusion L(p; 1n) ↪→ L(p; 1n+1) corre-

sponds to the surjective homomorphism θ̃n+1 :C(Lq(p; 1n+1))→C(Lq(p; 1n))

such that the kernel of θ̃n+1 is generated by zn+1z
∗
n+1. Consequently, the

quantum infinite lens space, or the quantum Eilenberg-MacLane space of
type (Zp, 1), may be defined as the inverse limit

(25) C(Lq(p;∞)) = lim
←−

(C(Lq(p; 1n)), θ̃n).

Under the isomorphisms C(Lq(p; 1k)) ∼= C∗
(
L

(p)
2k−1

)
(if m1 = · · · = mn =

1 then we simply write L
(p)
2n−1 instead of L

(p;1,...,1)
2n−1 ), described in Theorem 2.5,

the homomorphism θ̃n+1 is carried onto a surjective C∗-algebra homomor-

phism θn+1 : C∗
(
L

(p)
2n+1

)
→ C∗

(
L

(p)
2n−1

)
, whose kernel is generated by the

projection Pvn+1 . Thus, we have the C∗-algebra isomorphism

(26) C(Lq(p;∞)) ∼= lim
←−

(
C∗
(
L

(p)
2n−1

)
, θn

)
.

It is not difficult to see, and we omit the details, that this inverse limit

itself may be realized as the graph algebra C∗
(
L

(p)
∞
)

. The graph L
(p)
∞ is the

increasing limit of the graphs L
(p)
2n−1, corresponding to the natural imbed-

dings L
(p)
2n−1 ↪→ L

(p)
2n+1 such that the vi vertex in L

(p)
2n−1 is identified with
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the vi vertex in L
(p)
2n+1, and the edges from vi to vj in L

(p)
2n−1 are bijectively

identified with the edges from vi to vj in L
(p)
2n+1. The graph L

(p)
∞ has in-

finitely many vertices {v1, v2 . . . }, and for each pair i ≤ j there exists at

least one edge from vi to vj . These two properties imply that C∗
(
L

(p)
∞
)

is

a primitive, purely infinite C∗-algebra (but not simple) [1]. Furthermore,

K0

(
C∗
(
L

(p)
∞
))
∼=
⊕∞ Z and K1

(
C∗
(
L

(p)
∞
))

= 0 [22, 7].
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