Pacific Journal of Mathematics

A FREE ENTROPY DIMENSION LEMMA

KENLEY JUNG

Volume 211 No. 2

October 2003

A FREE ENTROPY DIMENSION LEMMA

KENLEY JUNG

For Arlan Ramsay

Suppose M is a von Neumann algebra with normal, tracial state φ and $\{a_1, \ldots, a_n\}$ is a set of self-adjoint elements in M. We provide an alternative uniform packing description of $\delta_0(a_1, \ldots, a_n)$, the modified free entropy dimension of $\{a_1, \ldots, a_n\}$.

In the attempt to understand the free group factors Voiculescu created a type of noncommutative probability theory. One facet of the theory involves free entropy and free entropy dimension, applications of which have answered some old operator algebra questions ([1] and [4]). Roughly speaking, given self-adjoint elements a_1, \ldots, a_n in a von Neumann algebra M with normal, tracial state φ a matricial microstate for $\{a_1, \ldots, a_n\}$ is an *n*-tuple of self-adjoint $k \times k$ matrices which together with the normalized trace, approximate the algebraic behavior of the a_i under φ . Taking a normalization of the logarithmic volume of such microstate sets followed by multiple limiting processes yields a number, $\chi(a_1, \ldots, a_n)$, called the free entropy of $\{a_1, \ldots, a_n\}$. One can think of free entropy as the logarithmic volume of the *n*-tuple. The (modified) free entropy dimension of $\{a_1, \ldots, a_n\}$ is

$$\delta_0(a_1, \dots, a_n) = n + \limsup_{\epsilon \to 0} \frac{\chi(a_1 + \epsilon s_1, \dots, a_n + \epsilon s_n : s_1, \dots, s_n)}{|\log \epsilon|}$$

where $\{s_1, \ldots, s_n\}$ is a semicircular family freely independent with respect to $\{a_1, \ldots, a_n\}$ and $\chi(:)$ is a technical modification of χ (see [4]).

Free entropy dimension was inspired by Minkowski dimension. Recall that for a subset $A \subset \mathbb{R}^d$ the (upper) Minkowski dimension of A is

$$d + \limsup_{\epsilon \to 0} \frac{\log \lambda(\mathcal{N}_{\epsilon}(A))}{|\log \epsilon|}$$

where λ above denotes Lebesgue measure and $\mathcal{N}_{\epsilon}(A)$ is the ϵ -neighborhood of A. Minkowski dimension has an equivalent formulation in terms of uniform packing dimension. The (upper) uniform packing dimension of A is

$$\limsup_{\epsilon \to 0} \frac{\log P_{\epsilon}(A)}{|\log \epsilon|} = \limsup_{\epsilon \to 0} \frac{\log K_{\epsilon}(A)}{|\log \epsilon|}$$

where A is endowed with the Euclidean metric, $P_{\epsilon}(A)$ is the maximum number of elements in a collection of mutually disjoint open ϵ balls of A, and $K_{\epsilon}(A)$ is the minimum number of open ϵ balls required to cover A (the quantities above make sense in the setting of an arbitrary metric space). It is easy to see that the Minkowski dimension and the uniform packing dimension of A are always equal.

In this paper we present a lemma which formulates a similar metric description of δ_0 : Free entropy dimension can be described in terms of packing numbers with balls of equal radius.

The alternative description comes as no surprise in view of both the definition of δ_0 and the techniques in estimations thereof. The proof follows the classical one with the addition of the properties of χ proven in [3] and the strengthened asymptotic freeness results of [5].

1. Preliminaries.

Throughout M is a von Neumann algebra with normal, tracial state φ and $\{a_1, \ldots, a_n\}$ is a set of self-adjoint elements in M. We use the symbols χ and δ_0 to designate the same quantities introduced in [4]. $M_k^{\mathrm{sa}}(\mathbb{C})$ denotes the set of $k \times k$ self-adjoint complex matrices and $(M_k^{\mathrm{sa}}(\mathbb{C}))^n$ is the set of n-tuples with entries in $M_k^{\mathrm{sa}}(\mathbb{C})$. tr_k is the normalized trace on the $k \times k$ complex matrices. $\|\cdot\|_2$ is the inner product norm on $(M_k^{\mathrm{sa}}(\mathbb{C}))^n$ given by the formula $\|(x_1, \ldots, x_n)\|_2^2 = \sum_{i=1}^n k \cdot \mathrm{tr}_k(x_i^2)$ and vol denotes Lebesgue measure with respect to the $\|\cdot\|_2$ norm. For any $k \in \mathbb{N}$ denote by ρ_k the metric on $(M_k^{\mathrm{sa}}(\mathbb{C}))^n$ induced by the norm $k^{-\frac{1}{2}} \cdot \|\cdot\|_2$. For a metric space (X, d) and $\epsilon > 0$ write $P_{\epsilon}(X, d)$ for the maximum number of elements in a collection of mutually disjoint open ϵ balls of X and $K_{\epsilon}(X, d)$ for the minimum number of open ϵ balls required to cover X. Observe that $P_{\epsilon}(X, d) \geq K_{2\epsilon}(X, d) \geq P_{4\epsilon}(X, d)$. Finally for $S \subset X$ denote by $\mathcal{N}_{\epsilon}(S)$ the ϵ -neighborhood of S.

2. The lemma.

Definition 2.1. For any $k, m \in \mathbb{N}$, and $R, \gamma, \epsilon > 0$ define successively

$$\mathbb{P}_{\epsilon,R}(a_1,\ldots,a_n;m,k,\gamma) = P_{\epsilon}(\Gamma_R(a_1,\ldots,a_n;m,k,\gamma),\rho_k),$$

$$\mathbb{P}_{\epsilon,R}(a_1,\ldots,a_n;m,\gamma) = \limsup_{k \to \infty} k^{-2} \cdot \log(\mathbb{P}_{\epsilon,R}(a_1,\ldots,a_n;m,k,\gamma)),$$

$$\mathbb{P}_{\epsilon,R}(a_1,\ldots,a_n) = \inf\{\mathbb{P}_{\epsilon,R}(a_1,\ldots,a_n;m,\gamma) : m \in \mathbb{N}, \gamma > 0\},$$

$$\mathbb{P}_{\epsilon}(a_1,\ldots,a_n) = \sup_{R > 0}\{\mathbb{P}_{\epsilon,R}(a_1,\ldots,a_n)\}.$$

Remark. If $b_1, \ldots, b_p \in M$, then define $\mathbb{P}_{\epsilon}(a_1, \ldots, a_n : b_1, \ldots, b_p)$ to be the quantity obtained by replacing $\Gamma_R(a_1, \ldots, a_n; m, k, \gamma)$ in the definition with $\Gamma_R(a_1, \ldots, a_n : b_1, \ldots, b_p; m, k, \gamma)$. Similarly, we define $\mathbb{K}_{\epsilon}(a_1, \ldots, a_n)$ and

all its associated quantities by replacing P_{ϵ} in the first line of Definition 2.1 with K_{ϵ} . Define $\mathbb{K}_{\epsilon}(a_1, \ldots, a_n : b_1, \ldots, b_p)$ in the same way $\mathbb{P}_{\epsilon}(a_1, \ldots, a_n : b_1, \ldots, b_p)$ was defined.

For any self-adjoint elements $h_1, \ldots, h_n \in M$ denote by $\underline{\chi}(h_1, \ldots, h_n)$ the number obtained by replacing the lim sup in the definition of χ with lim inf. $\mathbb{P}_{\epsilon}(\cdot)$ being a normalized limiting process of the logarithmic microstate space packing numbers we observe just as in the classical case that:

Lemma 2.2. If $\{h_1, \ldots, h_n\}$ is a set of self-adjoint elements in M which is freely independent with respect to $\{a_1, \ldots, a_n\}$ and $\underline{\chi}(h_1, \ldots, h_n) > -\infty$, then

$$n + \limsup_{\epsilon \to 0} \frac{\chi(a_1 + \epsilon h_1, \dots, a_n + \epsilon h_n : h_1, \dots, h_n)}{|\log \epsilon|}$$
$$= \limsup_{\epsilon \to 0} \frac{\mathbb{K}_{\epsilon}(a_1, \dots, a_n)}{|\log \epsilon|}$$
$$= \limsup_{\epsilon \to 0} \frac{\mathbb{P}_{\epsilon}(a_1, \dots, a_n)}{|\log \epsilon|}.$$

Proof. Clearly it suffices to show equality of the first and last expressions above since $P_{\epsilon}(\cdot) \geq K_{2\epsilon}(\cdot) \geq P_{4\epsilon}(\cdot)$. Furthermore, we can assume that $\{a_1, \ldots, a_n\}$ has finite dimensional approximants since the equalities hold trivially otherwise. Set $C = \max\{\|h_i\|\}_{1\leq i\leq n} + 1$. First we show that the free entropy expression is greater than or equal to the \mathbb{P}_{ϵ} expression. Suppose $0 < \epsilon < (C\sqrt{n})^{-1}$, $m \in \mathbb{N}$, with m > n, $1 > \gamma > 0$, and $R > \max\{\|a_i\|\}_{1\leq i\leq n}$.

Corollary 2.14 of [5] provides an $N \in \mathbb{N}$ such that if $k \geq N$ and σ is a Radon probability measure on $((M_k^{\mathrm{sa}}(\mathbb{C}))_{R+1})^{2n}$ (the subset of $(M_k^{\mathrm{sa}}(\mathbb{C}))^{2n}$ consisting of 2*n*-tuples whose entries have operator norm no greater than R+1) invariant under the U_k -action

$$(\xi_1,\ldots,\xi_n,\eta_1,\ldots,\eta_n)\mapsto (\xi_1,\ldots,\xi_n,u\eta_1u^*,\ldots,u\eta_nu^*),$$

then $\sigma(\omega_k) > \frac{1}{2}$ where ω_k is

$$\{(\xi_1, \dots, \xi_n, \eta_1, \dots, \eta_n) \in ((M_k^{sa}(\mathbb{C}))_{R+1})^{2n} : \{\xi_1, \dots, \xi_n\}$$

and $\{\eta_1, \dots, \eta_n\}$ are $(m, \gamma/4^m)$ -free}.

With respect to the ρ_k metric for each k find a collection of mutually disjoint open $C\epsilon\sqrt{n}$ balls of $\Gamma_R(a_1,\ldots,a_n;m,k,\gamma/(8(R+2))^m)$ of maximum cardinality and denote the centers of these balls by $\left\langle \left(x_{1j}^{(k)},\ldots,x_{nj}^{(k)}\right)\right\rangle_{j\in S_k}$. Let μ_k be the uniform atomic probability measure supported on the centers of these balls and let ν_k be the probability measure obtained by restricting vol to $\Gamma_{C\epsilon}(\epsilon h_1,\ldots,\epsilon h_n;m,k,\gamma/8^m)$ and normalizing appropriately. Then $\mu_k \times \nu_k$ is a Radon probability measure on $((M_k^{\mathrm{sa}}(\mathbb{C}))_{R+1})^{2n}$ invariant under the U_k -action described above. So for $k \geq N$ $(\mu_k \times \nu_k)(\omega_k) > \frac{1}{2}$.

For $k \in \mathbb{N}$ and $j \in S_k$ define F_{jk} to be the set of all $(y_1, \ldots, y_n) \in \Gamma_{C\epsilon}(\epsilon h_1, \ldots, \epsilon h_n; m, k, \gamma/8^m)$ such that (y_1, \ldots, y_n) and $(x_{1j}^{(k)}, \ldots, x_{nj}^{(k)})$ are $(m, \frac{\gamma}{4^m})$ -free.

$$\frac{1}{2} < (\mu_k \times \nu_k)(\omega_k) = \sum_{j \in S_k} \frac{1}{|S_k|} \cdot \nu_k(F_{jk})$$
$$= \sum_{j \in S_k} \frac{1}{|S_k|} \cdot \frac{\operatorname{vol}(F_{jk})}{\operatorname{vol}(\Gamma_{C\epsilon}(\epsilon h_1, \dots, \epsilon h_n; m, k, \gamma/8^m))}.$$

It follows that for $k \ge N$

$$\frac{1}{2} \cdot |S_k| \cdot \operatorname{vol}\left(\Gamma_{C\epsilon}(\epsilon h_1, \dots, \epsilon h_n; m, k, \gamma/8^m)\right) < \sum_{j \in S_k} \operatorname{vol}\left(F_{jk}\right).$$

Set $E_{jk} = (x_{1j}^{(k)}, \ldots, x_{nj}^{(k)}) + F_{jk}$. F_{jk} is a set contained in the open ball of ρ_k radius $C\epsilon\sqrt{n}$ centered at $(0, \ldots, 0)$. Thus $\langle E_{jk} \rangle_{j \in S_k}$ is a collection of mutually disjoint sets. So

$$\bigsqcup_{j \in S_k} E_{jk} \subset \Gamma_{R+1}(a_1 + \epsilon h_1, \dots, a_n + \epsilon h_n : \epsilon h_1, \dots, \epsilon h_n; m, k, \gamma).$$

Thus, for any $(C\sqrt{n})^{-1} > \epsilon > 0$, $m \in \mathbb{N}$ sufficiently large, and $1 > \gamma > 0$

$$\begin{split} \chi_{R+1}(a_1 + \epsilon h_1, \dots, a_n + \epsilon h_n : \epsilon h_1, \dots, \epsilon h_n; m, \gamma) \\ &\geq \limsup_{k \to \infty} \left(k^{-2} \cdot \log \left(\operatorname{vol} \left(\bigsqcup_{j \in S_k} E_{jk} \right) \right) + \frac{n}{2} \cdot \log k \right) \\ &\geq \limsup_{k \to \infty} \left[k^{-2} \cdot \log \left(\frac{1}{2} \cdot |S_k| \cdot \operatorname{vol} \left(\Gamma_{C\epsilon}(\epsilon h_1, \dots, \epsilon h_n; m, k, \gamma/8^m) \right) \right) \\ &\quad + \frac{n}{2} \log k \right] \\ &\geq \limsup_{k \to \infty} \left[k^{-2} \cdot \log(|S_k|) \right] \\ &\quad + \liminf_{k \to \infty} \left[k^{-2} \cdot \log(\operatorname{vol} \left(\Gamma_{C\epsilon}(\epsilon h_1, \dots, \epsilon h_n; m, k, \gamma/8^m) \right) \right) + \frac{n}{2} \cdot \log k \right] \\ &\geq \mathbb{P}_{C\epsilon\sqrt{n}, R+1}(a_1, \dots, a_n; m, \gamma/(8(R+2))^m) + \underline{\chi_{C\epsilon}}(\epsilon h_1, \dots, \epsilon h_n) \\ &\geq \mathbb{P}_{C\epsilon\sqrt{n}, R+1}(a_1, \dots, a_n) + n \log \epsilon + \underline{\chi}(h_1, \dots, h_n). \end{split}$$

By the chain of inequalities of the preceding paragraph it follows that

$$\chi(a_1 + \epsilon h_1, \dots, a_n + \epsilon h_n : h_1, \dots, h_n)$$

= $\chi(a_1 + \epsilon h_1, \dots, a_n + \epsilon h_n : \epsilon h_1, \dots, \epsilon h_n)$
 $\geq \mathbb{P}_{C\epsilon\sqrt{n}, R+1}(a_1, \dots, a_n) + n\log\epsilon + \underline{\chi}(h_1, \dots, h_n)$

This being true for R sufficiently large

$$\chi(a_1 + \epsilon h_1, \dots, a_n + \epsilon h_n : h_1, \dots, h_n)$$

$$\geq \mathbb{P}_{C\epsilon\sqrt{n}}(a_1, \dots, a_n) + n\log\epsilon + \underline{\chi}(h_1, \dots, h_n).$$

Dividing by $|\log \epsilon|$ on both sides, taking a lim sup as $\epsilon \to 0$, and adding n to both ends of the inequality above yields

$$n + \limsup_{\epsilon \to 0} \frac{\chi(a_1 + \epsilon h_1, \dots, a_n + \epsilon h_n : h_1, \dots, h_n)}{|\log \epsilon|}$$

$$\geq \limsup_{\epsilon \to 0} \frac{\mathbb{P}_{C\epsilon\sqrt{n}}(a_1, \dots, a_n)}{|\log \epsilon|}$$

$$= \limsup_{\epsilon \to 0} \frac{\mathbb{P}_{\epsilon}(a_1, \dots, a_n)}{|\log \epsilon|}.$$

For the reverse inequality suppose $2 \leq m \in \mathbb{N}$ and $\frac{1}{2(C+1)} > \epsilon > \sqrt{\gamma} > 0$, $R > \max_{1 \leq j \leq n} \{ \|a_j\| \}$. For each $k \in \mathbb{N}$ find an packing by open $\rho_k \epsilon$ -balls of $\Gamma_{R+1}(a_1, \ldots, a_n; m, k, \gamma)$ with maximum cardinality. Denote the set of centers of these balls by Ω_k . Clearly

$$\Gamma_{R+\frac{1}{2},\frac{1}{2}}\left(a_{1}+\epsilon h_{1},\ldots,a_{n}+\epsilon h_{n}:\epsilon h_{1},\ldots,\epsilon h_{n};m,k,\frac{\gamma}{2^{m}}\right)$$
$$\subset \mathcal{N}_{2C\epsilon\sqrt{n}}(\Gamma_{R+1}(a_{1},\ldots,a_{n};m,k,\gamma))$$
$$\subset \mathcal{N}_{4C\epsilon\sqrt{n}}(\Omega_{k})$$

where $\Gamma_{r+\frac{1}{2},\frac{1}{2}}(\cdot)$ denotes the microstate space of 2n-tuples such that the first n entries have operator norms no larger than $r+\frac{1}{2}$ and the last n entries have operator norms no larger than $\frac{1}{2}$ (see [4] for this technical modification). \mathcal{N}_{ϵ} is taken with respect to the metric space $(M_k^{\mathrm{sa}}(\mathbb{C}))^n$ with the ρ_k metric. It follows that $\chi_{R+\frac{1}{2},\frac{1}{2}}(a_1 + \epsilon h_1, \ldots, a_n + \epsilon h_n : \epsilon h_1, \ldots, \epsilon h_n; m, \frac{\gamma}{2^m})$ is dominated by

$$\begin{split} &\limsup_{k \to \infty} \left[k^{-2} \cdot \log(\operatorname{vol}\left(\mathcal{N}_{4C\epsilon\sqrt{n}}(\Omega_k)\right)) + \frac{n}{2} \cdot \log k \right] \\ &\leq \limsup_{k \to \infty} \left[k^{-2} \cdot \log\left(\left|\Omega_k\right| \cdot \frac{\pi^{\frac{nk^2}{2}} \cdot (4C\epsilon\sqrt{nk})^{nk^2}}{\Gamma\left(\frac{nk^2}{2} + 1\right)} \right) + \frac{n}{2} \cdot \log k \right] \end{split}$$

$$\leq \limsup_{k \to \infty} k^{-2} \cdot \log(|\Omega_k|) \\ + \limsup_{k \to \infty} \left[n \log(4C\epsilon\sqrt{nk\pi}) - k^{-2} \cdot \log\left(\frac{nk^2}{2e}\right)^{\frac{nk^2}{2}} + \frac{n}{2} \cdot \log k \right] \\ = \limsup_{k \to \infty} k^{-2} \cdot \log(|\Omega_k|) \\ + \limsup_{k \to \infty} \left(n \log(4C\epsilon\sqrt{n\pi}) - n \log\left(\frac{k\sqrt{n}}{\sqrt{2e}}\right) + n \log k \right) \\ = \limsup_{k \to \infty} k^{-2} \cdot \log(|\Omega_k|) + n \log(4C\epsilon\sqrt{2\pi e}) \\ = \mathbb{P}_{\epsilon, R+1}(a_1, \dots, a_n; m, \gamma) + n \log(4C\epsilon\sqrt{2\pi e}).$$

This being true for any $2 \leq m \in \mathbb{N}$, $\frac{1}{2(R+1)} > \epsilon > \sqrt{\gamma} > 0$, and $R > \max_{1 \leq j \leq n} \{ \|a_j\| \}$ it follows that for sufficiently small $\epsilon > 0$

$$\chi(a_1 + \epsilon h_1, \dots, a_n + \epsilon h_n : h_1, \dots, h_n)$$

= $\chi_{R+\frac{1}{2}, \frac{1}{2}}(a_1 + \epsilon h_1, \dots, a_n + \epsilon h_n : \epsilon h_1, \dots, \epsilon h_n)$
 $\leq \mathbb{P}_{\epsilon}(a_1, \dots, a_n) + n \log \epsilon + n \log(4C\sqrt{2\pi e}).$

Dividing by $|\log \epsilon|$, taking a lim sup as $\epsilon \to 0$, and adding n to both sides of the inequality above yields

$$n + \limsup_{\epsilon \to 0} \frac{\chi(a_1 + \epsilon h_1, \dots, a_n + \epsilon h_n : h_1, \dots, h_n)}{|\log \epsilon|} \le \limsup_{\epsilon \to 0} \frac{\mathbb{P}_{\epsilon}(a_1, \dots, a_n)}{|\log \epsilon|}.$$

Remark 2.3. Suppose b_1, \ldots, b_p are contained in the strongly closed algebra generated by the a_i and R > 0 is strictly greater than the operator norm of any a_i or b_j . The proof shows that the quantity

$$\limsup_{\epsilon \to 0} \frac{\mathbb{K}_{\epsilon,R}(a_1, \dots, a_n : b_1, \dots, b_p)}{|\log \epsilon|} = \limsup_{\epsilon \to 0} \frac{\mathbb{P}_{\epsilon,R}(a_1, \dots, a_n : b_1, \dots, b_p)}{|\log \epsilon|}$$

equals

$$n + \limsup_{\epsilon \to 0} \frac{\chi(a_1 + \epsilon h_1, \dots, a_n + \epsilon h_n : h_1, \dots, h_n)}{|\log \epsilon|}.$$

Recall that by [3] and [5] if $\{s_1, \ldots, s_n\}$ is a free semicircular family, then $\chi(s_1, \ldots, s_n) = \underline{\chi}(s_1, \ldots, s_n) > -\infty$. Thus we have by the lemma:

Corollary 2.4.

$$\delta_0(a_1,\ldots,a_n) = \limsup_{\epsilon \to 0} \frac{\mathbb{P}_\epsilon(a_1,\ldots,a_n)}{|\log \epsilon|} = \limsup_{\epsilon \to 0} \frac{\mathbb{K}_\epsilon(a_1,\ldots,a_n)}{|\log \epsilon|}.$$

Both descriptions of δ_0 , either in terms of volumes of ϵ -neighborhoods or in terms of packing numbers, can be useful. In the presence of freeness or in the situation with one random variable it is fruitful to use the ϵ -neighborhood description as Voiculescu did ([3]). On the other hand when computing δ_0 in some examples it is convenient to use the uniform packing description and this was the implicit attitude taken towards δ_0 in [2]. The packing formulation also comes in handy when proving formulas for generators of M when M has a simple algebraic decomposition into a tensor product of a von Neumann algebra N with the $k \times k$ matrices or into a direct sum of algebras.

References

- L. Ge, Applications of free entropy to finite von Neumann algebras, II, Ann. of Math., 147 (1998), 143-157, MR 99c:46068, Zbl 0924.46050.
- [2] K. Jung, *The free entropy dimension of hyperfinite von Neumann algebras*, to appear in Trans. Amer. Math. Soc.
- [3] D. Voiculescu, The Analogues of entropy and of Fisher's information measure in free probability theory, II, Inventiones mathematicae, 118 (1994), 411-440, MR 96a:4611, Zbl 0820.60001.
- [4] _____, The analogues of entropy and of Fisher's information measure in free probability theory III: The absence of Cartan subalgebras, Geom. Funct. Anal., 6(1) (1996), 172-199, MR 96m:46119, Zbl 0856.60012.
- [5] _____, A strengthened asymptotic freeness result for random matrices with applications to free entropy, Internat. Math. Res. Notices, 1 (1998), 41-64, MR 2000d:46080, Zbl 0895.60004.

Received August 28, 2002 and revised October 23, 2002. This research was supported by the NSF Graduate Fellowship Program.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CALIFORNIA BERKELEY, CA 94720-3840 *E-mail address:* factor@math.berkeley.edu