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Suppose M is a von Neumann algebra with normal, tra-
cial state ϕ and {a1, . . . , an} is a set of self-adjoint elements
in M. We provide an alternative uniform packing descrip-
tion of δ0(a1, . . . , an), the modified free entropy dimension of
{a1, . . . , an}.

In the attempt to understand the free group factors Voiculescu created
a type of noncommutative probability theory. One facet of the theory in-
volves free entropy and free entropy dimension, applications of which have
answered some old operator algebra questions ([1] and [4]). Roughly speak-
ing, given self-adjoint elements a1, . . . , an in a von Neumann algebra M with
normal, tracial state ϕ a matricial microstate for {a1, . . . , an} is an n-tuple
of self-adjoint k × k matrices which together with the normalized trace,
approximate the algebraic behavior of the ai under ϕ. Taking a normaliza-
tion of the logarithmic volume of such microstate sets followed by multiple
limiting processes yields a number, χ(a1, . . . , an), called the free entropy of
{a1, . . . , an}. One can think of free entropy as the logarithmic volume of the
n-tuple. The (modified) free entropy dimension of {a1, . . . , an} is

δ0(a1, . . . , an) = n + lim sup
ε→0

χ(a1 + εs1, . . . , an + εsn : s1, . . . , sn)
| log ε|

where {s1, . . . , sn} is a semicircular family freely independent with respect
to {a1, . . . , an} and χ(:) is a technical modification of χ (see [4]).

Free entropy dimension was inspired by Minkowski dimension. Recall
that for a subset A ⊂ Rd the (upper) Minkowski dimension of A is

d + lim sup
ε→0

log λ(Nε(A))
| log ε|

where λ above denotes Lebesgue measure andNε(A) is the ε-neighborhood of
A. Minkowski dimension has an equivalent formulation in terms of uniform
packing dimension. The (upper) uniform packing dimension of A is

lim sup
ε→0

log Pε(A)
| log ε|

= lim sup
ε→0

log Kε(A)
| log ε|
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where A is endowed with the Euclidean metric, Pε(A) is the maximum num-
ber of elements in a collection of mutually disjoint open ε balls of A, and
Kε(A) is the minimum number of open ε balls required to cover A (the
quantities above make sense in the setting of an arbitrary metric space).
It is easy to see that the Minkowski dimension and the uniform packing
dimension of A are always equal.

In this paper we present a lemma which formulates a similar metric de-
scription of δ0: Free entropy dimension can be described in terms of packing
numbers with balls of equal radius.

The alternative description comes as no surprise in view of both the defi-
nition of δ0 and the techniques in estimations thereof. The proof follows the
classical one with the addition of the properties of χ proven in [3] and the
strengthened asymptotic freeness results of [5].

1. Preliminaries.

Throughout M is a von Neumann algebra with normal, tracial state ϕ and
{a1, . . . , an} is a set of self-adjoint elements in M. We use the symbols χ
and δ0 to designate the same quantities introduced in [4]. M sa

k (C) denotes
the set of k × k self-adjoint complex matrices and (M sa

k (C))n is the set of
n-tuples with entries in M sa

k (C). trk is the normalized trace on the k × k
complex matrices. ‖·‖2 is the inner product norm on (M sa

k (C))n given by the
formula ‖(x1, . . . , xn)‖2

2 =
∑n

i=1 k·trk(x2
i ) and vol denotes Lebesgue measure

with respect to the ‖ · ‖2 norm. For any k ∈ N denote by ρk the metric on
(M sa

k (C))n induced by the norm k−
1
2 · ‖ · ‖2. For a metric space (X, d) and

ε > 0 write Pε(X, d) for the maximum number of elements in a collection of
mutually disjoint open ε balls of X and Kε(X, d) for the minimum number
of open ε balls required to cover X. Observe that Pε(X, d) ≥ K2ε(X, d) ≥
P4ε(X, d). Finally for S ⊂ X denote by Nε(S) the ε-neighborhood of S.

2. The lemma.

Definition 2.1. For any k, m ∈ N, and R, γ, ε > 0 define successively

Pε,R(a1, . . . , an;m, k, γ) = Pε(ΓR(a1, . . . , an;m, k, γ), ρk),

Pε,R(a1, . . . , an;m, γ) = lim sup
k→∞

k−2 · log(Pε,R(a1, . . . , an;m, k, γ)),

Pε,R(a1, . . . , an) = inf{Pε,R(a1, . . . , an;m, γ) : m ∈ N, γ > 0},
Pε(a1, . . . , an) = sup

R>0
{Pε,R(a1, . . . , an)}.

Remark. If b1, . . . , bp ∈ M, then define Pε(a1, . . . , an : b1, . . . , bp) to be the
quantity obtained by replacing ΓR(a1, . . . , an;m, k, γ) in the definition with
ΓR(a1, . . . , an : b1, . . . , bp;m, k, γ). Similarly, we define Kε(a1, . . . , an) and
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all its associated quantities by replacing Pε in the first line of Definition 2.1
with Kε. Define Kε(a1, . . . , an : b1, . . . , bp) in the same way Pε(a1, . . . , an :
b1, . . . , bp) was defined.

For any self-adjoint elements h1, . . . , hn ∈ M denote by χ(h1, . . . , hn) the
number obtained by replacing the lim sup in the definition of χ with lim inf .
Pε(·) being a normalized limiting process of the logarithmic microstate space
packing numbers we observe just as in the classical case that:

Lemma 2.2. If {h1, . . . , hn} is a set of self-adjoint elements in M which
is freely independent with respect to {a1, . . . , an} and χ(h1, . . . , hn) > −∞,
then

n + lim sup
ε→0

χ(a1 + εh1, . . . , an + εhn : h1, . . . , hn)
| log ε|

= lim sup
ε→0

Kε(a1, . . . , an)
| log ε|

= lim sup
ε→0

Pε(a1, . . . , an)
| log ε|

.

Proof. Clearly it suffices to show equality of the first and last expressions
above since Pε(·) ≥ K2ε(·) ≥ P4ε(·). Furthermore, we can assume that
{a1, . . . , an} has finite dimensional approximants since the equalities hold
trivially otherwise. Set C = max{‖hi‖}1≤i≤n + 1. First we show that
the free entropy expression is greater than or equal to the Pε expression.
Suppose 0 < ε < (C

√
n)−1, m ∈ N, with m > n, 1 > γ > 0, and

R > max{‖ai‖}1≤i≤n.

Corollary 2.14 of [5] provides an N ∈ N such that if k ≥ N and σ is a
Radon probability measure on ((M sa

k (C))R+1)2n (the subset of (M sa
k (C))2n

consisting of 2n-tuples whose entries have operator norm no greater than
R + 1) invariant under the Uk-action

(ξ1, . . . , ξn, η1, . . . , ηn) 7→ (ξ1, . . . , ξn, uη1u
∗, . . . , uηnu∗),

then σ(ωk) > 1
2 where ωk is

{(ξ1, . . . , ξn, η1, . . . , ηn) ∈ ((M sa
k (C))R+1)2n : {ξ1, . . . , ξn}

and {η1, . . . , ηn} are (m, γ/4m)-free}.

With respect to the ρk metric for each k find a collection of mutually disjoint
open Cε

√
n balls of ΓR(a1, . . . , an;m, k, γ/(8(R + 2))m) of maximum cardi-

nality and denote the centers of these balls by
〈(

x
(k)
1j , . . . , x

(k)
nj

)〉
j∈Sk

. Let µk

be the uniform atomic probability measure supported on the centers of these
balls and let νk be the probability measure obtained by restricting vol to
ΓCε(εh1, . . . , εhn;m, k, γ/8m) and normalizing appropriately. Then µk × νk
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is a Radon probability measure on ((M sa
k (C))R+1)2n invariant under the

Uk-action described above. So for k ≥ N (µk × νk)(ωk) > 1
2 .

For k ∈ N and j ∈ Sk define Fjk to be the set of all (y1, . . . , yn) ∈
ΓCε(εh1, . . . , εhn;m, k, γ/8m) such that (y1, . . . , yn) and (x(k)

1j , . . . , x
(k)
nj ) are(

m, γ
4m

)
-free.

1
2

< (µk × νk)(ωk) =
∑
j∈Sk

1
|Sk|

· νk(Fjk)

=
∑
j∈Sk

1
|Sk|

·
vol (Fjk)

vol (ΓCε(εh1, . . . , εhn;m, k, γ/8m))
.

It follows that for k ≥ N

1
2
· |Sk| · vol (ΓCε(εh1, . . . , εhn;m, k, γ/8m)) <

∑
j∈Sk

vol (Fjk).

Set Ejk = (x(k)
1j , . . . , x

(k)
nj ) + Fjk. Fjk is a set contained in the open ball

of ρk radius Cε
√

n centered at (0, . . . , 0). Thus 〈Ejk〉j∈Sk
is a collection of

mutually disjoint sets. So⊔
j∈Sk

Ejk ⊂ ΓR+1(a1 + εh1, . . . , an + εhn : εh1, . . . , εhn;m, k, γ).

Thus, for any (C
√

n)−1 > ε > 0, m ∈ N sufficiently large, and 1 > γ > 0

χR+1(a1 + εh1, . . . , an + εhn : εh1, . . . , εhn;m, γ)

≥ lim sup
k→∞

k−2 · log

vol

 ⊔
j∈Sk

Ejk

 +
n

2
· log k


≥ lim sup

k→∞

[
k−2 · log

(
1
2
· |Sk| · vol (ΓCε(εh1, . . . , εhn;m, k, γ/8m))

)
+

n

2
log k

]
≥ lim sup

k→∞

[
k−2 · log(|Sk|)

]
+ lim inf

k→∞

[
k−2 · log(vol (ΓCε(εh1, . . . , εhn;m, k, γ/8m))) +

n

2
· log k

]
≥ PCε

√
n,R+1 (a1, . . . , an;m, γ/(8(R + 2))m) + χCε(εh1, . . . , εhn)

≥ PCε
√

n,R+1(a1, . . . , an) + n log ε + χ(h1, . . . , hn).
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By the chain of inequalities of the preceding paragraph it follows that

χ(a1 + εh1, . . . , an + εhn : h1, . . . , hn)

= χ(a1 + εh1, . . . , an + εhn : εh1, . . . , εhn)

≥ PCε
√

n,R+1(a1, . . . , an) + n log ε + χ(h1, . . . , hn).

This being true for R sufficiently large

χ(a1 + εh1, . . . , an + εhn : h1, . . . , hn)

≥ PCε
√

n(a1, . . . , an) + n log ε + χ(h1, . . . , hn).

Dividing by | log ε| on both sides, taking a lim sup as ε → 0, and adding n
to both ends of the inequality above yields

n + lim sup
ε→0

χ(a1 + εh1, . . . , an + εhn : h1, . . . , hn)
| log ε|

≥ lim sup
ε→0

PCε
√

n(a1, . . . , an)
| log ε|

= lim sup
ε→0

Pε(a1, . . . , an)
| log ε|

.

For the reverse inequality suppose 2 ≤ m ∈ N and 1
2(C+1) > ε >

√
γ >

0, R > max1≤j≤n{‖aj‖}. For each k ∈ N find an packing by open ρk ε-balls
of ΓR+1(a1, . . . , an;m, k, γ) with maximum cardinality. Denote the set of
centers of these balls by Ωk. Clearly

ΓR+ 1
2
, 1
2

(
a1 + εh1, . . . , an + εhn : εh1, . . . , εhn;m, k,

γ

2m

)
⊂ N2Cε

√
n(ΓR+1(a1, . . . , an;m, k, γ))

⊂ N4Cε
√

n(Ωk)

where Γr+ 1
2
, 1
2
(·) denotes the microstate space of 2n-tuples such that the first

n entries have operator norms no larger than r + 1
2 and the last n entries

have operator norms no larger than 1
2 (see [4] for this technical modifica-

tion). Nε is taken with respect to the metric space (M sa
k (C))n with the ρk

metric. It follows that χR+ 1
2
, 1
2

(
a1 + εh1, . . . , an + εhn : εh1, . . . , εhn;m, γ

2m

)
is dominated by

lim sup
k→∞

[
k−2 · log(vol (N4Cε

√
n(Ωk))) +

n

2
· log k

]
≤ lim sup

k→∞

k−2 · log

|Ωk| ·
π

nk2

2 · (4Cε
√

nk)nk2

Γ
(

nk2

2 + 1
)

 +
n

2
· log k


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≤ lim sup
k→∞

k−2 · log(|Ωk|)

+ lim sup
k→∞

n log(4Cε
√

nkπ)− k−2 · log
(

nk2

2e

)nk2

2

+
n

2
· log k


= lim sup

k→∞
k−2 · log(|Ωk|)

+ lim sup
k→∞

(
n log(4Cε

√
nπ)− n log

(
k
√

n√
2e

)
+ n log k

)
= lim sup

k→∞
k−2 · log(|Ωk|) + n log(4Cε

√
2πe)

= Pε,R+1 (a1, . . . , an;m, γ) + n log(4Cε
√

2πe).

This being true for any 2 ≤ m ∈ N, 1
2(R+1) > ε >

√
γ > 0, and R >

max1≤j≤n{‖aj‖} it follows that for sufficiently small ε > 0

χ(a1 + εh1, . . . , an + εhn : h1, . . . , hn)

= χR+ 1
2
, 1
2
(a1 + εh1, . . . , an + εhn : εh1, . . . , εhn)

≤ Pε(a1, . . . , an) + n log ε + n log(4C
√

2πe).

Dividing by | log ε|, taking a lim sup as ε → 0, and adding n to both sides of
the inequality above yields

n + lim sup
ε→0

χ(a1 + εh1, . . . , an + εhn : h1, . . . , hn)
| log ε|

≤ lim sup
ε→0

Pε(a1, . . . , an)
| log ε|

.

�

Remark 2.3. Suppose b1, . . . , bp are contained in the strongly closed alge-
bra generated by the ai and R > 0 is strictly greater than the operator norm
of any ai or bj . The proof shows that the quanitity

lim sup
ε→0

Kε,R(a1, . . . , an : b1, . . . , bp)
| log ε|

= lim sup
ε→0

Pε,R(a1, . . . , an : b1, . . . , bp)
| log ε|

equals

n + lim sup
ε→0

χ(a1 + εh1, . . . , an + εhn : h1, . . . , hn)
| log ε|

.

Recall that by [3] and [5] if {s1, . . . , sn} is a free semicircular family, then
χ(s1, . . . , sn) = χ(s1, . . . , sn) > −∞. Thus we have by the lemma:

Corollary 2.4.

δ0(a1, . . . , an) = lim sup
ε→0

Pε(a1, . . . , an)
| log ε|

= lim sup
ε→0

Kε(a1, . . . , an)
| log ε|

.
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Both descriptions of δ0, either in terms of volumes of ε-neighborhoods or in
terms of packing numbers, can be useful. In the presence of freeness or in the
situation with one random variable it is fruitful to use the ε-neighborhood
description as Voiculescu did ([3]). On the other hand when computing δ0

in some examples it is convenient to use the uniform packing description
and this was the implicit attitude taken towards δ0 in [2]. The packing
formulation also comes in handy when proving formulas for generators of
M when M has a simple algebraic decomposition into a tensor product of
a von Neumann algebra N with the k × k matrices or into a direct sum of
algebras.
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