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Suppose M is a von Neumann algebra with normal, tra-
cial state ¢ and {ai,...,a,} is a set of self-adjoint elements
in M. We provide an alternative uniform packing descrip-
tion of do(a1,...,a,), the modified free entropy dimension of

{ai,...,a,}.

In the attempt to understand the free group factors Voiculescu created
a type of noncommutative probability theory. One facet of the theory in-
volves free entropy and free entropy dimension, applications of which have
answered some old operator algebra questions ([1] and [4]). Roughly speak-
ing, given self-adjoint elements a1, ..., a, in a von Neumann algebra M with
normal, tracial state ¢ a matricial microstate for {ai,...,a,} is an n-tuple
of self-adjoint k& x k matrices which together with the normalized trace,
approximate the algebraic behavior of the a; under ¢. Taking a normaliza-
tion of the logarithmic volume of such microstate sets followed by multiple

limiting processes yields a number, x(aq,...,a,), called the free entropy of
{ai,...,an}. One can think of free entropy as the logarithmic volume of the
n-tuple. The (modified) free entropy dimension of {aq,...,a,} is

. yeryQp t+ R TR

So(at, - .., an) = n + limsup x(a1 + €s1 an + €Sp 1 S1 5n)
e—0 ’ log 6‘

where {s1,...,8,} is a semicircular family freely independent with respect
to {a1,...,a,} and x(:) is a technical modification of x (see [4]).

Free entropy dimension was inspired by Minkowski dimension. Recall
that for a subset A C R? the (upper) Minkowski dimension of A is

log A(Ne(A
d + lim sup 2EAW(A)
0 | log €|
where \ above denotes Lebesgue measure and NV (A) is the e-neighborhood of
A. Minkowski dimension has an equivalent formulation in terms of uniform
packing dimension. The (upper) uniform packing dimension of A is
. log Pe(4) _ . log K(A)
limsup ———— = limsup ————
e—0  |loge| 0 | log €|
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where A is endowed with the Euclidean metric, Pe(A) is the maximum num-
ber of elements in a collection of mutually disjoint open € balls of A, and
K(A) is the minimum number of open e balls required to cover A (the
quantities above make sense in the setting of an arbitrary metric space).
It is easy to see that the Minkowski dimension and the uniform packing
dimension of A are always equal.

In this paper we present a lemma which formulates a similar metric de-
scription of dg: Free entropy dimension can be described in terms of packing
numbers with balls of equal radius.

The alternative description comes as no surprise in view of both the defi-
nition of §y and the techniques in estimations thereof. The proof follows the
classical one with the addition of the properties of y proven in [3] and the
strengthened asymptotic freeness results of [5].

1. Preliminaries.

Throughout M is a von Neumann algebra with normal, tracial state ¢ and
{a1,...,a,} is a set of self-adjoint elements in M. We use the symbols x
and dp to designate the same quantities introduced in [4]. M*(C) denotes
the set of k x k self-adjoint complex matrices and (M;*(C))™ is the set of
n-tuples with entries in M;*(C). trj, is the normalized trace on the k x k
complex matrices. [|-||2 is the inner product norm on (M;?*(C))™ given by the
formula ||(z1,. .., 2,) |13 = Y i, k-trx(2?) and vol denotes Lebesgue measure
with respect to the || - ||2 norm. For any k € N denote by py the metric on

(M;*(C))™ induced by the norm k2 || - ||2. For a metric space (X,d) and
e > 0 write P.(X,d) for the maximum number of elements in a collection of
mutually disjoint open € balls of X and K (X,d) for the minimum number
of open € balls required to cover X. Observe that P.(X,d) > K (X,d) >
Py (X, d). Finally for S C X denote by N,(S) the e-neighborhood of S.

2. The lemma.

Definition 2.1. For any k,m € N, and R, y, e > 0 define successively
PE,R(QI7-" Ap sy M, k ’Y) :P<FR<(11,.. 7an§m7k77)7/0k);
Per(ai,...,an;m,y —hmsupk log(Pe r(at, ..., an;m, k,7v)),

)
k—oo
Pc r(a1,...,an) = inf{Pc g(ai,...,an;m,v) :m € N,y > 0},
)=

Pc(ay,...,an sup{]P’eR(al,...,an)}.

Remark. If by,...,b, € M, then define Pc(a1,...,an : b1,...,b,) to be the
quantity obtained by replacing I'r(ay, ..., an;m, k,7) in the definition with
Tr(a1,...,an : b1,...,bp;m, k,7). Similarly, we define K¢(aq,...,a,) and
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all its associated quantities by replacing P, in the first line of Definition 2.1
with K.. Define Kc(a1,...,a, : b1,...,bp) in the same way Pc(a1,...,an :
bi,...,by) was defined.

For any self-adjoint elements h1,...,h, € M denote by x(hi,...,h,) the
number obtained by replacing the lim sup in the definition of y with liminf .
P¢(-) being a normalized limiting process of the logarithmic microstate space
packing numbers we observe just as in the classical case that:

Lemma 2.2. If {hy,...,h,} is a set of self-adjoint elements in M which
is freely independent with respect to {a1,...,a,} and x(hi,..., hy) > —o0,
then

. x(a1 +€hy,...;an+€hy :hi, .. hy)
n + lim sup
e—0 ‘10g6|

g Kl an)
=limsup ———F—
e—0 |10g6|

P.(aq,...,
= lim sup —(a1 an)
e—0 | IOg 6|

Proof. Clearly it suffices to show equality of the first and last expressions
above since P.(-) > Kac(-) > Pyc(-). Furthermore, we can assume that
{a1,...,a,} has finite dimensional approximants since the equalities hold
trivially otherwise. Set C' = max{||hi||}1<i<n + 1. First we show that
the free entropy expression is greater than or equal to the P, expression.
Suppose 0 < ¢ < (Cy/n)™', m € N, with m > n, 1 > v > 0, and
R > max{]|as[| }1<i<n-

Corollary 2.14 of [5] provides an N € N such that if k¥ > N and o is a
Radon probability measure on ((M3*(C))g41)?" (the subset of (M;?(C))*"

consisting of 2n-tuples whose entries have operator norm no greater than
R + 1) invariant under the Ug-action

(517 s 7§n77717 s 7/'771) = (fla e 7§naUUIU*7- . '7un7ZU*>7

then o(wy) > 3 where wy is

{1 &) € (MA(C) r)?™ s {61, -+, 6n}
and {n1,...,nn} are (m,~y/4™)-free}.

With respect to the pi metric for each k find a collection of mutually disjoint
open Cey/n balls of T'r(ay,...,an;m,k,v/(8(R+2))™) of maximum cardi-

nality and denote the centers of these balls by <(m§];), . w(k)>> _— Let ug
JESk

9 n]
be the uniform atomic probability measure supported on the centers of these
balls and let v be the probability measure obtained by restricting vol to
Cee(eh, ... ehy;m,k,v/8™) and normalizing appropriately. Then g X vy
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is a Radon probability measure on ((M;*(C))g+1)*" invariant under the
Uk-action described above. So for k > N (pu, x vg)(wg) > 3.

For k € N and j € Sj define Fj, to be the set of all (y,... ,yn) €

Coe(eh, ... ehy;m,k,y/8™) such that (yi,...,y,) and (xgl;),...,a: ) are

(m, 4m) free.

1

5 < (i X ve) (wr) = > ’;k‘ v (Fj)

. Z 1 VOI( )

N |Sk| vol (Toe(eh,. .., ehn;m, k,v/8™))
k

It follows that for kK > N

1
5 ISkl -vol (Coie(eha, ... ehnm, b, 7 /8™)) < >~ vol (Ejy).
JESk

Set Ej, = (xg];), (k)) Fji. Fj, is a set contained in the open ball
of pr radius Cey/n centered at (0,...,0). Thus (Ej)jes, is a collection of
mutually disjoint sets. So

|_| ik C Try1(a1 +€hi, ... an + €hy t €hy, ... €hyym, k).
JESk

Thus, for any (Cy/n)~! > € > 0, m € N sufficiently large, and 1 > v > 0

Xr+1(a1 +€hy, ... an + €hy : €hq, ... ehy;m, )

> limsup | 72 - log | vol |_| Ejy, + g -log k

k—o00

JESk
1
> lim sup [k_Q -log (2 | Sg| - vol (Dee(ehy, ..., ehy;m, k,’y/Sm))>
k—o0
+ glog k]

> lim sup [152 . log(\Skl)]

k—oo

+ liminf [/f? Jog(vol (Tae(eh, . . ehp:m, k,7/8™))) + g log k

> Peeymrt1 (at,...,an;m,v/(8(R+2))™) + xce(ehi, ..., €hy)
2 PCeﬁ,R+1(a17--'aan) +nloge+x(h1,...,hn).
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By the chain of inequalities of the preceding paragraph it follows that
x(a1 +€hi, ... an+ €hy :hy, ... hy)
=x(a1 4+ €hy,...,an + €hy, : €hq,... ehy)
> Poeympri(al, ..., an) +nloge+ x(h, ..., hy).
This being true for R sufficiently large
X(a1 +€hi,...,an + €hy : hl,...,hn)
> Peeym(ar, ... an) +nloge+ x(hi, ..., hy).
Dividing by |loge| on both sides, taking a limsup as ¢ — 0, and adding n
to both ends of the inequality above yields
hi,... hp:hi,....,h
n+limsupX(a1+6 1, , Op + €Ny 1, 5 n)
e—0 | log €|
P aly...,a
> lim sup CE\/H( ! )
e—0 |log €|
P e
= lim sup Pelar,.., an)
e—0 | log €|

For the reverse inequality suppose 2 < m € N and ﬁ >€> /7>
0, R > maxi<j<n{||a;||}. For each k € N find an packing by open pj, e-balls
of Tpyi(aq,...,an;m,k,v) with maximum cardinality. Denote the set of

centers of these balls by . Clearly
FR-s—%,% <a1 4+ €hi,...,an + €hy i €hy, ... €hy;m, kK, 2lm>

- NZC’G\/H(FR-Fl(al? ceesanimy k, 7))
- N4Ce\/ﬁ(Qk’)

where I', 1 1(-) denotes the microstate space of 2n-tuples such that the first
22

n entries have operator norms no larger than r + % and the last n entries
1

have operator norms no larger than 5 (see [4] for this technical modifica-
tion). A is taken with respect to the metric space (M;*(C))™ with the py
metric. It follows that xp, 11 (a1 +€ha,...,an + €hy : €hy, ... €hy;m, 2)
272
is dominated by
n
limsup [k~ - log(vol (Nyoe m (%)) + 5 log k}

k—oo

nk2 2

2 - (4Cev/nk)"*
< limsup [k™2log |Qk|7r > - (4Cevink)
k—o00 F(nQﬁ-i-l)

+g-logk
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< limsup k=2 - log(|Q%|)

k—o0
nk?
nk?\ 2 n
+ limsup |nlog(4CeVnkr) — k™2 - log (2> + 5" log k
k—o0 €

= limsup k=2 - log(|%])

k—oo

+ lim sup (n log(4Cey/nm) — nlog <Wﬁ> + nlog k:)
k—o0 \/%

= limsup k=2 - log(|Q%|) + nlog(4CeV2me)

k—o00

=P g1 (a1, ..., an;m,vy) + nlog(4Cev2me).

This being true for any 2 < m € N, m >e€> />0 and R >
maxi<j<n{|la;|} it follows that for sufficiently small € > 0
x(ar +€hi, ... an +€hy thy, ... hy)

:XR+%’%(a1—|—eh1,...,an—i—ehn:ehl,...,ehn)

< Pc(ai,...,an) + nloge+ nlog(4Cv2me).

Dividing by |loge|, taking a lim sup as € — 0, and adding n to both sides of
the inequality above yields

hi, ... hp:hi,....h Pc(aq,...,
o+ Tim sup x(a1 +ehi, ... an +ehp i ha, ... hy) < lim sup (a1 an)
0 | log €| e—0 | log e
O
Remark 2.3. Suppose b1,...,b, are contained in the strongly closed alge-

bra generated by the a; and R > 0 is strictly greater than the operator norm
of any a; or b;. The proof shows that the quanitity
Ker(at,...,an:b1,...,b . P.r(ai,...,an :b1,...,b
lim sup R0 no 1 ) = lim sup or(01 no 1 )
e—0 ’ log 6‘ e—0 | log €|

equals

. x(a1 +€hy,...,an+€hy :hy, ... hy)
n + lim sup .
e—0 | log €|

Recall that by [3] and [5] if {s1,..., s} is a free semicircular family, then

X(81,...,80) = x(51,...,8,) > —00. Thus we have by the lemma:
Corollary 2.4.
P . K e
do(ai,...,a,) = limsup (- dn) = lim sup Kelay, . an)

e—0 ‘ log 6‘ e—0 | log 6|
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Both descriptions of dp, either in terms of volumes of e-neighborhoods or in
terms of packing numbers, can be useful. In the presence of freeness or in the
situation with one random variable it is fruitful to use the e-neighborhood
description as Voiculescu did ([3]). On the other hand when computing do
in some examples it is convenient to use the uniform packing description
and this was the implicit attitude taken towards dp in [2]. The packing
formulation also comes in handy when proving formulas for generators of
M when M has a simple algebraic decomposition into a tensor product of
a von Neumann algebra N with the k X k matrices or into a direct sum of
algebras.
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