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Let M be a manifold (with boundary) of dimension ≥ 3,
such that its interior admits a hyperbolic metric of finite vol-
ume. We discuss the possible limits arising from sequences of
relative fundamental cycles approximating the simplicial vol-
ume ‖M, ∂M‖, using ergodic theory of unipotent actions. As
applications, we extend results of Jungreis and Calegari from
closed hyperbolic to finite-volume hyperbolic manifolds:

a) Strict subadditivity of simplicial volume with respect to
isometric glueing along geodesic surfaces, and

b) nontriviality of the foliated Gromov norm for “most”
foliations with two-sided branching.

1. Introduction.

Gromov defined the simplicial volume ‖M,∂M‖ of a manifold M as the
“minimal cardinality of a triangulation with real coefficients”. That means,
for an n-dimensional compact, connected, orientable manifold M with (pos-
sibly empty) boundary ∂M , define

‖M,∂M‖ := inf

{
r∑

i=1

| ai |:
r∑

i=1

aiσi represents [M,∂M ]

}
.

Here, [M,∂M ] ∈ Hn(M,∂M ; R) is the image of a generator of Hn(M,∂M ;
Z) ' Z under the canonical homomorphism Hn (M,∂M ; Z) → Hn(M,∂M ;
R).

The simplicial volume quantifies the topological complexity of a manifold.
It is nontrivial if int (M) admits a complete metric of sectional curvature
≤ −a2 and finite volume. In particular the Gromov-Thurston theorem ([9],
[19]) states for finite-volume hyperbolic manifolds ‖M,∂M‖ = 1

Vn
Vol (M),

where Vn is the volume of a regular ideal simplex in Hn. This exhibits hy-
perbolic volume as a homotopy invariant, complementing the Chern-Gauß-
Bonnet theorem, which implies homotopy invariance of hyperbolic volume
for even-dimensional manifolds. Homotopy invariance of hyperbolic volume
was used by Gromov to give a more topological proof of Mostow’s rigidity
theorem. In the meantime, various more general rigidity theorems have been
proved, again using the simplicial volume.
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On a finite-volume hyperbolic manifold, there does not exist a fundamen-
tal cycle actually having l1-norm 1

Vn
Vol (M). However, there is a measure

cycle, supported on the set of regular ideal simplices, the so-called smearing
of a regular ideal simplex, having this norm: After identifying the set of (or-
dered) regular ideal simplices with Isom (Hn) = Isom+ (Hn)∪ Isom− (Hn), it
is the signed measure 1

2Vn
(Haar− r∗Haar), where Haar is the Haar measure

on Isom+ (Hn) and r is an orientation-reversing isometry. This measure
cycle can be approximated by authentic singular chains, i.e., finite linear
combinations of (nonideal) simplices (and this proves the Gromov-Thurston
theorem, cf. [2] for details of the proof in the case of closed manifolds).

Technically, the main part of this paper is devoted to the question of to
which extent this construction is unique, i.e., whether there exist sequences
of fundamental cycles with l1-norms converging to 1

Vn
Vol (M) which do not

approximate Gromov’s smearing construction.
For closed manifolds of dimension ≥ 3, it was shown in [11] by Jungreis

that any such sequence must converge to Gromov’s smearing cycle. In this
paper we extend this rigidity results to hyperbolic manifolds of finite volume
which are either of dimension ≥ 4 or which are of dimension 3 and not
Gieseking-like (see Definition 4.4).

Moreover, we obtain restrictions on sequences of fundamental cycles with
l1-norms converging to 1

Vn
Vol (M) on (possibly Gieseking-like) finite-volume

hyperbolic manifolds of dimension ≥ 3, which allow to conclude: If F is a
closed geodesic hypersurface, then the limits of such sequences do invoke
simplices intersecting F ‘transversally’ (see Definition 5.1). This property
can actually be restated as ‖MF , ∂MF ‖ > ‖M,∂M‖, where MF is obtained
by cutting M along F .

As applications, we extend results of Jungreis and Calegari to hyperbolic
manifolds with cusps.

Glueing along boundaries. Consider manifolds M1,M2, a homeomor-
phism f : A1 → A2 between subsets Ai ⊂ ∂Mi, and let M = M1 ∪f M2 be
the glued manifold. In general, it is hard to compare ‖M‖ to ‖M1‖+ ‖M2‖.
One can prove “≥” if the Ai are incompressible and amenable, and even
“=” if, in addition, they are connected components of ∂Mi, cf. [9] and [12].

Theorem 6.3. Let n ≥ 3 and let M1,M2 be compact n-manifolds with
boundaries ∂Mi = ∂0Mi ∪ ∂1Mi, such that Mi − ∂0Mi admit incomplete
hyperbolic metrics of finite volume with totally geodesic boundaries ∂1Mi. If
∂1Mi are not empty, f : ∂1M1 → ∂1M2 is an isometry and M = M1 ∪f M2,
then

‖M,∂M‖ < ‖M1, ∂M1‖+ ‖M2, ∂M2‖.

The same statement holds if one glues only along some connected compo-
nents of ∂1Mi. One also has an analogous statement if two totally geodesic
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boundary components of the same hyperbolic manifold are glued by an isom-
etry.

One point of interest in Theorem 6.3 is that it serves, in the case of 3-
manifolds, as a main step for a general glueing inequality. In [12], we prove:

Theorem. For a compact 3-manifold M ‖DM‖ < 2‖M,∂M‖ holds if and
only if ‖∂M‖ > 0, i.e., if ∂M consists not only of spheres and tori.

(Here, DM is the manifold obtained by glueing two differently oriented
copies of M via the identity of ∂M . Note that ‖DM‖ ≤ 2‖M,∂M‖ trivially
holds.) This theorem may be seen as a generalisation of Theorem 6.3, saying
that any efficient fundamental cycle on a 3-manifold with Z2-symmetry has
to intersect the fixed point set ‘transversally’. It is maybe worth pointing
out that for the proof of this theorem in [12] we need to have Theorem 6.3
also for the case of cusps.

Another (direct) corollary from Theorem 6.3 and Mostow rigidity is that
(under the assumptions of Theorem 6.3), in dimensions ≥ 4, we get the same
inequality for any homeomorphisms f . This theorem seems to be hardly
available by topological methods. The analogous statement in dimension 3
was recently shown to be wrong by Soma ([18]). He proved: If M1,M2 are
hyperbolic 3-manifolds of totally geodesic boundary and f : ∂M1 → ∂M2 is
pseudo-Anosov, then limn→∞ ‖M1 ∪fn M2‖ = ∞.

Foliated Gromov norm. The Gromov norm of a foliation/lamination F
on a manifold M , as introduced in [4], is

‖M,∂M‖F := inf
{ r∑

i=1

| ai |:
r∑

i=1

aiσi represents [M,∂M ] ,

σi transverse to F
}

.

The difference ‖M,∂M‖F − ‖M,∂M‖ seems to quantify the amount of
branching of the leaf space. Calegari proved:

– ‖M‖F = ‖M‖, when the leaf space is branched in at most one direc-
tion, and

– ‖M‖F > ‖M‖ for asymptotically separated laminations of closed hy-
perbolic manifolds of dimension ≥ 3.

The first statement generalizes easily to manifolds with boundary. We ex-
tend the second statement as follows:

Theorem 7.5. Assume that the interior of M is a hyperbolic n-manifold
of finite volume. If n ≥ 3 and M is not Gieseking-like (Definition 4.4), and
if F is an asymptotically separated lamination, then

‖M,∂M‖ < ‖M,∂M‖F .
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We want to outline the content of this paper. In Chapter 3 we give a def-
inition of “efficient fundamental chains”, exhibit them as signed measures µ
on the space of regular ideal simplices, show that they are absolute cycles
(the boundary “escapes to infinity” for ε → 0), and derive ergodic decom-
positions of µ with respect to certain groups of reflections. Such (different)
decompositions exist associated to all vertices of a fixed simplex ∆0. We
show that the ergodic decomposition corresponding to the i-th vertex of ∆0

uses only the Haar measure and measures determined on the set of simplices
having i-th vertex in a parabolic fixed point of Γ.

This is used in Chapter 5 to prove Theorem 5.3: If F is a closed, totally
geodesic hypersurface in a finite-volume hyperbolic manifold of dimension
≥ 3 and µ is an efficient fundamental cycle, then µ (SF ) > 0, where SF is
the set of simplices intersecting F transversally. To give a rough explanation
of the proof: The Haar measure does not vanish on SF , hence µ (SF ) = 0
would imply that µ is determined on the set of simplices with all vertices in
parabolic points, contradicting the fact that it must invoke simplices with
faces in the cuspless hypersurface F .

In Chapter 6, Theorem 6.3 is derived from Theorem 5.3. Chapter 7 is
devoted to the foliated Gromov norm and the proof of Theorem 7.5.

The simplicial volume of a nonorientable, disconnected manifold is the
sum over the connected components of half of the simplicial volumina of
the orientation coverings. We will give all proofs for connected, oriented
manifolds, since all statements generalise directly. This includes that the
orientations of glued manifolds are understood to fit together.

2. Preliminaries.

2.1. Volume of straight simplices. A simplex in hyperbolic space Hn,
with vertices p0, . . . , pi, is called straight if it is the barycentric parametriza-
tion of the geodesic simplex with vertices p0, . . . , pi.

Given two regular ideal (straight) n-simplices ∆0 and ∆ in Hn, with fixed
orderings of their vertices, there is a unique g ∈ Isom (Hn) mapping ∆0 to
∆.

Hence, fixing a reference simplex ∆0, we have an Isom (Hn)-equivariant
bijection between the set of ordered regular ideal n-simplices and Isom (Hn),
this bijection being unique up to the choice of ∆0, i.e., up to multiplication
with a fixed element of Isom (Hn).

As another consequence, all regular ideal n-simplices in Hn have the same
volume, to be denoted Vn.

By [10], any straight n-simplex σ in Hn satisfies Vol (σ) ≤ Vn and equality
is achieved only for regular ideal simplices.
2.2. Ergodic decomposition. For a topological space X, we consider
Radon measures µ on X. This are, by definition, elements of C∗

c (X), the
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dual of the space of compactly supported continuous functions. They have
a decomposition µ = µ+ − µ− with µ+, µ− nonnegative Radon measures.
(We will refer to µ as signed measure and to µ± as measures.) A probability
measure on X is a measure µ with µ (X) = 1.

Let a group G act on a topological space X. A probability measure µ is
called ergodic if any G-invariant set has measure 0 or 1. Denote by E the
set of ergodic G-invariant probability measures on X.
Let A be the weak measure class induced by the measure class on X, i.e., the
smallest σ-algebra A on E such that for all Borel sets A ⊂ X the application
fA : E → R defined by

fA (µ) := µ (A)
is measurable.

Lemma 2.1. Let a group G act on a complete separable metric space X. If
there exists a G-invariant probability measure on X, then the set E of ergodic
G-invariant measures on X is not empty and there is a decomposition map
β : X → E.

Here, a decomposition map is a G-invariant map β : X → E , which is:
– Measurable with respect to A,
– satisfies e ({x ∈ X : β (x) = e}) = 1 for all e ∈ E , and
– for all G-invariant probability measures µ and Borel sets A ⊂ X the

following equality holds:

µ (A) =
∫

X
β (x) (A) dµ (x) .

For a proof of Lemma 2.1, see Theorem 4.2 in [21].

For later reference we state the following lemma, Part (i) of which is
known as Alaoglu’s theorem, whereas a proof of Part (ii) can be found in
Lemma 3.2 of [6].

Lemma 2.2.
(i) Any weak-∗-bounded sequence of signed Radon measures on a locally

compact metric space has an accumulation point in the weak-∗-topology.
(ii) If µ is the weak-∗-limit of a sequence µn of measures on a space X,

and U ⊂ X is an open subset, then µ (U) ≤ lim inf µn (U).

Moreover, we recall that the support of a measure µ on X is defined as
the complement of the largest open set U ⊂ X with the property µ (U) = 0.

2.3. Measure homology. The following explanations are not necessary
(from a logical point of view) for our arguments, but may be helpful to
understand the framework. For a topological space X, let C0

(
∆k, X

)
be

the space of singular k-simplices in X, topologized by the compact-open-
topology. For a signed measure µ on C0

(
∆k, X

)
, one has its decomposition
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µ = µ+ − µ− as difference of two (nonnegative) Borel measures, and one
defines its total variation as ‖µ‖ =

∫
dµ+ +

∫
dµ−.

Let Ck (X) be the vector space of all signed measures µ on C0
(
∆k, X

)
which have compact support and finite total variation. (We assume finite
total variation because we want ‖.‖ to define a norm on Ck (X).The condition
‘compact support’ is imposed because otherwise the map j∗ : H∗ (X; R) →
H∗ (X) defined below would, in general, not be surjective, see [19], 6.1.7 for
examples of this phenomenon.) Let ηi : ∆k → ∆k−1 be the i-th face map.
It induces a map ∂i = (η∗i )∗ : Ck (X) → Ck−1 (X). We define the boundary
operator ∂ :=

∑k
i=0 ∂i, to make C∗ (X) a chain complex. We denote the

homology groups of this chain complex by H∗ (X).
We have an obvious inclusion j : C∗ (X) → C∗ (X), where C∗ (X) are the

singular chains, considered as finite linear combination of atomic measures.
Clearly, j is a chain map. Zastrow’s Theorem 3.4. in [22] says that we get
an isomorphism j∗ : H∗ (M) → H∗ (M) if M is a smooth manifold (but not
for arbitrary topological spaces X).

The l1-norm on C∗ (M) extends to the total variation ‖.‖ on C∗ (M), and
we get an induced pseudonorm on H∗ (M). Thurston conjectured in [20]
that the isomorphism j∗ should be an isometry for this pseudonorm. There
seems not to exist a proof of this general conjecture so far, but if M is a closed
hyperbolic n-manifold, it follows easily from the identity ‖M‖ = 1

Vn
Vol (M)

([2], [9]) that jn : Hn (M) → Hn (M) is an isometry.

2.4. Intersection numbers.

Definition 2.3. Let M be an oriented differentiable n-manifold. For an
immersed differentiable n-simplex σ : ∆n → M , and x ∈ M , define

Φx (σ) =
∑

y∈σ−1(x)

sign det dσ (y) .

For a singular chain c =
∑r

j=1 ajσj , let Φx (c) =
∑r

j=1 ajΦx (σj).

Lemma 2.4. Let M be a connected, oriented, smooth, noncompact n-ma-
nifold, M ′ an n-submanifold with boundary, such that M −M ′ is compact.
Let c =

∑r
j=1 ajσj be a smooth singular n-chain representing the relative

fundamental class [M,M ′]. Assume that all σj are immersed smooth n-
simplices. Then Φx (c) = 1 holds for almost all x ∈ M −M ′.

Proof. Let K = ∪r
j=0im (∂σj). K is of measure zero, by Sard’s lemma.

We want to show that Φx (c), as a function of x, is constant on M −
(M ′ ∪K). It is obvious that it is locally constant on M − (M ′ ∪K), since
all σi are immersed. It remains to prove: For all x ∈ K∩int (M −M ′), there
is a neighborhood U of x in M such that Φ. (c) is constant on U ∩ (M −K).

The point x is contained in the image of finitely many (n − 1)-simplices
κ1, . . . , κk, which are boundary faces of some σi1 , . . . , σik . (Note that the
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σij ’s need not be distinct and that there might be further σi’s containing
x in the interior of their image.) Since ∂

∑r
j=1 ajσj invokes only simplices

whose image is contained in M−M ′, we necessarily have that all σi1 , . . . , σik
cancel each other, i.e., there is a partition of {i1, . . . , ik} in some subsets,
such that for each of these subsets of indices the sum of the corresponding
coefficients aij , multiplied with a sign according to orientation of σij , adds
up to zero. This implies that Φ. is constant in the intersection of a small
neighborhood of x with the complement of K and, hence, also constant on
all of M − (M ′ ∪K).

We now prove that this constant does not depend on the representative
of the relative fundamental class. This implies that the constant must be 1,
since one can choose a triangulation as representative of the relative funda-
mental class.

If c and c′ are different representatives of [M,M ′], we have that c− c′ =
∂w + t for some w ∈ Cn+1 (M) and t ∈ Cn (M ′). Because ∂w is a cycle, the
same argument as above gives that Φ. (∂w) is a.e. constant on all of M . This
constant must be zero, since ∂w has compact support in the noncompact
manifold M . That means that Φx (c)−Φx (c′) = Φx (t) for almost all x ∈ M .
But Φx (t) = 0 for all x ∈ int (M −M ′). �

2.5. Convergence of fundamental cycles. A major point of the next
chapter will be to consider limiting objects of sequences of relative fun-
damental cycles of a finite-volume hyperbolic manifold M with l1-norms
converging to the simplicial volume. Since straight simplices have volume
smaller than Vn, there do not exist relative fundamental cycles actually
having l1-norm equal to 1

Vn
Vol (M). Hence, the limits of such sequences

can not be just singular chains. What we are going to do is to embed the
singular chain complex into a larger space, where any bounded sequence has
accumulation points. A straightforward idea would be to use the inclusion
j : Cn (M) → Cn (M) and to consider weak-∗ accumulation points in Cn (M).
This works perfectly well, however it is easy to see that the weak-∗ limits are
just trivial measures. The reason is roughly the following: A singular chain
with l1-norm close to 1

Vn
Vol (M) has to have a very large part of its mass on

simplices σ with vol (str (σ)) quite close to Vn. If we consider a compact set
of simplices, it will have some upper bound (better than Vn) on vol (str (.)).
Hence, it will contribute very little to an almost efficient fundamental cycle,
and the limiting measure will actually vanish on this set of simplices.

Therefore, to get nontrivial accumulation points, we are obliged to con-
sider the larger space of simplices which might be ideal, i.e., whose lifts to
Hn might have vertices in ∂∞Hn. This, however, raises another problem:
The space of ideal simplices in M = Γ\Hn is not Hausdorff, and there is
no theorem guaranteeing existence of weak-∗ accumulation points for signed
measures on non-Hausdorff spaces.



290 T. KUESSNER

(If M = Γ\Hn has finite volume, then the action of Γ on ∂∞Hn has
dense orbits. Thus the quotient Γ\SSi (M) can not be Hausdorff as long
as SSi (M) contains degenerate simplices. We will show in Section 2.5.3,
however, that the action of Γ on the subspace of nondegenerate n-simplices
is properly discontinuous, i.e., after throwing away the degenerate simplices
we get a Hausdorff quotient. A similar idea seems to have been exploited
in the proof of Lemma 2.2 in [11] where the author restricted to a compact
subset of SSn (M), i.e., to simplices with a lower volume bound.)
2.5.1. Straightening alternating chains. The symmetric group Sn+1

acts on the standard n-simplex ∆n: Any permutation π of vertices can
be realised by a unique affine map fπ : ∆n → ∆n. For a singular sim-
plex σ : ∆n → M let alt(σ) :=

∑
π∈Sn+1

sgn (π) σfπ, and for a singu-
lar chain c =

∑r
j=1 ajσj define alt (c) := 1

(n+1)!

∑r
j=1 ajalt (σj). Clearly,

‖alt (c) ‖ ≤ ‖c‖.
For a simplex σ in Hn, we denote by Str(σ) the straight simplex with the

same vertices as σ (as in Section 2.1). A straight simplex in a hyperbolic
manifold M = Γ\Hn is the image of a straight simplex in Hn under the
projection p : Hn → Γ\Hn = M . For a simplex σ in M , its straightening
Str (σ) is defined as p (Str (σ̃)), where σ̃ is a simplex in Hn projecting to σ.
Since straightening in Hn commutes with isometries, the definition of Str (σ)
does not depend on the choice of σ̃.

Finally, the straightening of a singular chain c=
∑r

j=1 ajσj is defined as
Str (c) =

∑r
j=1 ajStr (σj). Str (c) is homologous to c, and clearly ‖Str (c) ‖ ≤

‖c‖ for any c ∈ C∗ (M). (Str (c) may possibly have smaller norm than c,
since different simplices can have the same straightenings.)

If M ′ ⊂ M is a convex subset (meaning that σ ⊂ M ′ implies str (σ) ⊂ M ′),
then Str : C∗ (M,M ′) → C∗ (M,M ′) is well-defined.
2.5.2. Nondegenerate chains. Let M be a hyperbolic manifold. We call
a straight i-simplex σ : ∆i → N degenerate if two of its vertices are mapped
to the same point, nondegenerate otherwise.

For M ′ ⊂ M a convex subset of M , we consider algvol : Cn (M,M ′) →
R which maps σ ∈ Cn (M) to the algebraic volume (see [2], p. 107) of
str (σ)∩(M −M ′). (Since M ′ is convex, algvol is well-defined on the relative
chain complex.) It follows from Stokes theorem that we get an induced map
algvol∗ : Hn (M,M ′; R) → R.

Lemma 2.5. Let M be a hyperbolic n-manifold, M ′ a convex subset such
that algvol : Hn (M,M ′; R) → R is an isomorphism. Let

∑
i∈I aiσi ∈

Cn (M,M ′; R) be a straight relative n-cycle. Then there is a subset of in-
dices J ⊂ I such that all σj with j ∈ J are nondegenerate and

∑
j∈J ajσj is

relatively homologous to
∑

i∈I aiσi.

Proof. Let K := {k ∈ I : σk degenerate} be the set of indices of degener-
ate simplices occuring in

∑
i∈I aiσi. We claim that

∑
k∈K akσk is a relative
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cycle. Indeed, the degenerate faces of
∑

k∈K akσk cancel each other (rela-
tively), since they cancel in ∂

(∑
i∈I aiσi

)
and they can not cancel against

faces of nondegenerate simplices. Moreover, the nondegenerate faces of de-
generate simplices cancel anyway: If (a, v1, . . . , vn) and (b, v1, . . . , vn) are
nondegenerate faces of a degenerate simplex, then necessarily a = b. Thus
this face contributes twice to the boundary, with opposite signs.

We have obtained that
∑

k∈K akσk is a relative cycle. But, since all σk

are degenerate, they have vanishing volume, and we have that the relative
homology class

[∑
k∈K akσk

]
∈ ker (algvol∗) = 0 (since algvol∗ is an iso-

morphism, by assumption), i.e.,
∑

k∈K akσk ∈ ker (algvol) = 0 is a relative
boundary. Then choose J = I −K. �

In conclusion, if M ′ ⊂ M convex and n = dim (M), then to any relative
n-cycle c ∈ Cn (M,M ′; R) we find c′ ∈ Cn (M,M ′; R) homologous to c in
C∗ (M,M ′; R), such that ‖c′‖ ≤ ‖c‖ and c′ is an alternating linear combina-
tion of nondegenerate straight simplices.

2.5.3. Straight chains as measures. We explained in 2.3 that singular
chains may be considered as measures on the space of singular simplices, thus
getting a homomorphism C∗ (M ; R) → C∗ (M). As we said, to get nontrivial
results, we should consider not only C∗ (M), but measures on the space of
possibly ideal simplices. Since it is hard to prove existence of accumulation
points in this measure space, we will consider measures on smaller sets of
simplices.

Let M be a hyperbolic manifold. The set of nondegenerate, possibly ideal,
straight i-simplices in M = Γ\Hn is

SSi (M) := Γ\
{
(p0, . . . , pi) : p0, . . . , pi ∈ Hn, pj 6= pk if j 6= k

}
,

where g ∈ Γ acts by g (p0, . . . , pn) = (gp0, . . . , gpn).
Denote M (SSi (M)) the space of signed regular measures on SSi (M).

Straight singular chains c =
∑r

j=1 ajσj ∈ Ci (M ; R), with all σj nondegen-
erate, can be considered as discrete signed measures on SSi (M) defined
by

c (B) =
∑

{j:σj⊂B}

| aj |

for any Borel set B ⊂ SSi (M).
Let n = dim (M). To apply Alaoglu’s theorem to M (SSn (M)), we need

to know that SSn (M) is locally compact (which is obvious) and metrizable.

Lemma 2.6. Let M be a hyperbolic manifold of dimension n ≥ 3. Then
SSn (M) is metrizable.

Proof. We have to show that Γ-orbits on Πn
j=0Hn −D are closed, D being

the set of degenerate straight simplices. On the complement of Πn
j=0∂∞Hn

this follows from proper discontinuity of the Γ-action on Hn.
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Now we assume n ≥ 3. To any n-tuple (v0, . . . , vn−1) ∈ Πn−1
j=0 ∂∞Hn of

distinct points corresponds a unique vn ∈ ∂∞Hn such that (v0, . . . , vn) is a
positively oriented regular ideal n-simplex. (If n = 2, then vn is not uniquely
determined.) Together with 2.1, we get a Γ-equivariant homeomorphism
Πn−1

j=0 ∂∞Hn −D → Isom+ (Hn). Since Γ\Hn is a manifold, we know that Γ
acts properly discontinuously on Isom+ (Hn), thus also on Πn−1

j=0 ∂∞Hn −D.
This implies of course that it acts properly discontinuously on Πn

j=0∂∞Hn−
D. Thus, Γ-orbits are closed. �

3. Degeneration.

3.1. Efficient fundamental cycles. For a closed hyperbolic manifold M ,
we know that ‖M‖ = 1

Vn
Vol (M). This means that, for any ε > 0, there is

some fundamental cycle cε satisfying ‖cε‖ ≤ ‖M‖+ ε
Vn

. By 2.5.1 and 2.5.2,
we can choose cε to be an alternating chain consisting of nondegenerate
straight simplices, without increasing the l1-norm. To speak about lim-
its of sequences of cε, one has to regard them as elements of some locally
compact space, namely the space of signed Radon measures on SSn (M) =
Γ\

(
Πn

j=0Hn −D
)

with the weak-∗-topology, as in 2.5.3.
Jungreis’ results from [11], for closed hyperbolic manifolds of dimension

≥ 3, can be rephrased as follows:

– Any sequence of cε as above, with ε → 0, converges,
– the limit is a signed measure µ, which is supported on the set of regular

ideal simplices (to be identified with Isom (Hn)), and
– up to a multiplicative factor one has µ = µ+ − µ− with µ+ the Haar

measure on Isom+ (Hn) and µ− = r∗µ+ for an arbitrary orientation
reversing r ∈ Isom (Hn).

The aim of this chapter is to generalize these results to finite-volume
hyperbolic manifolds. For these cusped hyperbolic manifolds, there arises
a technical problem: We wish to consider chains representing the relative
fundamental class of a manifold with boundary, but we have a hyperbolic
metric (and a notion of straightening) only on the interior. In the following,
we will get around this problem and analyse the possible limits:

Let M be a compact n-manifold with boundary ∂M such that int (M)
carries a hyperbolic metric of finite volume. With respect to this hyper-
bolic metric, denote M[a,b] := {x ∈ int (M) : a ≤ inj (x) ≤ b}. It is a well-
known consequence of the Margulis lemma ([2], D.3.12.) that, for suffi-
ciently small ε > 0, the ‘ε-thin part’ M[0,ε] is a product neighborhood of
∂M , i.e., homeomorphic to ∂M × [0,∞). Thus, one has a retraction rε from
M to the ‘ε-thick part’ M[ε,∞] which induces a homeomorphism of pairs
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rε : (M,∂M) →
(
M[ε,∞], ∂M[ε,∞]

)
and, thus, an isomorphism

rε∗ : H∗ (M,∂M) → H∗
(
M[ε,∞], ∂M[ε,∞]

)
.

(This applies to all ε < ε0, where ε0 depends on M .)
It should be noted that M[0,ε] is convex and that one has the isomorphism

algvol : Hn

(
M,M[0,ε]; R

)
→ R.

Convexity of M[0,ε] implies that the straightening homomorphism

Str : C∗
(
int (M) ,M[0,ε]

)
→ C∗

(
int (M) ,M[0,ε]

)
is well-defined and induces an isomorphism in relative homology. Moreover,
there is the inclusion

exc : C∗
(
M[ε,∞], ∂M[ε,∞]

)
→ C∗

(
int (M) ,M[0,ε]

)
,

which induces an isomorphism in homology by the excision theorem. In
conclusion,

Str (exc (rε∗.)) : Cn (M,∂M ; R) → Cn

(
int (M) ,M[0,ε]; R

)
induces an isomorphism in homology and does not increase l1-norms.

Let, for ε < ε0, cε ∈ Cn (M,∂M ; R) be some relative fundamental cycle
satisfying

‖cε‖ ≤ ‖M,∂M‖+
ε

Vn
.

By the above arguments, we may replace cε by

Str (exc (rε∗cε)) ∈ Cn

(
int (M) ,M[0,ε]; R

)
without increasing the l1-norm. Abusing notation, we will continue to denote
this new relative cycle by cε.

Definition 3.1. A signed measure µ on SSn (M) is called an efficient fun-
damental chain if there exists a sequence of ε with ε → 0 and a sequence of
cε ∈ Cn (M,∂M ; R) representing the relative fundamental class [M,∂M ],
which are alternating chains invoking only nondegenerate simplices and
which satisfy ‖cε‖ ≤ ‖M,∂M‖+ ε

Vn
, such that the sequence Str (exc (rε∗cε))

∈ Cn

(
int (int (M)) ,M[0,ε]; R

)
converges to µ in the weak-∗-topology of

M (SSn (M)), the space of signed measures on the space of straight nonde-
generate simplices.

Lemma 3.2. Assume that M is a manifold of dimension n ≥ 3, such that
int (M) admits a hyperbolic metric of finite volume. Then there is at least
one efficient fundamental chain.
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Proof. Considering some sequence of cε with ε → 0, we may by Lemma 2.5
assume that the support of the cε consists of only straight nondegenerate
simplices. Str (exc (rε∗cε)) may be regarded as a sequence of signed measures
on the locally compact metric space SSn (M), see 2.5.3. The sequence cε

is bounded by its definition and, hence, Lemmas 2.2 and 2.6 guarantee the
existence of a weak-∗-accumulation point µ. (The condition n ≥ 3 is needed
to apply Lemma 2.6.) �

We recall that excision and straightening, as well as the homeomorphism
rε induce isomorphisms in relative homology. Hence, any new cε represents
the relative fundamental class in Hn

(
int (M) ,M[0,ε]; R

)
. As a special case

of Lemma 2.4 we have:

Lemma 3.3. Let cε be a representative of the relative fundamental class[
int (M) ,M[0,ε]

]
. Then Φx (cε) = 1 holds for almost all x ∈ M[ε,∞].

Definition 3.4. For a hyperbolic manifold M , let Sδ ⊂ SSn (M) be the set
of nondegenerate straight simplices σ ∈ M with vol (σ) < Vn − δ.

Lemma 3.5. An efficient fundamental chain µ is supported on SSn (M)−
S0, i.e., on the set of straight simplices of volume Vn.

Proof. It suffices to show that µ (Sδ) = 0 holds for any δ > 0. By Lemma 2.2,
(ii), and openness of Sδ, this follows if we can prove limε→0 cε (Sδ) = 0 for
any δ > 0. Here, cε =

∑r
j=1 ajσj is the sequence from Definition 3.1.

From Lemma 3.3, we conclude
∫
M Φx (cε) dvol (x) ≥ Vol

(
M[ε,∞]

)
. But∫

M Φx (cε) dvol (x) =
∑r

j=1 aj

∫
M Φx (σj) dvol (x) =

∑r
j=1 aj algvol (σj),

where algvol(σj) is Vol(σj) with a sign according to orientation. As a con-
sequence: ∑

| aj | Vol (σj) ≥ Vol
(
M[ε,∞]

)
.

On the other hand, we want cε =
∑r

j=1 ajσj to satisfy Vn
∑

| aj |≤
Vol (M) + ε. Subtracting the two inequalities yields∑

| aj | (Vn −Vol (σj)) ≤ ε + Vol
(
M[0,ε]

)
.

We get

ε + Vol
(
M[0,ε]

)
≥

∑
| aj | (Vn − V ol (σj))

=
∑

j:Vol(σj)≥Vn−δ

| aj | (Vn − V ol (σj))

+
∑

j:Vol(σj)<Vn−δ

| aj | (Vn − V ol (σj))
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≥
∑

j:Vol(σj)<Vn−δ

| aj | (Vn −Vol (σj))

≥ δ
∑

j:Vol(σj)<Vn−δ

| aj |

= δcε (Sδ) .

Since limε→0 Vol
(
M[0,ε]

)
= 0, we conclude limε→0 cε (Sδ) = 0. �

We have just proved that, if cε is a representative of
[
int (M) ,M[0,ε]

]
satisfying Vn‖cε‖ ≤ Vol (M)+ ε, then limε→0 cε (Sδ) = 0 holds for any δ > 0.
Since ‖c±ε ‖ ≤ ‖cε‖ and

∫
M Φx (c±ε ) ≥ Vol

(
M[ε,∞]

)
, we can use the same

argument to prove that limε→0 c±ε (Sδ) = 0 holds for any δ > 0. This fact
will be used in the proof of the following lemma:

Lemma 3.6. Let µ be an efficient fundamental chain. Then µ 6= 0.

Proof. Choose a continuous f : SSn (M) → [0, 1], which vanishes on some
Sδ′ and is 1 on the complement of some Sδ. As f is compactly supported,
we have µ (f) = limε→0 cε (f). (Here we use that we are admitting ideal
simplices: Otherwise the support of f would not be compact.)

Now using limε→0 cε (Sδ) = 0 we have

µ± (f) = lim
ε→0

c±ε (f) ≥ lim
ε→0

c±ε (SSn (M))− c±ε (Sδ) = lim
ε→0

c±ε (SSn (M)) .

But c+
ε (SSn (M))+c−ε (SSn (M)) = ‖c+

ε ‖+‖c−ε ‖ = ‖cε‖ ≥ ‖M,∂M‖ implies
that one of limε→0 c±ε (SSn (M)) must be at least 1

2‖M,∂M‖, thus positive.
�

Lemma 3.7. Efficient fundamental chains µ are cycles, i.e., (∂µ)+ = (∂µ)−

= 0.

Proof. Denote by T i
ε (M) the set of (possibly ideal) i-simplices intersecting

M[ε,∞]. For all δ < ε, we get by the convexity of M[0,δ] ⊂ M[0,ε]:

B ⊂ Tn−1
ε (M) measurable ⇒ ∂c±δ (B) = 0.

When ∂µ± is a weak-∗ accumulation point of a sequence ∂c±δ , we conclude
∂µ± (B) = 0 for all measurable sets B contained in some Tn−1

ε (M) by Part
(ii) of Lemma 2.2, since we may consider them as subsets of an open set still
contained in some slightly larger Tn−1

ε (M).
But clearly, ∪∞k=1T

n−1
1
k

(M) is the set of all (even ideal) (n− 1)-simplices,

hence the claim of the lemma. �

Remark. In the case of closed manifolds, this lemma is, of course, an im-
mediate consequence of the fact that ‖∂‖ ≤ n + 1.
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∆0

r1∆0

r2∆0

g∆0

gr1∆0

3.2. Invariance under ideal reflection group. Since we have an order-
ing of the vertices of a simplex ∆, we can speak of the i-th face of ∆, the
codimension 1-face not containing the i-th vertex.

Definition 3.8. Fix a regular ideal simplex ∆0 ⊂ Hn and, for i = 0, . . . , n,
let ri be the reflection in the i-th face of ∆0. Let R ⊂ Isom (Hn) be the
subgroup generated by r0, . . . , rn and let R+ = R ∩ Isom+ (Hn).

We know that µ± are measure cycles supported on the set of regular ideal
simplices. By 2.1, we may consider µ± as measures on Γ\Isom (Hn), after
fixing some regular ideal simplex ∆0 in Hn.

We will use the convention that γ ∈ Isom (Hn) corresponds to the simplex
γ∆0, i.e., we let Isom (Hn), and in particular Γ, act from the left. It will
be important to note that, after this identification, the right-hand action of
R corresponds to the following operation on the set of simplices: ri maps a
simplex to the simplex obtained by reflection in the i-th face. This is clear
from the picture above.

Lemma 3.9. For n ≥ 3, efficient fundamental chains are invariant under
the right-hand action of R+ on Γ\Isom (Hn).

Note. If ∆ = g∆0 for some g ∈ Γ\Isom (Hn), then the reflection si in
the i-th face of ∆ maps ∆ = g∆0 to gri (∆0). In other words, the choice
of another reference simplex changes the identification with Isom (Hn) by
left multiplication with g ∈ Isom (Hn), but does not alter the right-hand
action of R+ on Isom (Hn). This implies that the truth of Lemma 3.9 is
independent of the choice of ∆0.

Lemma 3.9 follows from:

Lemma 3.10. In dimensions n ≥ 3, a signed alternating measure µ on the
set of maximal volume simplices is a cycle iff r∗i (µ) = −µ for all i = 0, . . . , n.
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Proof. If n ≥ 3, then for any ordered regular ideal (n− 1)-simplex τ , there
are exactly two ordered regular ideal n-simplices, τ+

i and τ−i , having τ as i-th
face. (By the way, this is besides Lemma 2.6 and its ‘corollary’ Lemma 3.2
the only point entering the proofs of our theorems which uses n ≥ 3.) We
fix them such that τ+

i is positively oriented. For a measurable set B ⊂
{ordered regular ideal (n− 1)-simplices} define

B+
i =

{
τ+
i : τ ∈ B

}
and B−

i =
{
τ−i : τ ∈ B

}
.

Since µ is supported on the set of regular ideal n-simplices, we have that

∂µ± (B) =
n∑

k=0

(−1)k µ±
(
∂−1

k (B)
)

=
n∑

k=0

(−1)k (
µ±

(
B+

k

)
+ µ±

(
B−

k

))
.

We may assume that µ is alternating, in particular π∗ikµ = (−1)i−k µ, where
πik is induced by the affine map realizing the transposition of the i-th and
k-th vertex. πik maps B+

i to B+
k and B−

i to B−
k . Therefore, for any i ∈

{0, . . . , n}, we get

∂µ± (B) =
n∑

k=0

(−1)k (−1)i−k (
π∗ikµ

± (
B+

k

)
+ π∗ikµ

± (
B−

k

))
=

n∑
k=0

(−1)i (µ± (
B+

i

)
+ µ

(
B−

i

))
= (−1)i (n + 1)

(
µ±

(
B+

i

)
+ µ±

(
B−

i

))
.

In particular ∂µ (B) = 0 holds if and only if µ
(
B+

i

)
= −µ

(
B−

i

)
for i =

0, . . . , n.
The action of ri maps B+

i bijectively to B−
i and vice versa. This implies

the ‘if’-part of Lemma 3.10.
To get the ‘only if’-part, we use that ∂µ = 0 implies that r∗i µ

(
B±

i

)
=

−µ
(
B±

i

)
holds, for any set B ⊂ {ordered regular ideal (n− 1)-simplices}.

Now let C ⊂ {ordered regular ideal n-simplices} be an arbitrary set. We
divide C = C+∪C−, where C+ = {σ ∈ C : σ positively oriented }. Consider
B := {∂iσ : σ ∈ C+}. (i is arbitrary, e.g., i = 0.) Then we have B+

i = C+,
because for any ordered regular ideal (n−1)-simplex ∂iσ ∈ B, σ is the unique
positively oriented ordered regular ideal n-simplex having ∂iσ as its i-th face.
Thus µ (C+) = −r∗i (C+). The same way one gets µ (C−) = −r∗i µ (C−), thus
µ (C) = −r∗i µ (C). Since C was arbitrary, this proves the ‘only if’-part. �

Remark. A different proof of the same fact is given in Lemma 2.2 of [11].
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4. Decomposition of efficient fundamental cycles.

If n ≥ 4, then the group generated by reflections in the faces of a regular ideal
n-simplex in Hn is dense in Isom (Hn). We get therefore from Lemma 3.9
that efficient fundamental cycles are invariant under the right-hand action
of Isom+ (Hn). This implies that they are a multiple of Haar − r∗Haar,
where Haar is the Haar measure on Isom+ (Hn). (It is well-known that all
invariant measures on a Lie group are multiples of the Haar measure.)

In the following we will discuss the case n = 3.
We wish to recall some facts from the ergodic theory of unipotent

actions.
The Iwasawa decomposition G = KAN of G = Isom+ (Hn) is as follows:

Fix some v∞ ∈ ∂∞Hn and some p ∈ Hn. Then we may take K to be the
group of isometries fixing p, A the group of translations along the geodesic
through p and v∞, and N the group of translations along the horosphere
through p and v∞.

We will consider the natural right-hand action of N on G = KAN .
The next lemma follows from [5]. It is nowadays a special case of the

Ragunathan conjecture, which was proved by Ratner.

Lemma 4.1. Let G=KAN be the Iwasawa decomposition of a simple Lie
group of R-rank 1, and Γ ⊂ G a discrete subgroup of finite covolume. If µ
is a finite N-invariant ergodic measure on Γ\G, then µ is either a multiple
of the Haar measure or it is supported on a compact N -orbit.

The following lemma is a straightforward generalisation of Theorem 4.4.
in [6]:

Lemma 4.2. Let G=KAN be the Iwasawa decomposition of a simple Lie
group of R-rank 1, and Γ ⊂ G a discrete subgroup of finite covolume. Let
N ′ ⊂ N be a closed subgroup such that N/N ′ is compact. Then any N ′-
invariant ergodic measure on Γ\G is either a multiple of the Haar measure
or is supported on a compact N -orbit.

Proof. We will use several times the following basic fact: If G1 and G2 are
subgroups of a group G endowed with a measure µ, then the left action
of G1 on G/G2 is ergodic if and only if the right action of G2 on G1\G is
ergodic. (This is known as Moore-equivalence.)

By Moore-equivalence, ergodic measures for the N ′-action on Γ\G corre-
spond to ergodic measures for the action of Γ on G/N ′. Consider, there-
fore, µ as a measure on G/N ′, ergodic with respect to the Γ-action. Let
pr : G/N ′ → G/N be the projection. Since N/N ′ is compact, we have a
locally finite measure pr∗µ on G/N which is easily seen to be ergodic with
respect to the Γ-action. By Lemma 4.1 and Moore-equivalence, pr∗µ must
either be the Haar measure or correspond to an N -invariant measure on
Γ\G which is determined on a compact orbit Γ\ΓgN ⊂ Γ\G.
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If pr∗µ = Haar measure, it follows easily that µ is absolutely continuous
with respect to the Haar measure and then one gets, from ergodicity of the
Γ-action (Theorem 7 in [14]), that µ is a multiple of the Haar measure.

In the second case, pr∗µ must be supported on the Γ-orbit of some gN ∈
G/N . Therefore, µ is supported on the Γ × N -orbit of gN ′ ∈ G/N ′. By
Moore-equivalence we get a measure supported on the compact N -orbit. �

Lemmas 4.1 and 4.2 apply in particular to G = Isom+ (Hn) with the
Iwasawa decomposition described above.

Back to the situation of Section 3.2. Let v be an ideal vertex of the
reference simplex ∆0. Let Nv ⊂ Isom+

(
H3

)
be the subgroup of parabolic

isometries fixing v. We may consider Nv as the N -factor in the Iwasawa
decomposition Isom+

(
H3

)
= KvAvNv. (That means we use v and some

arbitrary p ∈ H3 to construct the Iwasawa decomposition. In the following,
we will fix some arbitrary p ∈ H3 but consider various v ∈ ∂∞H3, therefore
the labelling of the Iwasawa decompositions.)

Instead of R+ defined in Section 3.2, we consider only the subgroup T ′v ⊂
R+ ⊂ Isom+

(
H3

)
generated by products of even numbers of reflections in

those faces of ∆0 which contain v. µ is, of course, also invariant under the
smaller group T ′v. In [11] it is shown that T ′v contains a subgroup Tv which
is a cocompact subgroup of Nv (if n = 3).

The signed measure µ decomposes as a difference of two (nonnegative)
measures µ+ and µ−. Both are invariant under the right-hand action of
Tv. From Lemma 2.1, we get that the probability measures µ±, obtained by
rescaling the restrictions of µ± to Γ\Isom+

(
H3

)
, have decomposition maps

with respect to the action of Tv,

β±v : Γ\Isom+
(
H3

)
→ E .

Here, E is the set of ergodic Tv-invariant measures on Γ\Isom+
(
H3

)
. From

Lemma 4.2, we get that E consists of Haar (the Haar measure, rescaled to a
probability measure) and measures determined on compact Nv-orbits. The
following lemma is well-known:

Lemma 4.3. An orbit gNv is compact in Γ\Isom (Hn) iff all simplices gh∆0

with h ∈ Nv have its ideal vertex g (v) in a parabolic fixed point of Γ.

Proof. Parametrise elements of Nv as u (s) , s ∈ Rn−1 (identifying a
stabilized horosphere with euclidean (n − 1)-space). The Nv-orbit of g on
Γ\Isom (Hn) is compact if and only if, for all s ∈ Rn−1, one finds γ ∈ Γ and
t ∈ R such that gu (ts) = γg. This γ is then conjugated to u (ts) and, in
particular, is parabolic, i.e., has only one fixed point. The fixed point of γ
must be g (v), since γg (v) = gu (ts) (v) = g (v).

The other implication is straightforward. �
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To summarize, we have the following statement: For any vertex v of the
reference simplex ∆0, the ergodic decomposition of the rescaled µ± with
respect to the right-hand action of Tv uses the Haar measure and measures
determined on the set of those simplices g∆0 which have the vertex g (v) in
a parabolic fixed point of Γ.
4.1. Manifolds which are not Gieseking-like.

Definition 4.4. A 3-manifold is Gieseking-like if it has a hyperbolic struc-
ture M = Γ\H3 of finite volume such that Q (ω)∪{∞} ⊂ ∂∞H3 are parabolic
fixed points of Γ.

Here, we have used the upper half space model of H3, and identified the
ideal boundary with C ∪ {∞}. ω = 1

2 +
√
−3
2 is the 4th vertex of a regular

ideal simplex with vertices 0, 1,∞. The condition is, of course, equivalent
to the condition that Γ is conjugate to a discrete subgroup of PSL2Q (ω)
after the identification of Isom+

(
H3

)
with PSL2C. One does not seem to

know any example of a Gieseking-like manifold which is not a finite cover
of the Gieseking manifold (communicated to the author by Alan Reid, see
also [13]).

Theorem 4.5. Let M be a compact manifold of dimension n ≥ 3 such that
int (M) admits a hyperbolic metric of finite volume. Assume that M is either
of dimension ≥ 4 or that M is of dimension 3 and is not Gieseking-like.

If µ is an efficient fundamental cycle on M , then µ = K (Haar− r∗Haar)
for some real number K.

Proof. By the first remark of Chapter 4, we may restrict to dimension 3. We
have to exclude the existence of a signed measure ν which is supported on
the set of regular ideal simplices with vertices in cusps and which satisfies
r∗ν = ±ν for all r ∈ R. However, the existence of such a nontrivial signed
measure would imply the existence of an R-invariant family {∆r : r ∈ R}
of simplices with vertices in the cusps of M = Γ\H3. By 2.1, there is
g ∈ Isom

(
H3

)
with ∆ = g∆0, where ∆0 is the ideal simplex with vertices

0, 1,∞, ω in the upper half-space model. We get that all vertices of the form
gv∞r with r ∈ R and v∞ one of 0, 1,∞, ω must be parabolic fixed points
of Γ. Note that {v∞r : v∞ ∈ {0, 1, ω,∞} , r ∈ R} = Q (ω) ∪ {∞}. Thus,
conjugating Γ with g we get a hyperbolic structure with all of Q (ω) ∪ {∞}
as parabolic fixed points. �

5. Cycles not transversal to geodesic surfaces.

In the last section, we classified efficient fundamental cycles on finite-volume
hyperbolic manifolds which are not Gieseking-like. In this chapter, we will
see that for arbitrary (possibly Gieseking-like) finite-volume hyperbolic man-
ifolds we can still obtain information which in Chapter 6 will be used to
derive glueing inequalities.
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Definition 5.1. For a hyperbolic manifold M and a two-sided totally geo-
desic codimension-1 submanifold F ⊂ M call:

– Si
cusp the set of positively oriented ideal i-simplices with all vertices in

parabolic fixed points of M , and
– Si

F the set of (possibly ideal) positively oriented i-simplices that inter-
sect F transversally.

Here, a simplex σ is said to intersect F transversally if it intersects both
components of any regular neighborhood of F .

Lemma 5.2. If M is a hyperbolic manifold and F is a two-sided totally
geodesic codimension-1-submanifold, then

Sn
F ∩ {regular ideal simplices} ⊂ {regular ideal simplices}

has positive Haar measure.

Proof. It is easy to see that Sn
F ∩ {regular ideal simplices} is an open,

nonempty subset of {regular ideal simplices}. �

Theorem 5.3. Let M be a compact manifold of dimension n ≥ 3 such that
int (M) admits a hyperbolic metric of finite volume, and let F ⊂ M be a
closed totally geodesic codimension-1-submanifold.

If µ is an efficient fundamental cycle (with µ+ |Γ\Isom+(Hn) 6= 0), then
µ+ (Sn

F ) 6= 0.

Proof. Very roughly, the idea is the following: If µ+ (Sn
F ) vanishes, then the

Haar measure can only give a zero contribution to the ergodic decomposition
of µ+, hence, µ+ is supported on Sn

cusp. In particular, µ+ vanishes on the
set of simplices with boundary faces in F , and this will give a contradiction.

Rescale µ+ |Γ\Isom+(Hn) to a probability measure µ+.
Assume for some totally geodesic surface F we had µ+ (Sn

F ) = µ+ (Sn
F ) =

0.
Let v be a vertex of the reference simplex ∆0. Using the ergodic decom-

position with respect to the Tv-action on Γ\G = Γ\Isom+ (Hn) yields

0 = µ+ (Sn
F ) =

∫
Γ\G

βv (g) (Sn
F ) dµ+ (g)

≥
∫

g∈Γ\G:βv(g)=Haar
βv (g) (Sn

F ) dµ+ (g)

=
∫

g∈Γ\G:βv(g)=Haar
Haar (Sn

F ) dµ+ (g)

= Haar (Sn
F )

∫
g∈Γ\G:βv(g)=Haar

dµ+ (g) .
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By Lemma 5.2, Haar (Sn
F ) 6= 0 and, thus,∫
g∈Γ\G:βv(g)=Haar

dµ+ (g) = 0.

We will conclude that µ+ is supported on Sn
cusp by means of Lemma 5.5,

which we state separately because it will be of independent use in Chapter 7.

Definition 5.4. Let Γ ⊂ G = Isom+ (Hn) be a cocompact discrete sub-
group, v ∈ ∂∞Hn, Tv ⊂ Isom+ (Hn) the subgroup defined in Chapter 4
and β a decomposition map for the right-hand action of Tv, as defined in
Chapter 4. Define

Hv = {g ∈ Γ\G : βv (g) = Haar} .

Lemma 5.5. Let v0, . . . , vn be the vertices of a regular ideal simplex in Hn

and µ+ a probability measure on Γ\G := Γ\Isom+ (Hn), invariant with re-
spect to the right-hand action of R+. If µ+ (Hvi) = 0 for i = 0, . . . , n, then
µ+ is supported on Sn

cusp.

Proof. Let
Ai = {g ∈ Γ\G : gvi is cusp of Γ}

and
Bi = {g ∈ Γ\G : Γ\ΓgNvi is compact} .

We have

Γ\G− Sn
cusp = Γ\G− ∪n

j=0Aj = Γ\G− ∪n
j=0Bj = ∩n

j=0Γ\G−Bj ,

where the second equality holds by Lemma 4.3.
If e is a Tvi-ergodic measure supported on a compact Nvi-orbit, then

e (Γ\G−Bi) = 0.

Thus (abbreviating βg := βvi (g)),

µ+ (Γ\G−Bi)

=
∫

Γ\G
βg (Γ\G−Bi) dµ+ (g)

=
∫

Hvi

βg (Γ\G−Bi) dµ+ (g) +
∫

Γ\G−Hvi

βg (Γ\G−Bi) dµ+ (g)

= Haar (Γ\G−Bi) µ+ (Hvi) +
∫

Γ\G−Hvi

βg (Γ\G−Bi) dµ+ (g)

= Haar (Γ\G−Bi) 0 +
∫

Γ\G−Hvi

0 dµ+ (g)

= 0
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and, therefore,

µ+
(
Γ\G− Sn

cusp

)
= µ+ (∪n

i=0Γ\G−Bi)

≤
n∑

i=0

µ+ (Γ\G−Bi) = 0.

�

We are now going to finish the proof of Theorem 5.3:

We know (from the proof of Lemma 3.3) that Φx (c+
ε ) ≥ Φx (cε) ≥ 1

for all x ∈ M[ε,∞]. F is a closed totally geodesic hypersurface. Therefore
F ⊂ M[ε,∞] for sufficiently small ε. We conclude Φx (c+

ε ) ≥ 1 for all x ∈ F .
For x ∈ M let Sn

x be the set of straight n-simplices ∆ containing x in
their image. If x ∈ F is contained in the totally geodesic submanifold F ,
then Sn

x is the union of the following two sets of simplices:
– Simplices in Sn

x which intersect F transversally, and
– simplices in Sn

x which have a vertex in F .
µ+ vanishes on the second set, since it is determined on Sn

cusp and the
closed totally geodesic hypersurface F can not have cusps. Thus, we obtain

µ+ (Sn
x ) = µ+ (Sn

F ∩ Sn
x ) ≤ µ+ (Sn

F ) ,

i.e., it suffices to show that µ+ (Sn
x ) > 0.

For a measure µ+ on SSn (M), let ΦX (µ+) =
∫
SSn(M) Φx (σ) dµ+ (σ),

where Φx (σ) is given in Definition 2.3. Weak-∗-convergence implies Φx (µ+)
= limε→0 Φx (c+

ε ) ≥ 1.
On the other hand, Φx (σ) = 0 if σ 6∈ Sn

x , hence

Φx

(
µ+

)
=

∫
Sn

x

Φx (σ) dµ+ (σ) .

If µ+ (Sn
x ) = 0, then Φx (µ+) =

∫
Sn

x
Φx (σ) dµ+ (σ) = 0 (regardless whether

Φx is bounded or not), giving a contradiction. Thus µ+ (Sn
x ) > 0, implying

µ+ (Sn
F ) > 0. �

Remark. If µ+ |Isom+(Hn)= 0, then µ− |Isom+(Hn) 6= 0 because of Lemma 3.6
and Lemma 3.10, and we get with an analogous proof µ− (Sn

F ) 6= 0.

6. Acylindrical hyperbolic manifolds.

In this chapter we extend Corollary 1 from [11] to manifolds with cusps.
If M is a hyperbolic manifold, define its convex core to be the smallest

closed convex subset CM of M such that the embedding CM → M is a
homotopy equivalence. CM is either contained in a geodesic codimension
1 submanifold, or it is a codimension 0 submanifold with boundary ∂CM .
(If dim (M) = 3, then ∂CM is, in general, a pleated surface (see [19]), i.e.,
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is almost everywhere totally geodesic and is bent along a family of disjoint
geodesics.) We say that M has totally geodesic boundary if CM is homeo-
morphic to M and ∂CM is a nonempty totally geodesic submanifold of M .
Note that we admit that CM may have cusps. If M is an orientable geomet-
rically finite hyperbolic 3-manifold (with CM not contained in a geodesic
codimension 1 submanifold), then ∂CM is homeomorphic to the union of
all non-torus components of the topological boundary ∂M . This applies in
particular to any hyperbolic 3-manifold M with totally geodesic boundary
∂CM .

Although hyperbolic structures of infinite volume are not necessarily rigid,
it follows easily from Mostow’s rigidity theorem that on a manifold of dimen-
sion ≥ 3, there can be at most one hyperbolic metric g0 admitting totally
geodesic boundary, up to isometry. In particular, the volume of the convex
core with respect to the metric g0 is a topological invariant. Actually, it
was shown in [3] that g0 minimizes the volume of the convex core among all
hyperbolic metrics on M.

Lemma 6.1. Let M be a compact 2-manifold with boundary ∂M = ∂0M ∪
∂1M , such that M − ∂0M admits an incomplete hyperbolic metric of finite
volume with ∂1M totally geodesic and the ends corresponding to ∂0M com-
plete. Then

‖M,∂M‖ =
1
V2

Vol (M) .

Proof. It is well-known that any (possibly bounded) surface of nonpositive
Euler characteristic satisfies ‖M,∂M‖ = −2χ (M). By the Gauß-Bonnet-
formula, this is the same as 1

πVol (M) = 1
V2

Vol (M). �

Corollary 6.2. Let n ≥ 3 and let M be a compact n-manifold with boundary
∂M = ∂0M ∪ ∂1M , such that M − ∂0M admits an incomplete hyperbolic
metric of finite volume with ∂1M totally geodesic and the ends corresponding
to ∂0M complete. Then,

‖M,∂M‖ >
1
Vn

Vol (M) .

Proof. ‖M,∂M‖ ≥ 1
Vn

Vol (M) follows from the familiar argument that fun-
damental cycles can be straightened to invoke only simplices of volume
smaller than Vn or, equivalently, from the trivial inequality ‖DM‖ ≤
2‖M, ∂M‖.

Suppose we had equality ‖M,∂M‖ = 1
Vn

Vol (M). Glue two differently
oriented copies of M via id |∂M to get N = DM . The incomplete metrics
can be glued along the totally geodesic boundary and, hence, we have that
N is a complete hyperbolic manifold of finite volume Vol (N) = 2Vol (M).
A relative fundamental cycle for M of norm smaller than 1

Vn
Vol (M) + ε

2
fits together with its reflection to give a relative fundamental cycle cε on N
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of l1-norm smaller than 2 1
Vn

Vol (M) + ε = 1
Vn

Vol (N) + ε, but consisting of
simplices which do not intersect transversally the totally geodesic surface
∂M ⊂ N , i.e., c±ε (Sn

∂M ) = 0.
Recall that a representative cε of [N, ∂N ] was used in Chapter 3 to get a

representative Str (exc (rε∗c
±
ε )) of

[
int (N) , N[0,ε]

]
with (at most) the same

l1-norm. Here rε : (N, ∂N) →
(
N[ε,∞], ∂N[ε,∞]

)
was a homeomorphism, exc

was the canonical inclusion, and Str means straightening. c±ε (Sn
∂M ) = 0 im-

plies Str (exc (rε∗c
±
ε )) (Sn

∂M ) = 0, because rε can be choosen to be the iden-
tity in a neighborhood of the totally geodesic hypersurface ∂M ⊂ N (which
belongs to the thick part if ε is small enough), and because straightening
in N = DM preserves the set of simplices not intersecting transversally the
totally geodesic surface ∂M .

By Lemma 3.2, we have some accumulation point µ of Str (exc (rε∗cε)) for
a sequence of ε tending to zero. Similarly to Lemma 5.2, it is easy to see
that Sn

∂M is open in SSn (N). Hence, we can apply Part (ii) of Lemma 2.2
to get µ+ (Sn

∂M ) = 0. But this contradicts Theorem 5.3. �

Theorem 6.3.
(a) Let n ≥ 3 and let Mi, i = 1, 2 be compact n-manifolds with boundaries

∂Mi = ∂0Mi∪∂1Mi, such that Mi−∂0Mi admit incomplete hyperbolic
metrics of finite volume with ∂1Mi totally geodesic and the ends cor-
responding to ∂0Mi complete. If ∂′1Mi ⊂ ∂1Mi are nonempty sets of
connected components of ∂1Mi, f : ∂′1M1 → ∂′1M2 is an orientation-
reversing isometry, and M = M1 ∪f M2, then

‖M,∂M‖ < ‖M1, ∂M1‖+ ‖M2, ∂M2‖.
(b) Let n ≥ 3 and let M0 be a compact n-manifold with boundary ∂M0 =

∂0M0 ∪ ∂1M0, such that M0 − ∂0M0 admits an incomplete hyperbolic
metric of finite volume with ∂1M0 totally geodesic and the ends corre-
sponding to ∂0Mi complete. If ∂′1M0 ⊂ ∂1M0 is a nonempty set of con-
nected components of ∂1M0, and f : ∂′1M0 → ∂′1M0 is an orientation-
reversing isometry of ∂′1M0 exchanging the connected components by
pairs, then, letting M = M0/f ,

‖M,∂M‖ < ‖M0, ∂M0‖.

Proof. (a) The incomplete hyperbolic metrics on M1 and M2 glue together
to give a complete hyperbolic metric on M of volume Vol (M) = Vol (M1) +
Vol (M2). By the Gromov-Thurston theorem, we know that ‖M,∂M‖ =
1

Vn
Vol (M) and, by Corollary 6.2, we have ‖Mi, ∂Mi‖ > 1

Vn
Vol (Mi). The

claim follows.
The proof of (b) is similar. �

If ∂Mi has dimension ≥ 3, any homeomorphism is homotopic to an isom-
etry, by Mostow rigidity. We conclude:
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Corollary 6.4. Let n ≥ 4, and let M1,M2,M0 and ∂′1Mi satisfy all as-
sumptions of Theorem 6.3.

If f : ∂′1M1 → ∂′1M2 is a homeomorphism, then

‖M1 ∪f M2, ∂ (M1 ∪f M2) ‖ < ‖M1, ∂M1‖+ ‖M2, ∂M2‖.

If f : ∂′1M0 → ∂′1M0 is an orientation-reversing homeomorphism of ∂′1M0

exchanging the boundary components by pairs, then

‖M0/f, ∂ (M0/f) ‖ < ‖M0, ∂M0‖.

7. Branching of laminations.

We are going to extend results of [4] to manifolds with cusps (which are not
Gieseking-like).

In this chapter, we always consider foliations/laminations of codimension
1.

For more background on the Gromov norm of foliations (and foliations in
general), we refer to [4].

Definition 7.1. Let M be a manifold, possibly with boundary, and F a
lamination of M. Define

‖M,∂M‖F := inf

{
r∑

i=1

| ai |:
r∑

i=1

aiσi ∈ [M,∂M ] , σi transverse to F

}
.

Here, a simplex σ is said to be transverse to the lamination F , if the
induced lamination F |σ is topologically conjugate to the subset of a foliation
of σ by level sets of an affine map f : σ → R.

A typical example for non-transversality of a tetrahedron ∆ to a lamina-
tion F is the following: Let e1, e2, e3 be the three edges of a face τ ⊂ ∆. If
F |τ contains three lines which connect respectively e1 to e2, e2 to e3 and
e3 to e1, then ∆ can not be transverse to F .

Remark. If F is not transverse to ∂M nor contains ∂M as a leaf, then
‖M,∂M‖F = ∞. Otherwise the foliated Gromov norm is finite. In the
following, we will always assume that either F is transverse to ∂M or that
∂M is a leaf of F .

7.1. Laminations with no or one-sided branching. Recall that a codi-
mension 1 lamination F of an n-manifold M is a decomposition of a closed
subset λ ⊂ M into codimension 1 submanifolds (leaves) so that M is cov-
ered by charts of the form In−1 × I, the intersection of a leaf with a chart
being of the form In−1 × {∗}. A lamination F of a 3-manifold M with
image λ ⊂ M is called essential if no leaf is a sphere or a torus bound-
ing a solid torus, M − λ is irreducible, and ∂M − λ is incompressible and
end-incompressible in M − λ, where the closure of M −λ is taken w.r.t. any
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metric (see [8], Ch.1). E.g., if M is a 3-manifold and F a foliation without
Reeb components, this is an essential lamination.

To motivate the following results about the relation between foliated Gro-
mov norm and branching of laminations, we recall a notion from [8]. An
order tree is a set T together with a collection S of linearly ordered seg-
ments σ, each having distinct least and greatest elements, e (σ) and i (σ),
respectively, satisfying the following conditions:

– If σ ∈ S, then −σ ∈ S (the set σ with reversed order),
– any closed subset of σ ∈ S belongs to S,
– any v, w ∈ T can be joined by some σ1, . . . , σk ∈ S, i.e., v = i (σ1) ,

e (σj) = i (σj+1) and w = e (σk),
– any cyclic word σ0, ..., σk−1 with e (σj) = i (σj+1) for all j and e (σk−1)

= i (σ0) becomes trivial after subdividing the σi’s and performing triv-
ial cancellations,

– if σ1 ∩ σ2 = {i (σ2)} = {e (σ1)}, then σ1 ∪ σ2 ∈ S.
To a codimension 1 lamination F of M , one considers the pull-backlamina-
tion F̃ of M̃ with image λ ⊂ M̃ , and one constructs (T, S) as follows:

Elements of T are either leaves of F̃ not contained in M̃ − λ or components
of M̃ − λ. For each directed arc α intersecting leaves of F̃ transversally,
having nonempty intersection with at least two leaves and being effective
(no two points on the intersection with a leaf can be cancelled by an obvious
homotopy), let σ be the set of elements (of T ) intersected by α, with the
inherited linear order.

According to [8], Prop. 6.10, (T, S) is an order tree if F is an essential
lamination.
F is then called R-covered, one-sided branched, or two-sided branched

according to whether the leaf space of F̃ , considered as an order tree, is R,
branched in one direction, or branched in both directions.

Lemma 7.2. If F is an R-covered or one-sided branched essential lamina-
tion on a 3-manifold M such that F |∂M is R-covered, then

‖M,∂M‖ = ‖M,∂M‖F .

Proof. This is shown in Theorems 2.2.10 and 2.5.9 of [4], assuming that M
is closed. However, the proof works also for manifolds with boundary.

Indeed, since ∂M is either transverse to F or is a leaf of F , the straight-
ening defined in Lemma 2.2.8 of [4], for chains with vertices on compara-
ble leaves, preserves C∗ (∂M). This implies, in particular, the claim for
R-covered foliations. In the case of one-sided branching (say in positive di-
rection), the argument in 2.5.9 of [4] was then to isotope a chosen lift of
the finite singular chain in M̃ in the negative direction until its vertices are
on comparable leaves. (This has to be done π1M -equivariantly in the sense
that the projection to M stays a relative cycle.) If ∂M is a leaf of F , then
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one can leave all vertices on ∂M fixed and only isotope the other vertices. If
∂M is transversal to F , the isotopy can clearly be performed in such a way
that vertices on ∂M (which already are on comparable leaves since F |∂M

is R-covered) are isotoped inside ∂M .
Hence, in any case, the straightening maps C∗ (∂M) to C∗ (∂M) and, by

the five lemma, it induces the identity map in relative homology. Thus, it
maps relative fundamental cycles to relative fundamental cycles transversal
to F , not increasing the l1-norm. �

7.2. Asymptotically separated laminations.

Definition 7.3. Let int (Mn) be hyperbolic and let F be a lamination of M .
Let F̃ |

int(fM) be the pull-back lamination of Hn. F is called asymptotically

separated if, for some leaf F ∈ F̃ , there are two geodesic (n− 1)-planes on
distinct sides of F .

We include a proof of the following lemma, implicit in [4], for lack of an
explicit reference and because it might help to understand the idea behind
Theorem 7.5.

Lemma 7.4. If F is an asymptotically separated lamination of a finite-
volume hyperbolic manifold M = Γ\Hn, then F is two-sided branched.

Proof. Let F be a leaf of F̃ such that there exist geodesic (n− 1)-planes on
distinct sides of F . These two planes cut out two half-spaces U1 and U2 on
distinct sides of F ⊂ Hn. Let H be the complement of U1 and let H1 and
H2 be disjoint half-spaces in U2. Note that F ⊂ H.

If Γ\Hn has finite volume, then it is well-known that the Γ-orbits on the
space of pairs of distinct points in ∂∞Hn are dense.

H

F

H1 H2

α1 (F )
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In particular, fixing some arbitrary γ ∈ Γ with fixed points p1, p2, one
finds conjugates of γ in Γ, such that their fixed points come arbitrarily close
to two given points q1 6= q2 in ∂∞Hn. (Namely, conjugate with elements of
Γ which map p1 close to q1 and p2 close to q2.)

It follows that, in a finite-covolume subgroup Γ ⊂ Isom+ (Hn), to any
given disk D ⊂ ∂∞Hn, one finds loxodromic isometries with both fixed points
in this disk. Let α1 resp. α2 be such loxodromic isometries with both fixed
points in ∂∞H1 resp. both fixed points in ∂∞H2. Loxodromic isometries map
any set in the complement of a neighborhood of the repelling fixed point,
after sufficiently many iterations, inside any neighborhood of the attracting
fixed point. Hence, replacing α1 and α2 by sufficiently large powers, we get
that α1 (F ) ⊂ H1 and α2 (F ) ⊂ H2.

Since F̃ is Γ-invariant, we have found incomparable leaves α1 (F ) and
α2 (F ) above F and, by analogous arguments, we also get incomparable
leaves below F . �

Remark. A conjecture of Fenley would imply that a foliation of a finite-
volume hyperbolic 3-manifold int (M) is two-sided branched if and only if
it is asymptotically separated, see the discussion in Chapter 2.5. of [4].
Namely, Calegari proves that a two-sided branched foliation (on an arbitrary
hyperbolic manifold) either is asymptotically separated or the leaves have
as limit sets all of ∂∞H3. On the other hand, Fenley conjectures that for
foliations of finite-volume hyperbolic manifolds (which are transversal to
the boundary ∂M), the limit set of a leaf can be all of ∂∞H3 only if F is
R-covered.

The following Theorem 7.5 extends Theorem 2.4.5 in [4] to the cusped
case.

Theorem 7.5. If the interior of M is a hyperbolic n-manifold of finite vol-
ume which is not Gieseking-like, n ≥ 3, and if F is an asymptotically sepa-
rated lamination, then

‖M,∂M‖ < ‖M,∂M‖F .

Proof. We want to give an outline of the proof. We will show that there
exist three half-spaces D0, D1, D2 such that the following holds: Whenever
a straight simplex has at least one vertex in each of D0, D1, D2, it can not
be transverse to F . Assuming ‖M,∂M‖F = ‖M,∂M‖, we would have
an efficient fundamental cycle µ which actually comes from a sequence of
fundamental cycles transverse to F . If M is closed, one gets easily that µ±

have to vanish on the set of those ideal simplices with at least one vertex in
each of ∂∞D0, ∂∞D1, ∂∞D2. If M has cusps, we still get the slightly weaker
statement that µ± have to vanish on the set of those ideal simplices with at
least one vertex in each of ∂∞D0−P, ∂∞D1−P, ∂∞D2−P , where P is the
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set of parabolic fixed points of Γ. We can then use our knowledge of µ to
derive a contradiction.

Let F be a leaf which has the property in the definition of “asymptotically
separated”, i.e., there are planes, and hence half-spaces U1 and U2, in disjoint
components of Hn−F . We choose in U2 two smaller disjoint half-spaces H1

and H2. Like in the proof of Lemma 7.4, one finds loxodromic isometries
α1 ∈ Γ with both fixed points in H1 and α2 ∈ Γ with both fixed points
in H2. Replacing, if necessary, α1 and α2 by sufficiently large powers, we
arrange that α1 (U1) ⊂ H1 and α2 (U1) ⊂ H2, and that F, α1 (F ) , α2 (F ) are
disjoint. Letting D0 = U2, D1 = α1 (U1), and, D2 = α2 (U1), the remark
after Definition 7.1 tells us that there is no tetrahedron transverse to F̃ with
one vertex in each of D0, D1 and D2.

For the convenience of the reader, we first explain the proof for closed
manifolds. Assume that we have straight fundamental cycles cε, transverse
to F , with ‖cε‖ < ‖M‖+ ε

Vn
, and that µ is the weak-∗-limit of cε. Denoting

by SD0,D1,D2 the open set of straight (possibly ideal) simplices with one
vertex in each of D0, D1 and D2, we have just seen that transversality to F
implies c±ε (SD0,D1,D2) = 0. This implies µ± (SD0,D1,D2) = 0, contradicting
the fact that µ+ is the Haar measure. (A similar argument was given by
Calegari in 2.4.5 of [4].)

Now we are going to consider hyperbolic manifolds of finite volume.
Let P ⊂ ∂∞Hn be the parabolic fixed points of Γ, and Hε = p−1

(
M[0,ε]

)
⊂

Hn the preimage of the ε-thin part. It is the union of horoballs centered at
the points of P . For δ sufficiently small, D0−Hδ, D1−Hδ and D2−Hδ are
nonempty. Fix such a δ. Let

SD0,D1,D2 =
{

simplices having vertices v0 ∈ D0 −Hδ,

v1 ∈ D1 −Hδ, v2 ∈ D2 −Hδ

}
,

where we admit ideal simplices.
We have seen that simplices in SD0,D1,D2 are not transversal to F̃ . More-

over, we define

Str (SD0,D1,D2) := {Str (σ) : σ ∈ SD0,D1,D2}

and

U :=
{

pos. or. regular ideal simplices (v0, . . . , vn) : vi ∈ ∂∞Di − P

for i = 0, 1, 2
}

.

Now suppose we had the equality ‖M,∂M‖ = ‖M,∂M‖F . We will stick
to the notations of Chapter 3. Take some transverse relative fundamental
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cycle cε of norm smaller than ‖M,∂M‖ + ε
Vn

and make it, via the homeo-
morphism rε : (M,∂M) →

(
M[ε,∞], ∂M[ε,∞]

)
, to a relative fundamental cycle

rε∗ (cε) of the ε-thick part, which is transverse to the foliation rε (F). We
may arrange rε to be the identity on the ε′-thick part for ε′ slightly larger
than ε. Then, the lift of rε∗ (cε) to Hn is transverse to F̃ outside Hε′ . By
choosing ε and ε′ sufficiently small, one may make this exceptional set Hε′

as small as one wishes.
Decompose SD0,D1,D2 as a countable union SD0,D1,D2 = ∪∞i=1Vi, where

Vi ⊂ SD0,D1,D2 is the open subset of (possibly ideal) positively oriented
simplices σ ∈ SD0,D1,D2 satisfying σ ∩ H 1

i
= ∅. (The union is all of

SD0,D1,D2 because any ideal or non-ideal simplex with vertices outside Hδ

must remain outside some H 1
i

for sufficiently large i.) Let Wi = Str (Vi) =

{str (σ) : σ ∈ Vi}. For ε sufficiently small (such that we can choose ε′ < 1
i ),

we have rε∗ (c±ε ) (Vi) = 0, since rε∗ (cε) is transverse to F outside H 1
i

and Vi

consists of simplices which do not intersect H 1
i

and which are not transverse
to F . As a consequence, Str (exc (rε∗ (cε))) (Wi) = 0. If µ is the weak-∗
limit of the sequence Str (exc (rε∗ (cε))) with ε → 0, we get µ± (Wi) = 0 by
openness of Wi and Part (ii) of Lemma 2.2.

W = Str (SD0,D1,D2) = {Str (σ) : σ ∈ SD0,D1,D2} is a countable increasing
union W = ∪∞i=1Wi. Hence µ± (W ) = 0. U ⊂ W implies

µ± (U) = 0.

On the other hand, U has nontrivial Haar measure. Indeed, Isom+ (Hn)
corresponds to ordered n-tuples of points in ∂∞Hn, because any such or-
dered n-tuple is the set of first n vertices for some unique positively oriented
ordered regular ideal simplex. Hence, the set of positive regular ideal sim-
plices, with vi ∈ ∂∞Di for i = 0, 1, 2, corresponds to an open set of positive
Haar measure in Isom+ (Hn). Clearly, a discrete subgroup of Isom+ (Hn) has
a countable number of parabolic fixed points. Thus, U has positive Haar
measure.

Recall the notation from Chapter 4: v ∈ ∂∞Hn is an arbitrary vertex
of the reference simplex ∆0 and βv (g) is the ergodic component of g ∈
Γ\Isom+ (Hn) with respect to the Tv-action. We define

Hv = {g ∈ Γ\G : βv (g) = Haar} .

Haar (U) 6= 0 implies µ± (Hv) = 0. Indeed, from Lemma 4.2 and Lem-
ma 4.3 we know that the complement of Hv in the set of regular ideal
simplices is the set of simplices g∆0 with the vertex g (v) in a parabolic
fixed point of Γ. Γ has a countable number of parabolic fixed points and,
therefore, this complement is a set of trivial Haar measure. Thus,

Haar (U ∩Hv) = Haar (U) > 0
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and we apply the ergodic decomposition from 2.2 to get

0 = µ± (U ∩Hv) = Haar (U ∩Hv) µ± (Hv)

which implies
µ± (Hv) = 0.

This discussion applies to all vertices vi of the reference simplex ∆0. By
Lemma 5.5, we can conclude that µ± are determined on Sn

cusp.
In particular, since µ 6= 0, there necessarily are regular simplices with all

vertices in parabolic fixed points. By Lemma 3.10, µ is invariant up to sign
under the right-hand action of the regular ideal reflection group R defined
in Section 3.2. Hence, there must even be an R-invariant family of regular
ideal simplices with vertices in parabolic fixed points. This is only possible
in dimension 3 and, after conjugating with an isometry, Q (ω) ∪ {∞} must
be parabolic fixed points of Γ. �

A surface F in a 3-manifold M is called a virtual fiber if there is some
finite cover p : M → M and some fibration F → M → S1 with F isotopic
to p−1 (F ).

A theorem of Thurston and Bonahon asserts that a properly embedded
compact π1-injective surface in a finite-volume hyperbolic 3-manifold is ei-
ther quasigeodesic or a virtual fiber. Since quasigeodesic surfaces are asymp-
totically separated, one gets analogously to [4], Theorem 4.1.4:

Corollary 7.6. If the interior of M is a hyperbolic 3-manifold of finite vol-
ume which is not Gieseking-like and F ⊂ M is a properly embedded compact
π1-injective surface, then F is a virtual fiber if and only if ‖M,∂M‖F =
‖M,∂M‖.
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