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In this paper, we studied the real vector bundle decom-
position problem. We first give a general decomposition re-
sult which relates a given vector bundle to some cohomol-
ogy classes with local coefficients in the homotopy group of
a Grassmann manifold; it is those classes that obstruct the
decomposition. Those classes are natural with respect to the
induced vector bundle by a map. For some special decom-
positions, we gave a relationship between those classes and
the well-known characteristic classes such as Stiefel-Whitney
classes and Chern classes. We determined the local coeffi-
cients in the cohomology group which contain the decompo-
sition obstruction classes. We find applications in the study
of subbundles of low codimension. In particular, codimen-
sion 1 decomposition classes are investigated in which we find
that one of the two decomposition classes for the universal
bundle over BO(2n + 1) is in H2n+1(BO(2n + 1), Z). This
result gives rise to a new geometric interpretation for the or-
der two elements in the integral cohomology group in odd
dimension. We further make use of the cellular structure of
the classifying space BO(n) to see the ‘local’ structure for the
restriction of the universal bundle to each cell. In this way,
we can construct the obstruction classes for the codimension
1 vector bundle decomposition. We gave an example to calcu-
late the decomposition obstruction for the tangent bundle of
RP 2n, which turns out to be the generator in the cohomology
of RP 2n with twisted integer coefficients. On the other hand,
we exhibit a trivial summand in the tangent bundle for any
odd dimensional cobordism classes.

1. Introduction.

The classification for vector bundles is a classical problem which has been
studied by many mathematicians. Grothendieck proved that every algebraic
vector bundle over CP 1 can be decomposed as a direct sum of complex line
bundles which gives rise to a complete classification for algebraic vector
bundle over CP 1. Hirzebruch [6] applied the Riemann-Rock theorem to the
vector bundles over CPn and obtained an integral condition on the Chern
classes of the vector bundle. Using the Hirzebruch’s results, Schwarzenberger
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[12] gave a partial classification for complex algebraic 2-vector bundles over
CP 2 and formulated the following conditions for the Chern classes c1 and
c2 of a 2-vector bundle over CPn:

S :
(

δ1

k

)
+
(

δ2

k

)
∈ Z 2 ≤ k ≤ n,

where δ1 + δ2 = c1, δ1δ2 = c2.
Atiyah and Rees [1] classified the complex topological 2-vector bundles

over CP 3. In [2], Barth and Van de Ven gave a decomposability criterion
for complex algebraic 2-bundles over CPn. Switzer [14] contributed in the
classification of complex topological 2-vector bundle over CPn for n = 4, 5
and 6.

In the real case the literature is sketchy at best. In this paper we shall
begin the study of the decomposition of real vector bundles. Unlike com-
plex vector bundles, the decomposition problem for real vector bundles will
involve cohomology groups with local coefficients. We give a general de-
composition result (Theorem 2.1.5) which relates a given vector bundle to
some cohomology classes with local coefficients in the homotopy group of a
Grassmann manifold; it is those classes that obstruct the decomposition.
Those classes are natural with respect to the induced vector bundle by
a map (see 2.1.7). For some special decompositions, we gave a relation-
ship between those classes and the well-known characteristic classes such as
Stiefel-Whitney classes and Chern classes (see 2.2.8, 2.2.9 and 2.2.10). We
find applications in the study of subbundles of low codimension. In partic-
ular, codimension 1 decomposition classes are investigated in 2.2.6 in which
we find that one of the two decomposition classes for the universal bundle
over BO(2n+1) is in H2n+1(BO(2n+1), Z). This result gives rise to a new
geometric interpretation for the order two elements in the integral cohomol-
ogy group in odd dimension. We further make use of the cellular structure
of the classifying space BO(n) to see the ‘local’ structure (see 2.2.11) for the
restriction of the universal bundle to each cell. In this way, we can construct
the obstruction classes for the codimension 1 vector bundle decomposition.
In example 3.1, we calculated the decomposition obstruction for the tangent
bundle of RP 2n, which turns out to be the generator in the cohomology of
RP 2n with twisted integer coefficients. On the other hand, in Example 3.4,
we exhibit a trivial summand in the tangent bundle for any odd dimensional
cobordism classes.

Our approach is based on the following considerations. Let G be a com-
pact Lie group and H be a closed subgroup of G. Designated by BG and
BH the classifying spaces of G and H respectively, classical results on com-
pact Lie groups and their classifying spaces give us an important fibration
BH −→ BG with fiber G/H [15]. The lifting problem for certain fibrations
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between the classifying spaces of classical Lie groups and their closed sub-
groups is an extensively studied problem during the past twenty years [7],
[8], [11] and [9]. We will discuss the following fibration in some detail:

B(O(n)×O(m)) −→ BO(n + m).

The fibre of the fibration is O(n+m)/O(n)×O(m) = Gn,m, the Grassmann
manifold. Let X be a CW-complex and ξn be an n-dimensional vector
bundle over X, then by classification theorem there is a continuous map,
the classifying map of ξn, f : X −→ BO(n) such that ξn ≈ f∗(ηn) where ηn

is the canonical n-dimensional vector bundle over BO(n). A vector bundle
ξn can be decomposed into a Whitney sum ξn = ξk ⊕ ξn−k of two bundles
if and only if the structure group of ξn can be reduced into the subgroup
O(k)×O(n−k) which means that the classifying map f of ξn can be lifted to
the classifying space B(O(k)×O(n−k)) up to a homotopy. So the problem
of decomposing a vector bundle is equivalent to the lifting problem of its
classifying map for the fibration B(O(k)×O(n− k)) −→ BO(n). We apply
the obstruction theory to study the corresponding lifting problem for this
fibration.

2. Main results.

2.1. The general decomposition results. In this section we will use
the obstruction theory to consider some problems about vector bundles, in
particular the decomposition problem of vector bundles over a CW-complex.

Lemma 2.1.1. Let ξm be an m-dimensional vector bundle over a paracom-
pact space X, then ξm has a Whitney sum decomposition ξk ⊕ ξm−k if and
only if there exists a commutative diagram up to homotopy:

B(O(k)×O(m− k))yp

X −−−→
f

BO(m)
������1

where f is the classifying map of ξm and p is the map between the classifying
spaces induced by the inclusion O(k)×O(m− k) ⊂ O(m).

Proof. This result can be proved by considering the structure group of a
vector bundle. �

There are different ways to construct the classifying space BG for a com-
pact Lie-group G. Here I give a geometric way to construct B(O(k)×O(m−
k)) so that there is a natural fibration p : B(O(k)×O(m− k)) −→ BO(m)
with fiber Gk(Rm), the Grassmann. Let ηm be the universal m-dimensional
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vector bundle over BO(m) = Gm(R∞). Define

Gk(ηm) = {(X, Y )|Y is any k-dimensional subspace of X}
⊂ Gm(R∞)×Gk(R∞)

with the subspace topology.

Proposition 2.1.2. Gk(ηm) is a classifying space for O(k) × O(m − k).
The natural projection p : Gk(ηm) −→ Gm(R∞) is a fibration with fiber
Gk(Rm). The universal bundle over Gk(ηm) is p∗(ηm) which is isomorphic
to ωk ⊕ ωm−k, whose total spaces are as follows:

E(ωk) = {((X, Y ), ν)|ν ∈ Y } ⊂ Gk(ηm)×R∞;

E(ωm−k) = {((X, Y ), ν)|ν ∈ X, ν ⊥ Y } ⊂ Gk(ηm)×R∞.

Proof. The proof is based on the uniqueness of the classifying space for
compact Lie-group and the fact that the canonical inclusion i : Gk(R∞) ×
Gm−k(R∞) −→ Gm(R∞) factors through Gk(ηm). �

By the local triviality of the universal bundle ηm, Gk(ηm) is also a local
trivial fiber space with fiber Gk(R∞), therefore, the projection p is a fibration
with fiber Gk(Rm).

Let ξm be any m-dimensional vector bundle over a CW-complex X with
classifying map f : X −→ Gm(R∞). We define Gk(ξm) −→ X, called the
Grassmann bundle associated with ξm, to be the pull-back of the fibration
p : Gk(ηm) −→ Gm(R∞) by f . To justify the definition, we need to prove
that if f is homotopic to g, then their pull-backs must be homeomorphism.
By the classification theorem, f∗(ηm) ≈

h
g∗(ηm) ≈ ξm. Now we can define a

homeomorphism h∗ : f∗(Gk(ηm)) ≈ g∗(Gk(ηm)) by

h∗(x, (f(x), Y )) = (x, (h(f(x)), h(Y ))) = (x, (g(x), h(Y )))

where Y is any k-dimensional subspace of f(x). Geometrically, Gk(ξm) is
the space of all k-dimensional subspaces in the fibers of ηm. As a special
case, G1(ξm) is the well-known projective bundle space RP (ξm) associated
with ξm.

Lemma 2.1.3. The projection pξ : Gk(ξm) −→ X is a fibration with fiber
Gk(Rm). ξm has a decomposition ξm ≈ ξk

1 ⊕ ξm−k
2 if and only if there is a

section for the fibration pξ.

Proof. Let f : X −→ Gm(R∞) be the classifying map for ξm, then we have
a pull-back diagram:

Gk(ξm)
f∗−−−→ Gk(ηm)

pξ

y yp

X
f−−−→ Gm(R∞).
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By 2.1.1 and 2.1.2 ξm ≈ ξk
1 ⊕ ξm−k

2 if and only if there is a lifting for the
fibration p : Gk(ηm) −→ Gm(R∞) which is equivalent to the existence of a
section of the fibration pξ : Gk(ξm) −→ X. �

Let p : E −→ B be a fibration with fiber F , and let E, B and F be path-
connected CW-spaces. Then there exist fibrations qn and maps hn making
the digram

E

p

y
B ←−−−

q1

E1 ←−−−
q2

· · ·En−1 ←−−−
qn

En ←−−− · · ·

Q
Q

QQs

PPPPPPPPPq

XXXXXXXXXXXXXXz
h1 hn−1 hn

commute, and such that for n > 1 (if n = 1, π1(F ) needs to be abelian):
(1) qn is a fibration with fiber K(πn(F ), n), the Eilenberg-Maclane space.
(2) hn is (n + 1)-connected.
In the following, we will use the above so-called Postnikov decomposition

for a fibration to study p : Gk(ηm) −→ Gm(R∞) or pξ : Gk(ξm) −→ X. We
start with a typical fibration in the Postnikov decomposition.

Lemma 2.1.4. Let p : E −→ B be a fibration with fiber K(Π, n), where
Π is an abelian group, and f : X −→ B be a map between connected CW-
spaces. Let Π̂p be the local coefficients and ob(p) ∈ Hn+1(B; Π̂p) be the
primary cohomology obstruction with respect to the trivial section on the
base point. Then f∗(ob(p)) = 0 ∈ Hn+1(X; f∗Π̂p) if and only if f can be
lifted to f̃ : X −→ E.

Proof. See [3].

Now we can apply the above results to prove our general decomposition
theorem.

Theorem 2.1.5. Let ξm be an m-dimensional vector bundle over a con-
nected CW-complex X, pξ : Gk(ξm) −→ X be the Grassmann bundle of ξm

with Postnikov decomposition {X̃n, h̃n, q̃n}. Let

obk
n(ξm) ∈ Hn+1(X̃n−1, π̃n(Gm−k,k)), n = 1, 2, . . .

be the n-th Postnikov invariance for pξ. For n ≥ 1 and a given homomor-
phism θ : π1(X) −→ π1(X̃1), set

OBk
n,θ(ξ

m) =
{

s∗n−1(obk
n(ξm)) | for all sections

sn−1 : X −→ X̃n−1 s.t. (q̃2 . . . q̃n−1sn−1)∗ = θ
}

⊂ Hn+1(X, θ∗π̂n(Gm−k,k))
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where s∗n−1 : Hn+1(X̃n−1; π̂n(Gm−k,k)) −→ Hn+1(X; θ∗π̂n(Gm−k,k)) is the
induced homomorphism in the cohomology groups with local coefficients.
Then

{obk
n(ξm) |n = 1, 2, . . . } and {OBk

n,θ(ξ
m) |n = 1, 2, . . . }

have the following properties:

(1) If obk
n(ξm) = 0 for every n < dim X, then ξm can be decomposed as a

Whitney sum ξm = ξk ⊕ ξm−k.
(2) If ξm can be decomposed as a Whitney sum ξm = ξk⊕ξm−k, then there

exists a homomorphism θ : π1(X) −→ π1(X̃1) such that 0 ∈ OBk
n,θ(ξ

m)
for n = 1, 2, . . . .

(3) If N = dim X <∞ and 0 ∈ OBk
N−1,θ(ξ

m), then ξm can be decomposed
as a Whitney sum ξm = ξk ⊕ ξm−k.

(4) ξm can be decomposed as a Whitney sum ξm = ξk ⊕ ξm−k if and
only if there exists a section s : X −→ lim←− nX̃n for the fibration pr :
lim←− nX̃n −→ X.

Proof. By Lemma 2.1.3, the problem of decomposition ξm = ξk ⊕ ξm−k is
equivalent to the existence of a section for the fibration pξ : Gk(ξm) −→ X
which has fiber Gm−k,k.

If k = 1, and m = 2, then Gm−k,k = G1,1 = S1 and π1(G1,1) = Z. If
m > 2, then it is well-known that

π1(Gm−k,k) ≈ π0(O(k)) = Z2.

As a result, π1(Gm−k,k) is always an abelian group so that we can apply the
obstruction theory for the fibration pξ : Gk(ξm) −→ X.

Proof of (1). By Lemma 2.1.4, obk
n(ξm) = 0 if and only if the fibration

q̃n : X̃n −→ X̃n−1 has a section. So if obk
n(ξm) = 0 for each n, then

there exists a section s : X −→ lim←− nX̃n for the fibration pr : lim←− nX̃n −→
X, which is the composition of all sections q̃n : X̃n −→ X̃n−1. From [3],
lim←− nh̃n : Gk(ξm) −→ lim←− nX̃n is a weak homotopy equivalence. Since X
is a CW-complex, one can apply J.H.C. Whitehead theorem, which in our
situation says that h∗ : [X, Gk(ξm)] ≈ [X, lim←− nX̃n], to get a section for the
fibration pξ : Gk(ξm) −→ X. By Lemma 2.1.3, ξm can be decomposed as a
Whitney sum: ξm = ξk ⊕ ξm−k.

Proof of (2). By Lemma 2.1.3, ξm = ξk ⊕ ξm−k implies pξ : Gk(ξm) −→ X
has a sections s : X −→ Gk(ξm) which gives rise to a sequence of sections
{sn = hns : X −→ X̃n | s.t. q̃nsn = sn−1, n = 1, 2, . . . }. Take θ = s1∗ :
π1(X) −→ π1(X̃1). Then for every n, consider the pull-back diagram:
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s∗n−1(X̃n)
s∗n−1−−−→ X̃ny yeqn

X −−−→
sn−1

X̃n−1.

By definition, obk
n(ξm) is the primary cohomology obstruction for the fibra-

tion q̃n : X̃n −→ X̃n−1. Since sn−1 has a lifting sn, by Lemma 2.1.4,

s∗n−1(obk
n(ξm)) = 0 ∈ Hn+1(X; sn−1∗π̂n(Gm−k,k)).

Now we look at the local coefficients. From the long exact sequence of the
fibration q̃n : X̃n −→ X̃n−1:

. . .
∂2−−−→ π1(K(πn(F ), n)) i∗−−−→ π1(X̃n)

eqn∗−−−→ π1(X̃n−1) −−−→ 0

we see that q̃n∗ : π1(X̃n) −→ π1(X̃n−1) is an isomorphism for n ≥ 2. Notic-
ing that

q̃2 . . . q̃n−1sn−1 = s1,

we thus prove that sn−1∗π̂n(Gk,m−k) = θ∗π̂n(Gk,m−k), and

s∗n−1(obk
n(ξm)) = 0 in Hn+1(X; θ∗π̂n(Gm−k,k)).

By definition, 0 ∈ OBk
n,θ(ξ

m), for n = 1, 2, . . . .

Proof of (3). By definition, 0 ∈ OBk
N−1,θ(ξ

m) implies that there exists a
section sN−2 such that s∗N−2(obN−1(ξm)) = 0 in HN (X, θ∗π̂N−1(Gm−k,k)),
by Lemma 2.1.4, sN−2 has a lifting sN−1 such that pN−1sN−1 = sN−2. Since
dim X = N , for any local coefficients G̃ on X

H i(X, G̃) = 0 for i > N.

But s∗N−1(obN (ξm)) ∈ HN+1(X, sN−1∗π̂N (Gk,m−k)) = 0, so s∗N−1(obN (ξm))
= 0, and by Lemma 2.1.4, there exists a section sN such that pNsN =
sN−1. By repeating this procedure, we can obtain a sequence of sections
{sn | s.t. pnsn = sn−1} which gives a section for the fibration pξ : Gk(ξm) −→
X and by Lemma 2.1.3, ξm = ξk ⊕ ξm−k.

Proof of (4). Since lim←− nh̃n : Gk(ξm) −→ lim←− nX̃n is a weak homotopy equiv-
alence and X is a CW-complex, from Lemma 2.1.1 and J.H.C. Whitehead
theorem as in proof of (1) the result follows. �

Definition 2.1.6. The classes {obk
n(ξm) ∈ Hn+1(X̃n−1, π̂n(Gm−k,k)), n =

1, 2 . . . } in the above theorem are called the decomposition obstructions of
ξm = ξk ⊕ ξm−k.
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Corollary 2.1.7. {obk
n(ξm) ∈ Hn+1(X̃n−1, π̂n(Gm−k,k)), n = 1, 2 . . . } are

natural in the following sense: If g : Y −→ X is a map, then g pulls the
tower

X ←−−−eq1

X̃1 ←−−− · · · X̃n−1 ←−−−eqn

X̃n ←−−− · · ·

back over Y such that

g∗n−1(obk
n(ξm)) = obk

n(g∗(ξm)) and

g∗(OBk
nθ(ξ

m)) ⊂ OBk
n,g∗θ(g

∗(ξm))

where gn−1 : g∗(X̃)n−1 −→ X̃n−1 is the induced map at (n − 1) stage, in
particular,

obk
n(ξm) = obk

n(f∗(ηm)) = f∗n−1(obk
n(ηm)) and

f∗(OBk
n,θ(ηm)) ⊂ OBk

n,f∗θ(ξ
m)

where ηm is the universal m-vector bundle, and f is the classifying map of
ξm.

Proof. The proof is essentially based on the naturality of the primary coho-
mology obstruction and that of the Postnikov decomposition. By definition
obk

n(ξm) is the n-th Postnikov invariant in the induced Postnikov decompo-
sition. But the Postnikov invariants are natural since they are defined to be
the primary cohomology obstructions.

To prove that g∗(OBk
nθ(ξ

m)) ⊂ OBk
n,g∗θ(g

∗(ξm)), let sn−1 : X −→ X̃n−1

be a section such that (q̃2 · · · q̃n−1sn−1)∗ = θ, consider the commutative
diagram:

g∗(Xn−1)
gn−1−−−→ X̃n−1y y

Y
g−−−→ X.

Since sn−1 induces a section g∗(sn−1) for the induced fibration by g such
that sn−1g = gn−1 g∗(sn−1), by the naturality of cohomology with local
coefficients, we have

g∗(s∗n−1(obk
n(ξm))) = (sn−1g)∗(obk

n(ξm))

= (gn−1g
∗(sn−1))∗(obk

n(ξm))

= (g∗(sn−1))∗g∗n−1(obk
n(ξm))

= (g∗(sn−1))∗(obk
n(g∗(ξm)))

which means that g∗(OBk,n,θ(ξm)) ⊂ OBk
n,g∗θ(g

∗(ξm)). �
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In the following we study the decomposition obstructions in some details.
Consider the inclusions:

O(m− k) ⊂ O(m− k)×O(k) ⊂ O(m)

which induce fibrations in their classifying spaces:

BO(m− k) −→ B(O(m− k)×O(k)) −→ BO(m).

We look at the following two fibrations:

p : BO(m− k) −→ BO(m) and p′ : B(O(m− k)×O(k)) −→ BO(m)

which have fibers O(m)/O(m− k) = Vm,k, and O(m)/(O(m− k)×O(k)) =
Gm−k,k respectively, and view the third fibration BO(m− k) −→ B(O(m−
k)×O(k)) as a map between the two fibrations. By the naturality of Post-
nikov decomposition, there exists a commutative diagram:

E
ef−−−→ E′

hn

y yh′n

En
fn−−−→ E′

n

qn−1

y yq′n−1

En−1
fn−1−−−→ E′

n−1

pn−1

y yp′n−1

BO(m) = BO(m)
where {En, .qn, hn} and {E′

n, .q′n, h′n} are the Postnikov decompositions of
p : BO(m − k) −→ BO(m) and p′ : B(O(m − k) × O(k)) −→ BO(m)
respectively.

Now we study the Postnikov decomposition {En, .qn, hn} of p : BO(m −
k) −→ BO(m). Since qn is a fibration with fiber K(πn(Vm,k), n) and the
Stiefel manifold Vm,k is (m− k − 1)-connected, the Postnikov invariant

ki(p) ∈ H i+1(Ei−1; π̂i(Vm,k))

vanishes for 0 < i < m− k. Applying Lemma 2.1.4 repeatedly, we have:

Proposition 2.1.8. There exists a section: BO(m) −→ Em−k−1 in the
Postnikov decomposition {En, qn, hn} of the fibration p : BO(m − k) −→
BO(m).

Corollary 2.1.9. There exists a section: BO(m) −→ E′
m−k−1 in the Post-

nikov decomposition {E′
n, q′n, h′n} of the fibration p′ : B(O(m−k)×O(k)) −→

BO(m).
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Proof. This is a direct result of the Proposition 2.1.8 and the above com-
mutative diagram. �

Corollary 2.1.10. Let ξm be an m-dimensional vector bundle over a con-
nected N -dimensional CW-complex X. If N ≤ m − k, then ξm can be
decomposed as a Whitney sum ξm = ξk ⊕ ξm−k.

Proof. By Corollary 2.1.9, we have a section: s : BO(m) −→ E′
m−k−1 in

the Postnikov decomposition {E′
n, q′n, h′n} of the fibration p′ : BO((m−k)×

O(k)) −→ BO(m). So there exists a section: s̃ : X −→ X̃m−k−1 in the
induced Postnikov decomposition. By definition, 0 ∈ OBk

m−k−1,θ(ξ
m), using

Theorem 2.1.5 (3), one concludes that ξm can be decomposed as a Whitney
sum ξm = ξk ⊕ ξm−k. �

In Theorem 2.1.5, the obstruction set OBk
n,θ(ξ

m) depends on θ : π1(X)→
π1(X̃1). In the following, we will see that there are exactly two different θ’s
for the universal m-vector bundle ηm.

Theorem 2.1.11. In the Postnikov decomposition {E′
n, q′n, h′n} of the fibra-

tion p′ : BO((m− k)× O(k)) −→ BO(m), if m > 2, then there are exactly
two homomorphisms

θ1, θ2 : π1(BO(m)) −→ π1(E′
1)

which are induced by some sections from BO(m) to E′
1.

Proof. Recall that in the Postnikov decomposition {E′
n, q′n, h′n}, q′1 : E′

1 −→
BO(m) is a fibration with fiber K(π1(Gm−k,k), 1). Consider the homotopy
sequence of the fibration

· · · −→ π2(BO(m)) ∂−→ π1(K(π1(Gm−k,k), 1))

i∗−→ π1(E′
1)

q′
1∗−→ π1(BO(m)) −→ 0

and the fact that π1(Gm−k,k) = Z2 for m > 2 and π1(BO(m)) = Z2. Since
B(O(m− k)×O(k)) ∼ BO(m− k)×BO(k), we have

π1(B(O(m− k)×O(k))) ≈ π1(BO(m− k))⊕ π1(BO(m− k)) ≈ Z2 ⊕ Z2.

But h′ : B(O(m− k)×O(k)) −→ E′
1 is 2-connected, so

h′1∗ : π1(B(O(m− k)×O(k))) −→ π1(E′
1)

is an isomorphism and hence π1(E′
1) ≈ Z2⊕Z2. Therefore, the above exact

sequence actually is the following sequence:

π2(BO(m)) ∂−→ Z2
i∗−→ Z2 ⊕ Z2

q′
1∗−→ Z2 −→ 0.

By the exactness, the image of ∂ must be 0, and we get a short exact
sequence:

0 −→ Z2
i∗−→ Z2 ⊕ Z2

p′∗−→ Z2 −→ 0.
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It is easy to see that there are exactly two homomorphisms

θ1, θ2 : Z2 −→ Z2 ⊕ Z2

which satisfy the condition: p′∗ ◦ θ1 = p′∗ ◦ θ2 = 1. By the 2-extendability
thorem [3], we get two sections: s1, s2 : BO(m) −→ E′

1 such that

si∗ = θi : π1(BO(m)) = Z2 −→ π1(E′
1) = Z2 ⊕ Z2 for i = 1, 2.

This is what we need to prove. �

2.2. Codimension 1 decomposition. Now we consider two special cases
in which there is only one decomposition obstruction. The first one is that
the dimension of the vector bundle is 2. The other one is the case in which
the codimension is 1.

Proposition 2.2.1. For any two dimensional vector bundle ξ2 over a con-
nected CW-complex X, there is only one decomposition obstruction

ob1(ξ2) ∈ H2(X; f ∗ Z̃)

such that ob1(ξ2) = 0 if and only if ξ2 can be decomposed as ξ2 = ξ1 ⊕ η1,
where f : X −→ BO(2) is the classifying map of ξ2, and Z̃ is the twisted
integer.

Proof. In the fibration p : B(O(1)×O(1)) −→ BO(2), the fiber is

O(2)/(O(1)×O(1)) ≈ G1,1 ≈ S1 ≈ K(Z, 1),

so the fibration itself is the Postnikov decomposition, and

obn(ξ2) = 0 for n > 1.

Since ob1(ξ2) is the only none trivial decomposition obstruction, by The-
orem 2.1.5, ob1(ξ2) = 0 if and only if ξ2 can be decomposed as ξ2 =
ξ1 ⊕ η1. �

Corollary 2.2.2. Let η2 be the universal principal O(2)-bundle, then for
any two dimensional vector bundle ξ2 over a connected CW-complex X with
classifying map f ,

f∗(ob1(η2)) = 0 if and only if ξ2 can be deconposed as ξ2 = ξ1 ⊕ η1.

Proof. By the naturality of the decomposition obstruction

f∗(ob1(η2)) = ob1(f∗(η2)) = ob1(ξ2).

From Proposition 2.2.1, we have this corollary. �

Now we turn to consider the second special case where the dimension of
the vector bundle is same as that of the base space. The decomposition is
such that one of the bundles in the sum is a line bundle.

In our definition of decomposition obstructions obk
n(ξm), we use the Post-

nikov decomposition induced by the classifying map of the vector bundle ξm
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from the fibration p : B(O(k) × O(m − k)) −→ BO(m). The advantage of
this approach is that those decomposition obstruction classes obk

n(ξm) only
depend on the vector bundle ξm and are natural in the sense as indicated
in Corollary 2.1.7. If one has a section s to the (n− 1)-level in the induced
Postnikov decomposition, then the vanishing of s∗(obk

n(ξm)) is equivalent to
the existence of the n-level lifting for s. So the class s∗(obk

n(ξm)) has the
similar property as that of the obstruction cohomology class for a section.
On the other hand, as stated in [3], the construction for the Postnikov de-
composition is much more difficult than that of CW-decomposition. In some
special cases, one may give a detail description of the Postnikov decompo-
sition [14]. However, Eckmann and Hilton [5] showed that the cohomol-
ogy obstructions for Postnikov and CW-decompositions are equivalent. To
say precisely, let (X, A) be a relative CW-complex with CW-decomposition
X = lim−→ nXn, and let p : E −→ X be a fibration with Postnikov decompo-
sition {En, qn, hn}, then there is a bijection:

λ : 〈Xn, E〉u,θ |Xn−1 ≈ 〈X, En−1〉θ
′

where u : A −→ p−1(A) = E−1 is a partial section, θ : π1(X) −→ π1(E) is a
splitting of p (see [3]) and θ′ = h1∗ ◦ θ : π1(X) −→ π1(E1), and 〈Xn, E〉u,θ

denoted the section homotopy classes relative to u and compatible with θ,
and 〈Xn, E〉u,θ |Xn−1 is the set of all the restrictions on Xn−1. The bijection
mapping λ is given in the following way:

Let φn ∈ 〈Xn, E〉u,θ, then hn−1φn |Xn−1 : Xn−1 −→ En−1 has an exten-
sion hn−1φn : Xn −→ En−1. But the fiber of the fibration: En−1 −→ X has
no non-vanishing homotopy groups in dimension greater than n− 1, so the
section hn−1φn : Xn −→ En−1 can be extended to a section over X which
is defined to be λ(φn|Xn−1). From [3], this is well-defined bijection. Under
this bijection, Eckmann and Hilton’s result says that

[obn(φn)] = φn−1 ∗ (kn(qn)) ∈ Hn+1(X, A; θ ∗ πn(F ))

where φn−1 = λ(φn |Xn−1), and kn(qn) ∈ Hn+1(En−1;πn(F )qn) is the n-th
Postnikov invariant for the fibration qn : En −→ En−1.

Using the above result, we see that from the Postnikov invariants, one can
recover all the obstructions classes defined by using the CW-decomposition
of the base space. It is because of this, we can compute the obstruction
OBk

nθ(ξ
m) without knowing the Postnikov decomposition. This makes it

possible to compute OBk
nθ(ξ

m) by using only the CW-decomposition of the
base space.

In order to actually compute OBk
nθ(ξ

m) ⊂ Hn+1(X, θ∗π̂n(Gm−k,k)), one
still needs to know the local coefficients π̂n(Gm−k,k). By the naturality 2.1.7,
we know that f∗(OBk

n,θ(ηm)) ⊂ OBk
n,f∗θ(ξ

m), where f is the classifying
map for the vector bundle ξm, and ηm is the universal m-plane bundle over
BO(m). So it will be enough to determine the local coefficients for the
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fibration p : B(O(k) × O(m − k)) −→ BO(m) which is difficult in general
because one does not know πn(Gk,m−k) for each n. In order to relate this
coefficients to some known coefficients, we need the following lemma:

Lemma 2.2.3. Let E2
q2−→ E1

q1−→ X be a tower of fibrations, and let
F2 and F1 be the fibers of q1q2 and q1 respectively, then for each n, the
induced homomorphism q2∗ : πn(F2) −→ πn(F1) is a homorphism q2∗ :
πn(F2)q1q2 −→ πn(F1)q1 between the two systems of local coefficients deter-
mined by the fibrations q1q2 and q1.

Proof. Let Ê2, Ê2, be the mapping cylinders of q1q2 and q1 respectively, then
q2 induces an obvious map q̂2 : (Ê2, E2) −→ (Ê1, E1) which induces operator
homomorphisms between the two homotopy exact sequences:

· · · −−−−→ πq(E2)
i∗−−−−→ πq(cE2)

j∗−−−−→ πq(cE2, E2)
∂−−−−→ πq−1(E2) −−−−→ · · ·

q2∗

??y bq2∗??y bq2∗??y q2∗

??y
· · · −−−−→ πq(E1)

i∗−−−−→ πq(cE1)
j∗−−−−→ πq(cE1, E1)

∂−−−−→ πq−1(E1) −−−−→ · · · .

In particular, q̂2∗ : πq(Ê2, E2) −→ πq(Ê1, E1) is an operator homorphism.
Recall that πn(F1)q1 is defined via an isomorphism: ∆′ : πq(Ê1, E1) −→
πq−1(F1). In fact, the isomorphism is given by the following composition:

∆′ : πq(Ê1, E1)
k−1
1−−−→ πq(F̂1, F1)

∂−−−→ πq−1(F1)

where k1 is the inclusion which induces an isomorphism [15]. Thus we have
a commutative diagram:

πq(Ê2, E2)
k−1
1−−−→ πq(F̂2, F2)

∂−−−→ πq−1(F2)

bq2∗

y bq2∗

y q2∗

y
πq(Ê1, E1)

k−1
1−−−→ πq(F̂1, F1)

∂−−−→ πq−1(F1).

Therefore q2∗ : πn(F2)q1q2 −→ πn(F1)q1 is a homomorphism between the two
local systems. �

Corollary 2.2.4. With the above notations, for any n-skeleton section s :
Xn −→ E2 (n ≥ 2), there is an induced homomorphism:

q2∗ : Hn+1(X; s∗πn(F2)) −→ Hn+1(X; q2 ◦ s∗πn(F1))

such that
q2∗(obn(s)) = obn(q2 ◦ s).
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Proof. By Lemma 2.2.3, q2∗ : πn(F2) −→ πn(F1) is a homomorphism q2∗ :
πn(F2)q1q2 −→ πn(F1)q1 between the two systems of local coefficients deter-
mined by the fibrations q1q2 and q1. The sections s : Xn −→ E2 and q2

s : Xn −→ E1 pull the two systems of local coefficients back on Xn so that
q2∗ : πn(F2)q1q2 −→ πn(F1)q1 induces a homomorphism of the systems of
local coefficients:

q2∗ : s∗πn(F2) −→ (q2s)∗πn(F1).

From [15], q2∗ induces a homomorphism for the cohomology groups with
local coefficients:

q2∗ : Hn+1(X; s∗πn(F2)) −→ Hn+1(X; q2 ◦ s∗πn(F1)).

Now we consider the diagram:

πn+1(En+1
2 , En

2 ) ∂−−−→ πn(En
2 )

s#−−−→ πn(F2)

q2∗

y q2∗

y q2∗

y
πn+1(En+1

1 , En
1 ) ∂−−−→ πn(En

1 )
(q2s)#−−−−→ πn(F1)

where all the spaces and homomorphisms are the same as in the definition
of obstruction cocycle (see [3]). We only need to check the commutativity
of the right square.

Let α ∈ πn(En
2 ), by definition, we have

i∗q2∗s#(α) = q2∗i∗s#(α) = q2∗(α− s∗(q1q2)∗(α))

= q2∗(α)− q2∗s∗(q1q2)∗(α)

= q2∗(α)− (q2s)∗(q1(q2∗(α))) = i∗(q2 ◦ s)#q2∗(α).

Since i∗ is injective, we obtain that q2∗s# = (q2 ◦s)#q2∗. Therefore, we have

q2∗s#∂q2
−1
∗ = (q2 ◦ s)#∂.

By the definition of cocycle, and that of the induced homomorphism,

q2∗(obn(s)) = obn(q2 ◦ s).

This completes the proof. �

Corollary 2.2.5. The inclusions O(m) ⊂ O(m)×O(n) ⊂ O(m+n) induce
a tower of fibrations BO(m)

q2−→ B(O(m) × O(n))
q1−→ BO(m + n). Let

m ≥ n and m + n > 2. Then q2 induces a homomorphism:

q2∗ : Hq+1(BO(m+n);πq(Vm+n,n)q1q2) −→ Hq+1(BO(m+n); θ1∗πq(Gm,n))

where θ1 : π1(BO(m + n)) = π1(BO(m)) = Z2
q2∗−→ π1(B(O(m)× O(n))) =

Z2 ⊕ Z2. If s is a q-skeleton section with q ≥ 2, then

q2∗(obq(s)) = obq(q2 ◦ s).
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Proof. The fibers of q1 and q1q2 are Gm,n and Vm+n,n respectively. By our
assumption, m ≥ 2, so Vm+n,n is at least 1-connected and the fibration q1q2

has a unique (up to homotopy) 2-skeleton section s and

s∗ : π1(BO(m + n)) = Z2 −→ π1(BO(m)) = Z2

is an isomorphism. The result follows by Corollary 2.2.4 if we simply think
s∗ as an identity. �

The following theorem is the main result about the codimension 1 decom-
position which reveals an obstruction class in H2n+1(BO(2n + 1);Z), the
cohomology with ordinary integer coefficients.

Theorem 2.2.6. Let ηm be the m-dimensional universal bundle over
BO(m) with m ≥ 3, then there are exactly two obstruction classes in di-
mension m for the decomposition ηm ≈ ξm−1 ⊕ λ. Furthermore, one of the
two classes is the primary obstruction for the decomposition ηm ≈ ξm−1⊕R,
which is in Hm(BO(m); Z̃), where Z̃ is the twisted integers; the other is in
Hm(BO(m); Z̃) if m is even and is in Hm(BO(m);Z) if m is odd.

Proof. Consider the tower of fibrations:

BO(m− 1)
q2−→ B(O(m− 1)×O(1))

q1−→ BO(m)

by Corollary 2.2.5, q2 induces a homomorphism:

q2∗ : Hq+1(BO(m);πq(Vm,1)q1q2) −→ Hq+1(BO(m); θ1∗πq(Gm−1,1))

where

θ1 : π1(BO(m)) = π1(BO(m− 1))

= Z2
q2∗−→ π1(B(O(m− 1)×O(1))).

Noticing that Vm,1 = Sm−1 and Gm−1,1 = RPm−1, we know that q2 induces
an isomorphism q2∗πm−1(Vm,1) ≈ Z −→ πm−1(Gm−1,1) ≈ Z between the
two systems of local coefficients. As is well-known, the coefficients in the
first cohomology is the twisted integer Z̃ when q = m−1, so is the coefficients
in the second one. Thus q2 induces an isomorphism

q2∗ : Hm(BO(m); Z̃) −→ Hm(BO(m); Z̃).

Let s be any (m−1)-skeleton section for the fibration q1 q2 : BO(m−1) −→
BO(m), then q2 s is (m− 1)-skeleton section for the fibration q1 : B(O(m−
1)×O(1)) −→ BO(m). From Corollary 2.2.5, we obtain that

q2∗(obm−1(s)) = obm−1(q2 ◦ s).

From [15], obm−1(s) is the primary obstruction for the vector bundle
decomposition ηm ≈ ξm−1 ⊕ R. From the primary obstruction theorem,
the primary obstruction is independent with the choice of sections. Hence
obm−1(q2 ◦ s) is one of the primary obstruction for the decomposition ηm ≈
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ξm−1 ⊕ λ. But q2∗ is an isomorphism, so we may regard obm−1(s) =
obm−1(q2 ◦ s) ∈ Hm(BO(m); Z̃).

In the following, we will prove that the other obstruction for the decom-
position ηm ≈ ξm−1 ⊕ λ is either in Hm(BO(m); Z̃) if m is even, or in
Hm(BO(m);Z) if m is odd. As in the proof of Theorem 2.1.11, there is an
exact sequence:

0 −→ π1(Gm−1,1) −→ π1(B(O(m− 1)×O(1)))
q1∗−→ π1(B(O(m))) −→ 0

and π1(Gm−1,1) ≈ π1(B(O(m))) ≈ Z2. Therefore the above sequence splits
and there are exactly two splitting homomorphisms:

θ1, θ2 : π1(BO(m))

−→ π1(B(O(m− 1)×O(1))) ≈ π1(B(O(m)))⊕ π1(Gm−1,1)

which are given by θ1(α) = (α, 0) and θ2(α) = (α, β), where α, β are the gen-
erators of π1(BO(m)) and π1(Gm−1,1) respectively. We have already proved
that θ1(α) = (α, 0) corresponds to the obstruction class of the decomposi-
tion ηm ≈ ξm−1 ⊕ R. In order to see the local coefficients determined by
θ2(α) = (α, β), we first recall the action of π1(Gm−1,1) on πm−1(Gm−1,1).
The universal covering space of Gm−1,1 = RPm−1 is Sm−1. The only non-
trivial covering translation is the antipodal map h which corresponds to β.
From [15], there is a commutative diagram

[Sm−1, Sm−1]
p∗−−−→ [Sm−1, ∗;RPm−1, ∗] = πm−1(Gm−1,1)

h

y yτβ

[Sm−1, Sm−1]
p∗−−−→ [Sm−1, ∗;RPm−1, ∗] = πm−1(Gm−1,1).

It is well-known that the degree of the antipodal map on Sm−1 is (−1)m,
from the above diagram, we know that the action of β is given by

τβ(ξ) = (−1)mξ, for any ξ in πm−1(Gm−1,1) = Z.

But the action of (0, β) on πm−1(Gm−1,1) is the same as that of β, and
the action of (α, 0) on πm−1(Gm−1,1) is the same as that of α which is the
twisted action, i.e.,

τα(ξ) = −ξ, for any ξ in πm−1(Gm−1,1) = Z.

Now the action induced by θ2(α) = (α, β) is simply the product of the
actions of α and β. So we have θ2(α)(ξ) = (−1)m+1ξ, and thus the action
is either the twisted integr Z̃ if m is even or the ordinary integer Z if m is
odd. �

The most interesting part in the theorem is the following corollary:
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Corollary 2.2.7. There is an element o2n+1 in H2n+1(BO(2n+1); Z) such
that for any map f : X2n+1 −→ BO(2n + 1), if f∗(o2n+1) = 0, then
f∗(η2n+1) ≈ ξ2n ⊕ λ, where X2n+1 is a (2n + 1)-dimensional CW-complex
and η2n+1 is the universal vector bundle over BO(2n + 1).

Proof. Let o2n+1 be the obstruction corresponding to the decomposition
ξ2n ⊕ λ as in Theorem 2.2.6. By the primary obstruction theorem, there is
a (2n)-skeleton section s for the fibration p : B(O(2n)×O(1))→ BO(2n +
1) such that o2n+1 = ob(s). By cellular approximation theorem, we may
assume that f is a cellular map. By the naturality of the primary obstruction
class, we have

f∗(o2n+1) = f∗(ob(s)) = ob(f∗s)

where f∗(s) is the induced section by f over the (2n)-skeleton of X2n+1. So
if f∗(o2n+1) = 0, then f∗(s) can be extended to a section over X2n+1, hence
f : X2n+1 −→ BO(2n + 1) has a lifting for the fibration p : B(O(2n) ×
O(1)) −→ BO(2n + 1). By Lemma 2.1.1, f∗(η2n+1) ≈ ξ2n ⊕ λ. �

The following corollary gives us some relationship between the decompo-
sition obstruction and the well-known characteristic classes such as Stiefel-
Whitney classes, Euler classes and Chern classes.

Corollary 2.2.8. If the coefficient is reduced to Z2, then one of the two
obstruction classes in Theorem 2.2.6 will be the top Stiefel-Whitney class of
the universal bundle.

Proof. By definition, the top universal Stiefel-Whitney class can be de-
fined as the primary obstruction class for the vector bundle decomposition
ηm ≈ ξm−1 ⊕ R reduced the coefficient to Z2. The corollary follows by
Theorem 2.2.6. �

Recall that the classifying space for oriented m-dimensional vector bun-
dles is BSO(m), and the inclusion SO(m) −→ O(m) induced a universal
covering map

π : BSO(m) −→ BO(m)

which is the classifying map for the universal oriented m-dimensional vector
bundle ζm over BSO(m).

Corollary 2.2.9. Let OB1
m−1,θ1

(ηm) and OB1
m−1,θ2

(ηm) be the two decom-
position obstruction classes as in Theorem 2.2.6, and π : BSO(m) −→
BO(m) be the projection, then

π∗(OB1
m−1,θ1

(ηm)) = π∗(OB1
m−1,θ2

(ηm)) ∈ Hm(BSO(m), Z),

which is the Euler class of the universal oriented m-dimensional vector bun-
dle ζm over BSO(m).
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Proof. By the naturality of the obstruction classes, both π∗(OB1
m−1,θ1

(ηm))
and π∗(OB1

m−1,θ2
(ηm)) are the primary obstruction classes corresponding to

the splitting homomorphism θ1π∗ and θ2π∗ for the codimension one decom-
position of ζm. But BSO(m) is 1-connected, hence θ1π∗ = θ2π∗ = 0. By the
uniqueness of the primary obstruction class, we have π∗(OB1

m−1,θ1
(ηm)) =

π∗(OB1
m−1,θ2

(ηm)) ∈ Hm(BSO(m), Z). Noticing that any line bundle over
BSO(m) is trivial, we see that π∗(OB1

m−1,θ1
(ηm)) is the obstruction for the

decomposition ζm = ζm−1 ⊕ R. But Euler class can be defined to be the
primary obstruction of the decomposition ζm = ζm−1 ⊕R. �

Recall that any n-dimensional complex vector bundle ζn can be regarded
as a 2n-dimensional real vector bundle Re (ζn). In terms of the structure
groups, one has an inclusion U(n) ⊂ O(2n) which induces a fibration p :
BU(n) −→ BO(2n). If γn is the universal n-dimensional complex vector
bundle over BU(n), then Re (γn) = p∗(η2n). Let cn(ζn) be the n-th Chern
class of a complex vector bundle ζn, then we have the following corollary:

Corollary 2.2.10. With the above notations,

cm(γm) = p∗(OB1
2m−1,θ1

(η2m))

= p∗(OB1
2m−1,θ2

(η2m)) ∈ H2m(BU(m), Z).

Proof. Since BU(m) is 1-connected, Re (γn) = p∗(η2n) is oriented vector
bundle, as in Corollary 2.2.7, we know that

p∗(OB1
2m−1,θ1

(η2m)) = p∗(OB1
2m−1,θ2

(η2m)),

which is the Euler class of Re (γn). But the top Chern class of γn is just the
Euler class of Re (γn) (see [10]). �

In the following, we further consider the codimension 1 decomposition,
that is the decomposition ξm ≈ ξm−1 ⊕ λ. We try to begin from CW-
structure of the classify space to see the restriction of the universal bundle
to each cell.

Recall that a partition of r ≥ 0 is an unordered sequence (i1, i2, . . . , is)
of positive numbers such that the sum of the numbers is equal to r. For
our purpose, we define a partition of r ≥ 0 with length n is an unordered
sequence (i1, i2, . . . , in) of non-negative numbers such that the sum of the
numbers is equal to r. We can always assume that 0 ≤ i1 ≤ i2 ≤ · · · ≤ in.
Then there is an one to one correspondence (i1, i2, . . . , in)↔ (σ1, σ2, . . . , σn)
given by σj = ij + j, for j = 1, 2, . . . , n. From [10], the Schubert symbol
σ = (σ1, σ2, . . . , σn) determines an unique r-cell e(σ), which is the set of
n-planes in Rm such that:

e(σ) =
{

X | dim(X ∩Rσi) = i, dim(X ∩Rσi−1 ) = i− 1; i = 1, 2, . . . , n
}

.
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From [10], we know that the Grassmann manifold Gn(Rm) has the following
CW-structure:

Gn(Rm) =
{
∪ e(σ) |σ = (σ1, σ2, . . . , σn)

is such that 0 < σ1 < σ2 < · · · < σn ≤ m
}

.

Taking the direct limit as m −→∞, one gets the infinite Grassmann mani-
fold Gn(R∞), which is the classifying space BO(n).

Proposition 2.2.11. Let e(σ) be a (2k + 1)-dimensional cell in Gn(R∞),
then

η2k+1 | e(σ) ≈ ξ2k ⊕ λ

where η2k+1 is the universal vector bundle over Gn(R∞).

Proof. Let σj = ij + j, for j = 1, 2, . . . , 2k + 1, then

dim e(σ) =
2k+1∑
j=1

ij = 2k + 1, and 0 ≤ i1 ≤ i2 ≤ . . . i2k+1.

It is easy to see that the only (2k + 1)-cell such that i1 > 0 is the cell
with partition (1, 1, . . . , 1). The corresponding Schubert symbol is σ =
(2, 3, . . . , 2k+2). By definition, e(σ) consists of all the (2k+1)-subspace X in
R2k+2 such that dim(X ∩R1) = 0. It is not difficult to count all the faces of
this cell, in fact, all the faces in the partition form are (0, 0, . . . , 0, 1, . . . , 1).
So the closure e(σ) for this cell is just G2k+1(R2k+2) = RP 2k+1. And
η2k+1|G2k+1(R2k+2) is the canonical (2k + 1)-plane bundle of G2k+1(R2k+2)
which is the tangent bundle for k > 0. It is well-known that there exists an
nowhere 0 vector field for τ(S2k+1), in fact,

(x0, x1, . . . , x2k, x2k+1) −→
((x0, x1, . . . , x2k, x2k+1), (x1,−x0, . . . , x2k+1,−x2k))

is such a vector field. It is easy to see that this vector field induces a section
for the fibration RP (η2k+1|e(σ)) −→ e(σ), the projective space bundle. By
Lemma 2.1.3

η2k+1 | e(σ) ≈ ξ2k ⊕ λ

where σ = (2, 3, . . . , 2k + 2).
For any other (2k + 1)-cell e(σ), σ1 must be equal to 1 and each face

of e(σ) must also have the first entry 1 which means that X ∩ R1 = R1

for any X ∈ e(σ). So RP (η2k+1|e(σ)) −→ e(σ) has a section given by
X −→ (X, R1). Again by Lemma 2.1.3,

η2k+1 | e(σ) ≈ ξ2k ⊕ λ

where λ can be even chosen to be trivial line bundle. Thus we complete the
proof of the proposition. �
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3. Two examples.

In this section, we will give two examples. In the first example, we demon-
strate a method to calculate the obstruction classes. In the second one, we
try to find as many as possible the trivial lines in the tangent bundle of a
manifold up to cobordism.

Example 3.1. H2n(RP 2n, Z̃) ≈ Z and the generator is the obstruction
class for the tangent bundle decomposition τ(RP 2n) ≈ ξ2n−1 ⊕ λ.

Let p : S2n −→ RP 2n be the covering map and τ : S2n −→ S2n be the
antipodal map. By Eilenberg Theorem H2n(RP 2n, Z̃) ≈ E2n(S2n, Z̃), where
E2n(S2n, Z̃) is the equivariant cohomology group which can be determined
by the complex{

Hp(Sp, Sp−1;Z) ∂−→ Hp−1(Sp−1, Sp−2;Z) | p = 1, 2, . . . , 2n
}

.

From [15], one can choose the orientation ep of the cell Ep
+, the upper

hemisphere so that Hp(Sp, Sp−1;Z) = 〈ep, τep〉 and the boundary operator
is given by

∂(ep) = ep−1 + (−1)pτep−1

where τep is the induced orientation on the cell of lower hemisphere by the
antipodal map. As an equivariant group Hp(Sp, Sp−1;Z) has one generator
ep, so the set of equivariant homomorphism HomZ2(Hp(Sp, Sp−1;Z), Z̃) has
one generator cep which maps ep to 1, where the antipodal map generates
Z2 and acts on integers by multliplying (−1). Now we can calculate the
coboundary operator:

δ(cep)(ep+1) = cep(∂ep+1) = cep(ep + (−1)p+1τep) = 1 + (−1)p

where we use the fact that cep(τep) = τ(cep(ep)) = −1. Now it is easy to see
that E2n(S2n, Z̃) = Z with generator cep . So H2n(RP 2n, Z̃) ≈ Z.

In the following obstruction class for the decomposition τ(RP 2n) ≈ ξ2n−1λ

is generator of H2n(RP 2n, Z̃) ≈ Z. Consider the fibration

p : RP (τ(RP 2n)) −→ RP 2n

whose fiber is RP 2n−1. The obstruction for the existence of a section for p is
the same as that of for the decomposition τ(RP 2n) ≈ ξ2n−1 ⊕ λ. If we have
a section s2n−1 for p : RP (τ(RP 2n)) −→ RP 2n on the (2n − 1)-skeleton of
RP 2n. Let

h : (B2n, S2n−1) −→ (RP 2n, RP 2n−1)

be the characteristic map of the only 2n-cell of RP 2n. In the pull-back
diagram
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h∗(RP (τ(RP 2n))) h∗−−−→ RP (τ(RP 2n))y yp

(B2n, S2n−1) h−−−→ (RP 2n, RP 2n−1)

h∗(RP (τ(RP 2n))) ≈ B2n × RP 2n−1, since B2n is contractible. The section
s2n−1 induces a section for the trivial fibration S2n−1 × RP 2n−1 −→ S2n−1

which determines a map

h′ : S2n−1 −→ RP 2n−1.

The obstruction cocycle ob(s2n−1) is just defined to be the correspondence:

ob(s2n−1(e2n)) = [h′] ∈ π2n−1(RP 2n−1) ≈ Z

which in turn determines an element

[ob(s2n−1)] in H2n(RP 2n, π̃2n−1(RP 2n−1)).

We claim that the local coefficients π̃2n−1(RP 2n−1) is the twisted integer
Z̃. To see this, we consider the natural inclusion:

i : RP 2n = G2n(R2n+1) ⊂ G2n(R∞) = BO(2n).

From Theorem 2.2.6, the obstruction for the decomposition η2n ≈ ξ2n−1⊕λ
is in

H2n(BO(2n); Z̃).
But the inclusion i induces an isomorphism on the fundamental groups:

i∗ : π1(G2n(R2n+1)) ≈ π1(G2n(R∞)) ≈ Z2.

By the naturality of the decomposition obstruction classes, i induces a ho-
momorphism:

i∗ : H2n(G2n(R∞), Z̃) −→ H2n(G2n(R2n+1), i∗Z̃)

which maps the decomposition obstructions of η2n to that of i ∗ (η2n) =
τ(RP 2n). So π̃2n−1(RP 2n−1) ≈ i∗Z̃ = Z̃. Thus

[ob(s2n−1)] ∈ H2n(RP 2n, π̃2n−1(RP 2n−1)) ≈ H2n(RP 2n, Z̃).

In order to calculate [h′] ∈ π2n−1(RP 2n−1) ≈ Z, we need to choose a
specific characteristic map h for the 2n-cell, and find the trivilization of the
pull-back of fibration p : RP (τ(RP 2n)) −→ RP 2n. Let

q : Vk(Rm) −→ Gk(Rm)

be the principal O(k)-bundle, where Vk(Rm) is the Stiefel manifold, then
the pull-back of the canonical k-bundle over Gk(Rm) by q is isomorphic to
the trivial bundle

Vk(Rm)×Rk −→ Vk(Rm).
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The isomorphism is given by

((ν1, ν2, . . . , νk), (t1, t2, . . . , tk)) −→

(
(ν1, ν2, . . . , νk),

(
〈V 〉,

k∑
1

tiνi

))
where ν1, ν2, . . . , νk are k unit orthogonal vectors in Rm, and 〈V 〉 is the k-
dimensional subspace in Rm generated by ν1, ν2, . . . , νk. The inverse is given
by

((ν1, ν2, . . . , νk), (〈V 〉, ν)) −→ ((ν1, ν2, . . . , νk), (ν · ν1, ν · ν2, . . . , ν · νk)).

So any vector bundle factors out though q : Vk(Rm) −→ Gk(Rm) is trivial
and the trivilization is given by the above isomorphisms. In particular, we
know the trivilization on any subspace of Vk(Rm). The following theorem
[10] states that the characteristic map for any cell in Gk(Rm) can be chosen
to be the restriction of q : Vk(Rm) −→ Gk(Rm) to some subspace of Vk(Rm).

Theorem 3.2. In the CW-structure of Gn(Rm),

Gn(Rm) =
{
∪ e(σ) |σ = (σ1, σ2, . . . , σn)

is such that 0 < σ1 < σ2 · · · < σn ≤ m
}

the characteristic map of the cell e(σ) can be given by

q|Hσ1×···×H
σn : Vn(Rm) ∩H

σ1 × · · · ×H
σn −→ Gn(Rm)

where H
σ1 = {(x1, x2, . . . , xσi , 0, . . . , 0) ∈ Rm |xσi ≥ 0}.

Before further considering the characteristic map for the top cell in
G2n(R2n+1), we need the following lemma:

Lemma 3.3. Let (ν1, ν2, . . . , νk) ∈ Vk(Rk+1) be written in matrix form:
ν1

ν2
...
νk

 =


ν1,1 ν1,2 · · · ν1,k+1

ν2,1 ν2,2 · · · ν2,k+1

· · · · · · · · · · · ·
νk,1 νk,2 · · · νk,k+1


then the vector (ν1, . . . , νk)⊥ = (A1, A2, Ak+1), where

Ai = (−1)i+1

∣∣∣∣∣∣
ν1,1 · · · ν̂1,i · · · ν1,k+1

· · · · · · · · · · · ·
νk,1 · · · ν̂k,i · · · νk,k+1

∣∣∣∣∣∣
is an unit vector and orthogonal to each νi for 1, 2, . . . , k.
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Proof. Let w = (w1, w2, . . . , wk+1) be the unique unit vector that is orthog-
onal to each νi for i = 1, 2, . . . , k and such that

(∗)

∣∣∣∣∣∣∣∣
ν1,1 · · · ν1,i · · · ν1,k+1

· · · · · · · · · · · · · · ·
νk,1 · · · νk,i · · · νk,k+1

w1 · · · wk,i · · · wk+1

∣∣∣∣∣∣∣∣ = (−1)k.

From the determinant properties we know that (ν1, . . . , νk)⊥ = (A1, A2, . . . ,
Ak+1) is orthoganal to each νi for i = 1, 2, . . . , k and so

(ν1, . . . , νk)⊥ = tw

hence 〈(ν1, . . . , νk)⊥, w〉 = t〈w,w〉 = t. Expanding the determinant (∗) on
the last row, we see that (−1)k

∑k+1
i=1 wiAi = (−1)k, that is 〈(ν1, . . . , νk)⊥, w〉

= 1. Thus we proved that (ν1, . . . , νk)⊥ = w and hence (ν1, . . . , νk)⊥ is an
unit vector and orthogonal to each νi for i = 1, 2, . . . , k.

Now we consider the 2n-cell in G2n(R2n+1) which corresponds to the
Schubert symbol (2, 3, . . . , 2n + 1). In this special case, we can further give
a specific homeomorphism:

h2n : I2n −→ V2n(R2n+1) ∩H
2 × · · · ×H

2n+1

by
h2n(x1, x2, . . . , x2n) = (ν1, ν2 . . . , ν2n)

where

ν1 = x1e1 +
√

1− x2
1e2

ν2 = x2

(√
1− x2

1e1 − x1e2

)
+
√

1− x2
2e3

· · · · · · · · · · · ·

νk = xk(ν1, . . . νk−1)⊥ +
√

1− x2
kek+1

with inverse given by

h−1
2n (ν1, ν2, . . . , ν2n) = (〈ν1, e1〉, 〈ν2, (ν1)⊥〉, . . . , 〈ν2n, (ν1, . . . , ν2n−1)⊥〉).

Now we consider the (2n− 1)-skeleton section s2n−1 for the fibration

p : RP (τ(RP 2n)) −→ RP 2n = G2n(R2n+1)

given by
s2n−1(X) = (X, [e1]).

In fact, for any cell e(σ) in BO(2n) and X ∈ e(σ), dim(X ∩ R1) = 1
if dim e(σ) < 2n. So s2n−1 is a section over the (2n − 1)-skeleton for the
fibration

RP (η2n) −→ BO(2n).
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Now we can calculate the obstruction cocycle for the section s2n−1 as
follows: In the pull-back diagram

h∗(RP (τ(RP 2n))) h∗−−−→ RP (τ(RP 2n))y yp

(B2n, S2n−1) h−−−→ (RP 2n, RP 2n−1)

if we choose the characteristic map to be

qh2n : I2n −→ V2n(R2n+1) ∩H
2n+1 × · · · ×H

2n+1 −→ G2n(R2n+1)

then the pull-back diagram will be equivalent to the following diagram

I2n ×RP 2n−1 qh∗2n−−−→ RP (τ(RP 2n))y yp

I2n qh2n−−−→ G2n(R2n+1)

where I2n ×RP 2n−1 qh∗2n−→ RP (τ(RP 2n)) is given by

qh∗2n((x1, . . . , x2n), [t1, . . . , x2n]) =

(
qh2n(x1, . . . , x2n),

∑
i

tiνi

)
where h2n(x1, x2, . . . , x2n) = (ν1, ν2, . . . , ν2n). The induced section s∗2n−1

over ∂(I2n) ≈ S2n−1 is given by

s∗2n−1(x1, . . . , x2n) = ((x1, . . . , x2n), [〈e1, ν1〉, . . . 〈e1, ν2n〉])

which induces a map h : ∂(I2n) ≈ S2n−1 −→ RP 2n−1 given by

h(x1, . . . , x2n) = [〈e1, ν1〉, . . . , 〈e1, ν2n〉].

Taking a close look at the formula for h2n(x1, x2, . . . , x2n)=(ν1, ν2, . . . , ν2n),
we find that

[〈e1, ν1〉, . . . , 〈e1, ν2n〉] =
[
x1, x2

√
1− x2

1, . . . , x2n

√
1− x2

1 · · ·
√

1− x2
2n−1

]
.

Thus h(x1, . . . , x2n) =
[
x1, x2

√
1− x2

1, . . . , x2n

√
1− x2

1 · · ·
√

1− x2
2n−1

]
which is homotopic to the map (x1, . . . , x2n) −→ [x1, . . . , x2n] via the fol-
lowing homotopy

Ht(x1, . . . , x2n) =
[
x1, x2

√
1− tx2

1, . . . , x2n

√
1− tx2

1 · · ·
√

1− tx2
2n−1

]
.

Therefore [h] represents the generator in π2n−1(RP 2n−1), hence the obstruc-
tion class [ob(s2n−1)] for the decomposition τ(RP 2n) ≈ ξ2n−1 ⊕ λ is the
generator in H2n(RP 2nZ̃) ≈ Z. Thus we complete our first example �
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In the following example, we will see that the decomposition ξ2n+1 ≈
ξ2n ⊕ λ is often possible. Let MO∗ denote the Thom cobordism ring. It
is well-known that MO∗ =

∑
n≥0 MOn = Z2[Xn |n 6= 2k − 1] is a graded

polynomial algebra over Z2 with one generator in each dimension n not in
the form 2k − 1 for all k > 0.

Example 3.4. Let [M2k+1] ∈MO2k+1 be a (2k+1)-dimensional cobordism
class, then we can choose M2k+1 such that τ(M2k+1) ≈ ξ2k ⊕R.

Proof. For any odd dimensional generator, we will choose such a representa-
tive. Consider the vector bundle λ1⊕· · ·⊕λm over RP (n1)×· · ·×RP (nm),
where λ1 is the pull-back of the canonical line bundle over i-th factor. Let
RP (n1, . . . , nm) be the projective space bundle of λ1 ⊕ · · · ⊕ λm, then it is
a n-dimensional smooth manifold, where n =

∑m
1 ni + m − 1. From [13],

RP (n1, . . . , nm) is indecomposable in MOn if and only if
(

n− 1
n1

)
+ · · · +(

n− 1
nm

)
= 1mod 2.

Let n be a positive odd number that is not in the form 2k− 1, then n can
be uniquely written as n = 2p+1q + 2p − 1, where p, q are positive integers.
Let Xn be the manifold RP (2p, 1, . . . , 1, 0) where the number of 1’s is 2pq−1
which is greater than 0. Noticing that 2p and 1 do not appear in the binary
expression of n−1, one can check that RP (2p, 1, . . . , 1, 0) is indecomposable.
From Borel-Hirzebruch [4], the tangent bundle of the projective space bundle
RP (ξ) associated with a vector bundle ξ over a smooth manifold M always
splits:

τ(RP (ξ)) ≈ p∗(τ(M))⊕ τ2

where p : RP (ξ) −→ M is the projection, and τ2 is the bundle along the
fiber. From this result, noticing that the tangent bundle of RP 1 is trivial, we
see that the tangent bundle of RP (2p, 1, . . . , 1, 0) has a (2pq−1)-dimensional
trivial summand.

For even number n, we may just choose RPn to be the generator. From
the polynomial structure of MO∗, any [M2k+1] ∈MO2k+1 has the form:

[M2k+1] =
∑

I

εIXi1 · · ·Xir

where ε ∈ Z2, and
∑r

j=1 ij = 2k+1. So at least one of the generator has odd
dimension. Therefore the tangent bundle of

∑
I εIXi1 · · ·Xir has a trivial

summand. �

Since the characteristic numbers are cobordism invariants, noticing that
w2n+1(ξ2n⊕R) = 0, and using the above example, we get a different proof of
the fact that 〈w2n+1[M2n+1]〉 = 0 for any odd dimensional closed manifold
M2n+1.
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