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Let G be a quaternionic real form of an exceptional group
of real rank 4. Gross and Wallach show that three representa-
tions in the continuation of the quaternionic discrete series are
unitarizable (see Gross and Wallach, 1996). In this paper we
will determine the restrictions of these representations to cer-
tain subgroups of G by computing explicitly the intersections
of orbits. In particular we will determine certain compact
dual pair correspondences of the minimal representation of
G.

1. Introduction.

1.1. We refer to §3 of [GW2] or §2 of [L3] for the definition of the double
cover G of a quaternionic real form G0 of a complex Lie group G(C). G has
maximal compact subgroup K of the form M1×M where M1 is isomorphic
to SU2. Its Lie algebra has complexified Cartan decomposition g = k ⊕ p.
Here p = C2 ⊗ VM where VM is a self dual representation of M(C).

1.2. Let G(C) be one of the following simply connected complex excep-
tional groups:

F4(C), E6(C) o Z/2Z, E7(C), E8(C).

We will index these four cases by s = 1, 2, 4, 8 respectivley. Let G(C)0 denote
the connected component of G(C). Then there exists a unique connected
quaternionic real form G0

0 of G(C)0 (cf. §1.1). It has a real root system of
type F4. We will denote G0

0 by F4,4, E6,4, E7,4 and E8,4 respectively. Set
G0 = F4,4, E6,4 o Z/2Z, E7,4 and E8,4 respectively and let G denote the
corresponding double cover of G0.

It is known that PVM is a union of four M(C)-orbits. One of the orbits
is Zariski dense and we will follow [GW2] and denote the Zariski closure of
the remaining three orbits by X, Y and Z. Here Z is the unique closed orbit
in PVM and

PVM ⊃ X ⊃ Y ⊃ Z.(1)

Let O be either X, Y or Z and let
⊕

n An(O) denote the coordinate ring of
O in PVM . Note that An(O) is a representation of M .
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In [GW1], [GW2] Gross and Wallach construct a unitary representation
σO in the continuations of the quaternionic discrete series which is associated
to O in the sense that it has K-types (K = SU2 ×M)

∞∑
n=0

Sym n+k(C2)⊗An(O)(2)

where k is the integer 3s + 3, 2s + 2 and s + 2 if O is X, Y and Z respec-
tively. Again we will follow the notations of [GW2] and denote the three
representations by σX , σY and σZ .

1.3. Let G be one of the exceptional groups of real rank 4 in §1.2. A
quaternionic Lie subgroup G′ of G is defined as a semisimple Lie subgroup
of G containing M1. Let M ′ = G′ ∩M .

We refer to §2 and its references for the definition of a quaternionic repre-
sentation of G and G′. In [L3] we show that the restriction of σO from G to
G′ decomposes discretely into a direct sum of quaternionic representations
of G′. There we derived a formula to compute the spectrum of decompo-
sitions (See Thm. 3.4.1 [L3]) and we deduced that most of the irreducible
components of the restriction to G′ are determined by the coordinate ring of
the intersection of O∩PV0. Here PV0 is a M ′(C)-invariant subspace of PVM

and hence O ∩ PV0 is a M ′(C)-invariant projective variety. We will briefly
recall these results in §3. Unfortunately the formula cannot be applied im-
mediately to some interesting situations. In particular the coordinate ring
of O ∩ PV0 is in general difficult to compute.

This paper is a continuation of [L3]. The main objective of this paper is
to determine the restriction of σO in the following five situations (cf. (8)):

G = F̃4,4 ⊃ G′ = S̃pin(5, 4)×(Z/2Z)2 (Z/2Z)2(3)

G = F̃4,4 ⊃ G′ = S̃pin(4, 4)×(Z/2Z)3 (Z/2Z)3(4)

G = Ẽ6,4 o (Z/2Z) ⊃ G′ = F̃4,4 × (Z/2Z)(5)

G = Ẽ7,4 ⊃ G′ = Ẽ6,4 ×µ3 U1(6)

G = Ẽ8,4 ⊃ G′ = Ẽ7,4 ×µ2 SU2.(7)

Here the tilde above the group denotes its double cover. We will compute
the decompositions of the restrictions of the representations σO by explicitly
computing the intersections O ∩ PV0. We have mentioned that one of the
difficulty is to determine the intersections and their coordinate rings. For-
tunately in each of the above G′ it is known that PV0 is a union of finitely
many M ′(C) orbits and the intersection O∩PV0 can therefore be effectively
determined. We remark that the above subgroups G′ are just a few such
examples. Our method presented in this paper should be applicable to other
subgroups G′ where M ′(C) exhibit a dense orbit in PV0.
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The restrictions provide an efficient method for finding many quaternionic
representations of the exceptional quaternionic Lie groups which are unita-
rizable. Since σO has small Gelfand-Kirillov dimensions, the quaternionic
representations obtained in the restriction would have small Gelfand-Kirillov
dimensions too.
1.4. The representation σZ is a ladder representation and it is annihilated
precisely by the Joseph ideal and it is thus called the minimal representation
of G. A pair of reductive subgroups H1 ×C H2 in G is called a (reductive)
dual pair if the centralizers of H1 and H2 in G are H2 and H1 respectively.
The dual pair is called compact if either H1 or H2 is compact. Note that
G′ in (3) to (7) are examples of compact dual pairs. In the appendix of
[L3], we showed that certain correspondences of dual pairs in §1.3 exist
and the second objective of this paper is to find the rest (if any) of the
correspondences. We will also describe the dual pairs correspondences of
Spin (4, 4) ×µ2

2
U2

1 in E6,4 o Z/2Z in Theorem 7.3.1 and E6,4 × SU3 in E8,4

in Corollary 4.10.1.
We remark that the restrictions of the minimal representations to dual

pairs are of great interest. Exceptional dual pairs correspondences have been
investigated by [HPS], [Li1], [Li2], [GS] and [L2]. In [GS] and [MS], the
authors computed certain dual pair correspondences of p-adic exceptional
groups by determining the intersection of orbits.
1.5. The organization of the paper is as follows: In §2 we will recall the
definition of quaternionic groups and quaternionic representations. In §3 we
will briefly state the restriction formula of [L3]. The main results of this
paper are stated in §4. In §5 we describe the closures of the orbits X, Y, Z
in detail. The rest of the paper is devoted to the proofs of the main results
in §4.
1.6. We define some notations. πG(a1$1 + · · · + an$n) will denote the
irreducible finite dimensional complex representation of a semisimple Lie
group G with highest weight a1$1 + · · · + an$n where $i are the funda-
mental weights given in Planches [Bou]. If V is a representation of G, then
Sn(V ) = Sym nV will denote its n-th symmetric product and V ∗ its dual
representation. Sn will denote the representation Sym n(C2) of SU2. χ1 will
denote a fundamental character of the compact torus U1. µn will denote the
cyclic group of order n. Suppose H1 and H2 are subgroups of G and C lies
in the centers of both H1 and H2, then we denote

H1 ×C H2 := (H1 ×H2)/{(z, z) : z ∈ C}.(8)

2. Quaternionic groups and representations.

2.1. In this section we define some notations and briefly recall the defini-
tions of the quaternionic real form of an algebraic group and quaternionic
representations.
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2.2. We refer to §3 of [GW2] and §2 of [L3] for the definition of the
quaternionic real form g0 of a complex simple Lie algebra g. It has Cartan
decomposition g = k⊕ p where

k = su2 ⊕m.

Here m is a reductive Lie subgroup of g and p = C2⊗VM where VM is a self
dual representation of m. k contains a Cartan subalgebra h of g. We choose a
positive root system Φ+ with respect to h such that the su2 in k corresponds
to the highest root α̃. Denote this Lie algebra by su2(α̃). t1 = h ∩ su2(α̃)
is a Cartan subalgebra of su2(α̃). Then l = t1 ⊕ m is a Levi subalgebra of
a maximal parabolic subalgebra q whose nilpotent radical u is a Heisenberg
Lie algebra. The one dimensional center of u is spanned by the highest root
space geα and let u/[u, u] = VM denote the representation of m. q = l⊕u will
denote the opposite parabolic subalgebra.

Let G(C) be a complex simply connected simple Lie group with Lie alge-
bra g and let G0 be a real form of G(C) having Lie algebra g0. We denote
the real Lie subgroups in G(C) corresponding to the various real forms of
the Lie subalgebras m0, l0 and k0 by M , L and K0 = SU2(α̃)×µ2 M respec-
tively. Here K0 is the maximal compact subgroup of G0 and SU2(α̃) = M1

in §1.1. Let G denote the double cover of G0 with maximal compact sub-
group K = SU2(α̃)×M . We will call G×H a quaternionic Lie group if G
is a quaternionic simple Lie group and H is a compact Lie group.

Set 2d = dim VM . If g is of type D4, F4, E6, E7, E8, then d = 3s + 4
where s = 0, 1, 2, 4, 8 respectively. We tabulate some of the M(C) and VM

in Table 1 below.

G0 M(C) VM

Spin (d, 4), d ≥ 4 SL2 × Spin (d) C2 ⊗ Cd

(e1) F4,4 Sp6 π($3)
(e2) E6,4 o Z/2Z SL6 o Z/2Z π($3)
(e4) E7,4 Spin (12) π($6)
(e8) E8,4 simply connected E7 π($1)

Table 1.

2.3. We will define and review the properties of quaternionic representa-
tions. We refer to [S1], [W1], [W2], [GW1], [GW2, §5] and Theorem 3.3.1
of [L2] for proofs and details.

Let W [k] = e−keα/2⊗W be an irreducible finite dimensional representation
of L = U1×M . We extend W [k] trivially to a representation of q and denote

H(G, W [k]) = H(W [k]) := Γ1
K/L

(
Hom U(q)(U(g),W [k])L

)
as the Harish-Chandra module of G where Γ1 is the first Zuckerman derived
functor. It has infinitesimal character µ+ρ(G)−k eα

2 . If k ≥ 2, then H(W [k])
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has K-types (K = SU2(α̃)×M)
∞∑

n=0

Sk−2+neα (C2)⊗ (Sym n(VM )⊗W ).(9)

It contains a unique irreducible (g,K)-submodule denoted by σ(G, W [k])
which is generated by the translates of the lowest K-types

Sk−2eα (C2)⊗W.(10)

We will call H(G, W [k]) and σ(G, W [k]) quaternionic representations.

3. Restrictions.

3.1. Let G0 be one of the four exceptional groups given in Table 1 (es)
indexed by s = 1, 2, 4, 8. Let G be its double cover.

3.2. Suppose G′ is a quaternionic real Lie subgroup of G containing SU2(α̃).
We have correspondingly K ′ = G′ ∩K, M ′ = G′ ∩M and the Lie algebras
g′, m′, u′ = u ∩ g′. Write u = u′ + V0. We have VM ′ ⊂ VM and we define
V0 = VM/VM ′ as a representation of M ′.

We will use ResG
G′σ to denote the restriction of a Harish-Chandra module

σ of G to that of G′.

3.3. First we review the work of [GW2]. Denote Hk := H(G, C[k]) and
its unique submodule σ(G, C[k]) by σk. Hk is irreducible and unitarizable
if k ≥ 3s + 4. If k > 6s + 8, then it belongs to the discrete series. We recall
Corollary 4.2.2 of [L2].

Proposition 3.3.1. There exists a filtration Hn of Hk such that Hn+1/Hn

= H(G′, Sn(V0)[n + k]). If Hk is unitarizable, then

ResG
G′Hk =

∞∑
n=0

H(G′, Sn(V0)[n + k])

and each summand on the right is irreducible and unitarizable.

3.4. Since VM is a self dual representation of M , we identify VM with its
dual. In §1.2 we remarked that PVM is a union of four M(C)-orbits. One
of the orbit is Zariski dense and we denote the Zariski closure of the other
three non-dense orbits by X, Y and Z satisfying (1). We will describe these
three orbits in greater detail in §5.

Let (k,m,O) be one of the three following sets of data:

(3s + 3, 4, X), (2s + 2, 3, Y ), (s + 2, 2, Z).

Let I•(O) =
⊕

n≥m In(O), (Im 6= 0) be the homogeneous ideal of O in PVM

and A•(O) =
⊕

An(O) be its coordinate ring. Then I• is generated as a
S•(Vm) module by Im(O) and each graded piece An(O) is a representation
of M .
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Gross and Wallach showed that σk is a unitarizable proper submodule of
Hk with K types given in (2). Furthermore it satisfies an exact sequence

0 → σk → H(G, C[k])
φ→ H(G, Im(O)[k + m]).(11)

As a representation of M(C), Im(O) = C, VM and m respectively for the
three values of k. When k = 3s+3, φ in (11) is a surjection (cf. §8 of [GW2]).
We will follow the notation of [GW1] and denote the three representations
σ3s+3, σ2s+2 and σs+2 by σX , σY and σZ respectively.

The annihilator ideal of σZ is the Joseph ideal in U(g) so σZ is called the
minimal representation of G. It has K-types

∞∑
n=0

Ss+neα (C2)⊗ πM (nλ)(12)

where λ is the highest weight of VM . Note that all the representations
descend to representations of G0 except σX for groups of type En and σZ of
F̃4,4.

3.5. The inclusion Im(O) ⊂ Sm(VM ) gives rise to the following natural
maps of M -modules:

Sym n−m(VM )⊗ Im(O) → Sym n−m(VM )⊗ Sym m(VM ) → Sym n(VM ).

Let r′n denote the composite of the above maps. The direct sum VM = u′⊕V0

(cf. §3.2) induces a natural map of M ′-modules

r′′n : Sym n(VM ) → Sym n(V0).

We define rn = r′′n ◦ r′n for n ≥ m. For 0 ≤ n < m, we set rn to be
the zero map into Sym n(V0). Let Rn denote the cokernel of rn and let
R• :=

⊕∞
n=0 Rn. Note that Rn is a representation of M ′ and we write

Rn =
∑

j

Wn,j

where Wn,j are the irreducible subrepresentations of M ′.
Let O′ = O ∩ PV0 and we denote its coordinate ring in PV0 by A•(O′) =⊕
An(O′). Then O′ is cut out by rm(Im(O)) and R•/Nil(R•) = A•(O′).
We can now state Theorem 3.3.1 and Corollary 2.8.1 of [L3].
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Theorem 3.5.1.

(a)

ResG
G′σk =

∞∑
n=0

σ(G′, Rn[k + n]) =
∞∑

n=0

∑
j

σ(G′,Wn,j [k + n]).

(b)

ResG
G′σk ⊇

∞∑
n=0

σ(G′, An(O′)[k + n]).

Equality holds if and only if rm(Im(O)) generates the ideal of O′.
(c) If rm is surjective, then rn is surjective for n ≥ m and

ResG
G′σk =

m−1∑
n=0

σ(G′, SnV0[k + n]).

4. The main results.

4.1. In this section we will state the main results on the restrictions of the
quaternionic representations σO of the exceptional group G to its subgroup
G′. The proofs will be given in the later sections. We will replace G by G0 if
the representation descends to G0. If H(G′,W [n]) appears in the restriction
formula, it means that H(G′,W [n]) is irreducible and its K-types are given
by (9).

4.2. Let G = F̃4,4 ⊃ G′ = S̃pin(5, 4) and M ′ = SU2 × Spin (5).
Let Vm,n = Sm(C2)⊗ πSpin (5)(n$2) be the representation of M ′.

Theorem 4.2.1.

(a) ResG
G′σZ = σ(G′, C[3]) + σ(G′, V0,1[4]).

(b) ResF4,4

Spin (5,4)σY =
∞∑

n=0

σ(Spin (5, 4), V0,n[4 + n]).

(c) ResF4,4

Spin (5,4)σX = H(Spin (5, 4), C[6]) +
∞∑

n=1

σ(Spin (5, 4), V0,n[6 + n]).

(d) ResG
G′H(G, C [k]) =

∞∑
n=0

H(G′, V0,n[k + n]) if k ≥ 7.

If n ≥ 1 then the summands in (c) satisfy the following exact sequence:

0 → σ(F4,4, V0,n[6 + n]) → H(F4,4, V0,n[6 + n]) → H(F4,4, V0,n[9 + n]) → 0.
(13)
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4.3. Suppose G = F̃4,4 and G′ = S̃pin(4, 4). The maximal compact sub-
group of G′ is SU2(α̃)×M ′ where M ′ = SU2(A)×SU2(B)×SU2(C). Here
α̃, A,B,C are the (orthogonal) compact roots of S̃pin(4, 4). Let

S(a, b, c) := Sa
A(C2)⊗ Sb

B(C2)⊗ Sc
C(C2)

denote the irreducible representation of M ′.

Theorem 4.3.1.

ResG
G′σZ = σ(G′, C[3]) + σ(G′, S(1, 0, 0)[4])(a)

+ σ(G′, S(0, 1, 0)[4]) + σ(G′, S(0, 0, 1)[4]).

ResF4,4

Spin (4,4)σY =
∑

abc=0

σ(Spin (4, 4), S(a, b, c)[4 + a + b + c]).(b)

ResF4,4

Spin (4,4)σX =
∑

abc=0

H(Spin (4, 4), S(a, b, c)[6 + a + b + c])(c)

+
∑

a,b,c>0

σ(Spin (4, 4), S(a, b, c)[6 + a + b + c]).

ResG
G′H(G, C [k]) =

∑
a,b,c≥0

H(G′, S(a, b, c)[k + a + b + c]) if k ≥ 7.(d)

When a, b, c are strictly positive, the summands in (c) satisfy the following
exact sequence:

(14) 0 → σ(Spin (4, 4), S(a, b, c)[6 + a + b + c])

→ H(Spin (4, 4), S(a, b, c)[6 + a + b + c])

→ H(Spin (4, 4), S(a− 1, b− 1, c− 1)[7 + a + b + c]) → 0.

4.4. Note that S̃pin(4, 4) and S̃pin(5, 4) are components of dual pairs in
(3) and (4). In §6 we will describe the action of (Z/2Z)2 and (Z/2Z)3 on the
summands. In particular Theorems 4.2.1(a) and 4.3.1(a) give the dual pairs
correspondences of the minimal representation σZ of F̃4,4. The K-types of
summands are given in Theorem 6.8.1 and 6.9.1.

4.5. Let G = Ẽ6,4 o Z/2Z and G′ = F̃4,4 × Z/2Z. Let χ be the nontrivial
character of Z/2Z.
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Theorem 4.5.1.

ResE6,4oZ/2Z
F4,4×Z/2Z σZ = σ(F4,4, C[4])⊗ χ0 + σ(F4,4, C6[5])⊗ χ.(a)

ResE6,4oZ/2Z
F4,4×Z/2Z σY =

∞∑
n=0

σ(F4,4, S
n(C6)[6 + n])⊗ χn.(b)

ResG
G′σX = H(F̃4,4, C[9])⊗ χ0 + H(F̃4,4, C6[10])⊗ χ(c)

+
∞∑

n=2

σ(F̃4,4, S
n(C6)[9 + n])⊗ χn.

ResG
G′H(G, C [k]) =

∞∑
n=0

H(F̃4,4, S
n(C6)[10 + n])⊗ χn if k ≥ 10.(d)

If n ≥ 2 then the summands in (c) satisfy the following exact sequence:

(15) 0 → σ(F̃4,4, S
n(C6)[9 + n]) → H(F̃4,4, S

n(C6)[9 + n])

→ H(F̃4,4, S
n−2(C6)[11 + n]) → 0.

4.6. Each of the summands of σX in Theorems 4.2.1(c), 4.3.1(c) and
4.5.1(c) satisfies a short exact sequence. The K ′-types of the middle and
the last term of the exact sequence is given by (9). Hence it is possible to
determine the K ′-types, the Gelfand-Kirillov dimensions and the Bernstein
degrees of the summands.

4.7. Let G = Ẽ7,4, G′ = Ẽ6,4 ×µ3 U1 and M ′ = SU6 ×µ3 U1.
Let Va,b = πSU6(a$1 + b$6).

Theorem 4.7.1.

(a) ResE7,4

E6,4×U1
σZ =

∑
a,b≥0,ab=0

σ(E6,4, Va,b[6 + a + b])⊗ χa−b
1 .

(b) ResE7,4

E6,4×U1
σY = H(E6,4, C[12])⊗ χ0

1

+
∑

a,b≥0

σ(E6,4, Va,b[10 + a + b])⊗ χa−b
1 .

(c) ResG
G′σX =

∑
n=0,1

∑
a,b≥0

H(Ẽ6,4, Va,b[15 + 2n + a + b])⊗ χa−b
1 .

(d) ResG
G′H(G, C [k]) =

∑
a,b,n≥0

H(Ẽ6,4, Va,b[k + 2n + a + b])⊗ χa−b
1

if k ≥ 16.

4.8. Let G = Ẽ8,4, G′ = Ẽ7,4 ×µ2 SU2 and M ′ = Spin (12) ×µ2 SU2. Let
Va,b = πSpin (12)(a$1 + b$2).
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Theorem 4.8.1.

(a) ResE8,4

E7,4×SU2
σZ =

∞∑
n=0

σ(E7,4, Vn,0[10 + n])⊗ Sn(C2).

(b) ResE8,4

E7,4×SU2
σY =

∑
a+2b+2c=n, bc=0

σ(E7,4, Va,c[18 + n])⊗ Sa+2b(C2).

(c) ResG
G′σX =

∑
∗H(Ẽ7,4, Va+2d,c[27 + n])⊗ Sa+2b(C2).

(d) ResG
G′H(G, C[k]) =

∞∑
m=0

∑
∗H(Ẽ7,4, Va+2d,c[k + n + 4m])⊗

⊗Sa+2b(C2) if k ≥ 28

where the summation
∑∗ is taken over all nonnegative integers a, b, c, d, n

satisfying the relations

n− 2a ≤ a + 2b + 2c + 4d ≤ n, cd = 0, a ≡ n mod (2).(16)

4.9. Some of the restrictions stated in this section are known. We have
included them for the sake of completeness. Moreover they follow with little
additional effort from the proofs of the rest of the statements. The following
results are known:

(i) Theorems 4.5.1(a) and 4.7.1(a) are unpublished results of B. Gross [G].
See §6 [GW1] for Theorem 4.8.1(a). The method of proof is by considering
the decompositions of the K-types. Also see Theorem 12.1.1 [L2].

(ii) See §4.6 of [L2] for Theorems 4.3.1(c) and (d).

4.10. Using the above theorems, we will deduce the following dual pair
correspondence in §9.4:

Corollary 4.10.1.

ResE8,4

E6,4×µ3SU3
σZ =

∑
a,b≥0

Θ(a, b)⊗ πSU3(a$1 + b$2)

where

Θ(a, b) =

 σ(E6,4, πSU6(a$1 + b$5)[a + b + 10]) if (a, b) 6= (0, 0)

H(E6,4, C[10])⊕H(E6,4, C[12]) if (a, b) = (0, 0).

(17)

The dual pair correspondence of Spin (4, 4)×µ2
2
U2

1 ∈ E6,4 will be given in
Theorem 7.3.1.
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4.11. The proofs of part (c) of Theorems 4.2.1 to 4.8.1 are similar. By (11)
we have an exact sequence

0 → σX → H(G, C[d− 1]) → H(G, C[d + 3]) → 0.(18)

The term on the right is irreducible and unitarizable. By Proposition 3.3.1
the restriction of the last term to G′ decomposes into

∞∑
n=0

H(G′, SnV0[d + 3 + n]).(19)

Applying the filtration in Proposition 3.3.1 to the middle and the last term
of (18) gives a homomorphism of graded modules

0 → ResG
G′ σX →

∞∑
n=0

H(G′, SnV0[d− 1 + n]) →
∞∑

n=0

H(G′, SnV0[d + 3 + n]) → 0.

(20)

One can show that the above sequence is an exact sequence. We shall use
(20) to prove part (c) of the above theorems.

5. Orbits computations.

5.1. In this section we will give a realization of the M(C) action on PVM

and describe its subvarieties X, Y and Z (cf. §1.2). Please refer to [Ba],
[Kim], [J1], [GW2] and [GL] for more details.

5.2. Let s = 1, 2, 4, or 8 and let K = Ks denote the composition algebra
over C of dimension s. Then up to isomorphism, K1 = C, K4 is the set
of 2 by 2 complex matrices M2(C), K2 is the subset of diagonal elements
in M2(C) and K8 is the set of Cayley numbers [J2]. Each algebra has an
anti-automorphism z 7→ z called conjugation such that N(z) := zz = zz
is a nondegenerate bilinear form on K. Moreover N(zz′) = N(z)N(z′).
Define tr(z) = z + z and 〈z, z′〉 = tr(zz′). There are obvious embeddings
K1 ⊂ K2 ⊂ K4.

5.3. Let (U0, 〈, 〉) be the 3 dimensional complex inner product space with
orthonormal basis {e1, e2, e3}. Then K8 can be realized as elements of the
form

x = (a, d; v1, v2) :=
(

a v1

v2 d

)
(21)

where a, d ∈ C and v1, v2 ∈ U0. The multiplication is given in [J2, p. 142]
and N(x) = ad− 〈v1, v2〉. We define an action of g ∈ SL(U0) on K8 by

g : (a, d; v1, v2) 7→ (a, d;hv1,
th−1v2).(22)

We embed K4 ⊂ K8 by
(

a b
c d

)
7→

(
a be1

ce1 d

)
.
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5.4. Let J = J (K) be the Jordan algebra consisting of 3 by 3 Hermitian
symmetric matrices of the form

J = (γ1, γ2, γ3; c1, c2, c3) :=

 γ1 c3 c2

c3 γ2 c1

c2 c1 γ3

(23)

where γi ∈ C and ci ∈ K. The composition in J is given by J1 ◦ J2 =
1
2 (J1J2 + J1J2). Define an inner product on J given by 〈X, Y 〉 = Tr (X ◦ Y )
where Tr denotes the usual trace of matrices. There is a cubic form

det(J) = γ1γ2γ3 − γ1N(c1)− γ2N(c2)− γ3N(c3) + tr(c1(c2c3))

on J which induces a trilinear form on J such that (J, J, J) = det J . For
J (K1) and J (K2), det is the usual determinant of 3 by 3 matrices. Finally
we define a bilinear map J × J −→ J , (J, J ′) 7→ J × J ′ such that in the
notation of (23)

J × J = (γ2γ3 −N(c1), γ3γ1 −N(c2), γ1γ2 −N(c3);(24)
c2c3 − γ1c1, c3c1 − γ2c2, c1c2 − γ3c3).

J 6= 0 is said to have rank 1 if J × J = 0. J has rank 0 if J = 0. J 6= 0 has
rank 2 if det(J) = 0 and it is not of rank 1.

Define

VM := C⊕ J ⊕ J ⊕ C(25)

and we denote a vector in VM by (ξ, J, J ′, ξ′). There is a realization of the
M(C) action on VM (see [Ba]). Let p : VM\{0} → PVM be the canonical
projection.

We refer to (23) and define

J1 := {(0, 0, 0; c1, 0, 0) ∈ J : c1 ∈ K}.(26)

Similarly we define J2 and J3. Define Wi = {(0, J, J ′, 0) ∈ VM : J, J ′ ∈ Ji}
for i = 1, 2, 3. We will need these definitions in §6 and §7.

5.5. The smallest orbit Z is generated by the highest weight vector spanned
by p(1, 0, 0, 0). The stabilizer of p(1, 0, 0, 0) is a maximal abelian parabolic
Q = L′ o N ′ in M(C). We denote Q

′ = L o N
′ to be the opposite parabolic

subgroup. Then Q
′ stabilizes the flag

C ⊂ J ⊕ C ⊂ J ⊕ J ⊕ C ⊂ VM .

There is a bijection J (K) → N
′ given by B 7→ pB where pB acts on VM by

(see [Kim])

pB : (0, J, J ′, 0) 7→ (0, J, J ′ + 2B × J, (B,B, J) + (B, J ′)).(27)

We recall a version of Lemma 7.5 of [MS].
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Lemma 5.5.1. Representatives of the N
′-orbits on Z are

v1 = p(1, 0, 0, 0) v2 = p(0, J, 0, 0)
v3 = p(0, 0, J ′, 0) v4 = p(0, 0, 0, 1)

where J and J ′ are rank 1 elements in J .

5.6. The variety X is the hypersurface given by the degree 4 polynomial
(cf. [J1])

f4(ξ, J, J ′, ξ′) = 〈J × J, J ′ × J ′〉 − ξ det(J)− ξ′ det(J ′)− 1
4
(〈J, J ′〉 − ξξ′)2.

If J1 = (0, 0, 0;x, y, z) and J2 = (0, 0, 0;x′, y′, z′), then

f4(0, J1, J2, 0) = N(x)N(x′) + N(y)N(y′) + N(z)N(z′) + 〈yz, y′z′〉

(28)

+ 〈zx, z′x′〉+ 〈xy, x′y′〉 − 1
4
(〈x, x′〉+ 〈y, y′〉+ 〈z, z′〉)2.

Clearly (0, J, 0, 0) and (0, J1, J1, 0) ∈ X.

5.7. Y is the algebraic set cut out by the set of degree 3 polynomials
{∂f4/∂v : v ∈ VM}. It contains the point p(0, J, 0, 0) (resp. p(0, 0, J ′, 0)) if
and only if J (resp. J ′) has rank at most 2. Similarly Z contains the point
iff J (resp. J ′) has rank 1.

5.8. Let K = C, then the nontrivial outer automophism of M = SL6 in
Table 1 (e2) acts on VM by sending (ξ, J, J ′, ξ′) 7→ (ξ, J, J ′, ξ′) where J and
J ′ denotes taking conjugation of the entries.

5.9. Let G0 = Spin (4, 4) and by setting J to be the set of diagonal 3
by 3 complex matrices in (25), VM is the representation C2 ⊗ C2 ⊗ C2 of
M(C) = SL3

2(C). We index this case by s = 0.

6. Dual pairs in F̃4,4.

6.1. In this section let G = F̃4,4. It has maximal compact subgroup K ′ =
SU2(α̃) × Sp6. Let G′ = S̃pin(5, 4) and G′′ = S̃pin(4, 4). In this section we
will prove Theorems 4.2.1 and 4.3.1. We will retain the notations of §4.2
and §4.3.

6.2. The center C of S̃pin(4, 4) is

C := {(ε1ε2ε3, ε1, ε2, ε3) ∈ SU2(α̃)× SU3
2 : εi = ±1 ∈ SU2} ' µ3

2.(29)

(−1,−1,−1,−1) ∈ C is the nontrivial center of F̃4,4. We would like to
interpret the subgroup S̃pin(4, 4) in F̃4,4 as the dual pair

S̃pin(4, 4)×C C.
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We denote a character of C by χ(s1, s2, s3), si ∈ (Z/2Z) such that

(ε1, ε2, ε3) 7→ εs1
1 εs2

2 εs3
3 .

Let C∧ denote the character group of C.
The element ε1 ∈ C acts on F4,4 by conjugation and it fixes the subgroup

S̃pin(5, 4) in F̃4,4. It has maximal compact subgroup

K = SU2(α̃)× (SU2(A)× Spin (5)).

The center C1 ⊂ C of S̃pin(5, 4) is the Klein 4 group

C1 := {(ε1, ε1, ε2, ε2) ∈ C : εi = ±1}.
We denote the character group of C1 by C∧

1 . It consists of characters

χ(s1, s2) : (ε1, ε2) 7→ εs1
1 εs2

2

where si ∈ Z/2Z.
We have the following see-saw pairs in F̃4,4:

S̃pin(5, 4) C

BC(30)

S̃pin(4, 4) C1.

6.3. The S3 outer automorphism group on S̃pin(4, 4) permutes the 3 factor
subgroups of SU3

2 ⊂ M ′′ and G contains

(S̃pin(4, 4)×C C) o S3.(31)

Hence if Res
eF4,4

Spin (4,4)σ(C[k]) contains σ(Spin (4, 4), S(a, b, c)[k]), then it will
also contain

sσ = σ
(
Spin (4, 4), Sa

s(A) ⊗ Sb
s(B) ⊗ Sc

s(C)[k]
)

,

where s ∈ S3.

6.4. By (31) Spin (4, 4)oS3 ⊂ F4,4 and M ′′(C) = SL3
2(C)oS3. Set K = C

and we recall the definition of Ji and Wi (i = 1,2,3) in (26). The Wi’s give
the standard representations of each of the 3 factor groups of SU3

2 ⊂ M ′′.
V0 = W1 ⊕ W2 ⊕ W3. The outer automorphism group S3 acts on V0 by
permuting the Wi’s. Then PV0 has a dense M ′′(C)-orbit. There are two
more orbits and their closures are

X2 := P(W1 ⊕W2) ∪ P(W2 ⊕W3) ∪ P(W3 ⊕W1)
X1 := PW1 ∪ PW2 ∪ PW3 ⊂ X2.

The homogeneous ideal of X2 in PV0 is generated by

W0 = W1 ⊗W2 ⊗W3 ⊂ S3(V0)(32)
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and it has coordinate ring

An(X2) =
∑
a,b,c

Sa(W1)⊗ Sb(W2)⊗ Sc(W3)

where the sum is taken over all nonnegative integers a, b, c such that a+ b+
c = n and abc = 0.

Lemma 6.4.1.
(a) PV0 ∩X = PV0.
(b) PV0 ∩ Y = X2.
(c) PV0 ∩ Z is the empty set.

Proof. Let J1 = (0, 0, 0; 0, 0, 1), J2 = (0, 0, 0; 0, 1, 1), J3 = (0, 0, 0; 1, 1, 1) and
vi = (0, Ji, 0, 0) ∈ X for i = 1, 2, 3. p(v3) ∈ (X∩PV0)\X2 so PV0∩X strictly
contains X2 and thus equals PV0. This proves (a). Note that p(v3) 6∈ Y so
PV0 ∩ Y ⊂ X2. On the other hand p(v2) ∈ Y ∩X2. This proves (b). Finally
p(v3) ∈ X1 but it does not lie in Z. This proves (c). �

6.5. Consider Spin (5, 4) ⊂ F4,4 and M ′ = SU2 × Spin (5) = SU2 × Sp4.
Then V ′

0 = W2 ⊕ W3 gives the standard representation of Sp4. Note that
PV ′

0 is a single Sp4 orbit.

Lemma 6.5.1.
(a) PV ′

0 ∩X = PV ′
0 ∩ Y = PV ′

0.
(b) PV ′

0 ∩ Z is the empty set.

Proof. Since V ′
0 ⊂ V0, the lemma follows from Lemma 6.4.1. �

6.6. Proof of Theorems 4.2.1(c)(d) and 4.3.1(c)(d). Part (d) follows easily
from Proposition 3.3.1 since SnV ′

0 = V0,n and SnV0 =
∑

a+b+c=n S(a, b, c)
respectively.

(c) By (20) we have

0 → Res σX →
∞∑

n=0

H(Spin (5, 4), V0,n[d− 1 + n])

→
∞∑

n=0

H(Spin (5, 4), V0,n[d + 3 + n]) → 0.

Considering the infinitesimal characters of the summands gives (13).
The restriction of σX to Spin (4, 4) and (14) have been proven in Prop.

4.6.1 of [L2]. This proves (c). �

Proof of Theorem 4.2.1(b). r3 : VM → S3(V ′
0) and since the codomain is

irreducible, r3 is either the zero map or a surjection. However the image
of r3 has to cut out the empty set so r3 = 0. This implies rn = 0 and
Rn = Sn(V0) for all n. �
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6.7. Proof of Theorem 4.3.1(b). r3 : VM → S3(V0) and

VM = S1
A + S1

B + S1
C + (S1

A ⊗ S1
B ⊗ S1

C)

S3(V0) =
∑

a+b+c=3

S(a, b, c)

as representations of M ′′. Thus image of r3 is either 0 or W0 (cf. (32)).
By Lemma 6.4.1 the image has to cut out X2 so it is W0. Moreover W0

generates the ideal of X2 and thus Rn = An(X2). �

6.8. Recall that the minimal representation σZ of F̃4,4 has K-types
∞∑

n=0

Sn+1eα (C2)⊗ πSp6(n$3).(33)

Suppose

Res
eF4,4gSpin(5,4)×C1

σZ =
∑

χ∈C∧
1

Θ′(χ)⊗ χ.

The center of F̃4,4 acts nontrivially on σZ and hence C1 only acts by the
characters χ(1, 0) and χ(1, 1). Theorem 4.2.1(a) is a consequence of the
following theorem:

Theorem 6.8.1. Let ε = 0, 1. Then Θ′(χ(1, ε)) = σ(S̃pin(5, 4), V0,ε[4]) and
it has K-types (K = SU2(α̃)×µ2 (SU2 × Spin (5)))∑

a,b≥0

Sa+2b+1+εeα (C2)⊗ Sa(C2)⊗ Va,2b+ε.

Proof. By Lemma 6.5.1, O′ is empty so r′2 : S2V ′
0 → S2V ′

0 is not the zero
map. Hence r′2 is a surjection and Theorem 3.5.1(a) applies. The following
lemma proves the claim about the K-types and completes the proof of the
theorem:

Lemma 6.8.2.

ResSp6

SU2×Spin (5)×C′π(n$3) =
∑

a+b=n

Sa(C)⊗ πSpin (5)(a$1 + b$2)⊗ χ(a, b).

We omit the proof of the lemma since branching law of Sp6 is known (see
Equation (25.27) [FH]). �

6.9. Suppose

Res
eF4,4gSpin(4,4)×C

σZ =
∑

χ∈C∧

Θ(χ)⊗ χ.

Since the center of F̃4,4 acts nontrivially on σZ , C can only act by the
characters χ(s1, s2, s3) where s1 + s2 + s3 is an odd integer.

Theorem 4.5.1(a) is a consequence of the following theorem:
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Theorem 6.9.1.
(a) Θ(χ(1, 1, 1)) = σ(S̃pin(4, 4), C[3]).
(b) Θ(χ(1, 0, 0)) = σ(S̃pin(4, 4), S(1, 0, 0)[4]).
(c) Θ(χ(0, 1, 0)) = σ(S̃pin(4, 4), S(0, 1, 0)[4]).
(d) Θ(χ(0, 0, 1)) = σ(S̃pin(4, 4), S(0, 0, 1)[4]).
Θ(χ(1, 1, 1)) (resp. Θ(χ(1, 0, 0))) has K-types (K = SU2 × SU3

2 )∑
n,a,b,c≥0

S1+neα (C)⊗ S(a, b, c)(34)

where the sum is taken over all nonnegative integers n, a, b, c such that a +
b + c ≥ n, a + b − c ≤ n, a − b + c ≤ n, b + c − a ≤ n and n ≡ a ≡ b ≡ c
(mod 2) (resp. n ≡ a 6≡ b ≡ c (mod 2)).

The K-types of Θ(χ(0, 1, 0)) and Θ(χ(0, 0, 1)) differ from that of Θ(χ(1,
0, 0)) by permuting a, b, c in (34) accordingly under the action of S3 (cf. §6.3).

Proof. By the action of S3, it suffices to prove (a) and (b). By the see-saw
pair (30), we note that

Θ′(χ(1, 0)) = Θ(χ(1, 1, 1)) + Θ(χ(1, 0, 0)).(35)

The branching rule from Spin (5) to Spin (4) = SU2
2 is well-known (see eqn

(25.34) [FH]). Applying this to Theorem 6.8.1 shows that the sum of the
K-types of (a) and (b) agrees with the K-types in (35). A K-type

Sn(C2)⊗ S(a, b, c)

in (35) will belong to Θ(χ(1, 1, 1)) (resp. Θ(χ(1, 0, 0))) if and only if a− b is
an even (resp. odd) integer. This proves (34).

By naturality, the composition of the map

I2(Z) r2→ S2V0 → S2V ′
0 = S2

B + S2
C + CB ⊗ CC

is the map r′2 in the proof of Theorem 6.8.1 and it is surjective. This implies
that the image contains S2

B + S2
C + CB ⊗ CC . Since r2 commutes with

the action of S3 (cf. §6.3), r2 is surjective and the theorem follows from
Theorem 3.5.1(c). �

7. Dual pairs in E6,4.

7.1. Let G′ ⊂ G be one of the dual pairs (5) to (7). We set s = 2, 4, 8 and
we define

J p
s = {(0, 0, 0;x1, x2, x3) ∈ J (Ks) : xi ∈ Ks, 〈xi, z〉 = 0 for all z ∈ Ks/2}

then

V0 = {(0, J, J ′, 0) ∈ VM : J, J ′ ∈ J p
s }.(36)
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It is known that M ′(C) has a dense orbit in PV0 [SK]. The orbits and their
coordinate rings have been extensively studied and they are documented in
§7 [GW2]. We will make use of these results to determine R•.

7.2. Consider G = Ẽ6,4 o Z/2Z ⊃ G′ = F̃4,4 × Z/2Z. Set s = 2. Then
V0 = C6 in (36) is the standard representation of M ′(C) = Sp6(C)× Z/2Z.
It is well-known that PV0 is a single orbit of M ′(C).

Lemma 7.2.1.
(a) PV0 ∩X = PV0 ∩ Y = PV0.
(b) PV0 ∩ Z is an empty set.

Proof. (a) It suffices to show that PV0 ∩ Y is nonempty since X ⊃ Y and
PV0 is a single orbit of M ′(C). Let J = (0, 0, 0; s, 0, 0) ∈ J (K2) where
s = diag(1,−1) ∈ K2. By (36) (0, J, 0, 0) ∈ V0. Since det(J) = 0, p(J) ∈ Y
by §5.7.

(b) We will prove this by contradiction. Suppose on the contrary PV0∩Z
is nonempty and it equals PV0. Let v = (0, J, J ′, 0) ∈ V0 as given in (36)
and assume that J 6= 0. Since p(v) ∈ Z, by Lemma 5.5.1 and (27) J has
rank at most 1. By (24), J = 0. This yields the contradiction. �

Proof of Theorem 4.5.1. (a) By Lemma 7.2.1(b), r2 : sl6 → S2(C6) is non-
zero. Since the image is irreducible r2 is a surjection. (a) follows from
Theorem 3.5.1(c).

(b) and (c) follow from Lemma 7.2.1(a) and Theorem 3.5.1(a) since Rn =
Sn(C6).

By (20) we have

0 → Res σX →
∞∑

n=0

H(F̃4,4, S
n(C6)[9 + n])⊗ χn

→
∞∑

n=0

H(F̃4,4, S
n(C6)[13 + n])⊗ χn → 0.

Finally considering the infinitesimal characters of the above summands gives
(15). �

7.3. Consider G0 = E6,4 o Z/2Z ⊃ G′′
0 = Spin (4, 4) ×µ2

2
(U2

1 o Z/2Z) and
M ′′ = SU3

2 ×µ2
2

(U2
1 o Z/2Z). Here we identify U2

1 = {(t1, t2, t3) : ti ∈
U1, t1t2t3 = 1}.

Let χ0(a1, a2, a3) : (t1, t2, t3) 7→ ta1
1 ta2

2 ta3
3 be a character of U2

1 where ai ∈
Z. Let χ(a1, a2, a3) be the unique irreducible representation of U2

1 o Z/2Z
containing χ0(a1, a2, a3). Note that χ(a, a, a) = C and if not all the ai’s are
the same, then χ(a1, a2, a3) = χ0(a1, a2, a3) + χ0(−a1,−a2,−a3). Clearly
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χ(a1, a2, a3) = χ(a1 − a, a2 − a, a3 − a) = χ(−a1,−a2,−a3). Therefore we
may assume that (a1, a2, a3) takes values from the set

T := {(a1, a2, a3) ∈ Z3 : ai > ai+1 = 0 ≥ ai+2

for some i = 1, 2, 3} ∪ {(0, 0, 0)}.
Set K = K2 and we define Ji and Wi (i = 1,2,3) using (26). Then

V0 = W1 ⊕ W2 ⊕ W3. Wi = Wi1 ⊕ Wi2 where Wi1 and Wi2 are the stan-
dard representations of SU2. (t1, t2, t3) ∈ U2

1 acts on Wi1 (resp. Wi2) by
multiplication by ti (resp. t−1

i ).
Write V0 =

∑
i,j Wij and we denote an element of V0 by (wij) where

wij ∈ Wij . Let V denote the subset of V0 consisting of (wij) satisfying the
following:

1. For each j = 1,2, at least 2 of w1j , w2j , w3j is zero.
2. For each i = 1, 2, 3, either wi1 = 0 or wi2 = 0.

Then one can show that Z ∩ PV0 = PV and the ideal of PV is generated by
degree 2 polynomials. Its coordinate ring is

An(PV) =
∑

S(|a1|, |a2|, |a3|)⊗ χ(a1, a2, a3)

where the sum is taken over all (a1, a2, a3) ∈ T satisfying |a1|+|a2|+|a3| = n.
By Theorem 3.5.1(c) we get the dual pair correspondence of G′′ in G.

Theorem 7.3.1.

ResE6,4oZ/2Z
Spin (4,4)×(U2

1 oZ/2Z)
σZ

=
∑

(a1,a2,a3)∈T

σ(Spin (4, 4), S(|a1|, |a2|, |a3|)[|a1|+ |a2|+ |a3|+ 4])⊗ χ(a1, a2, a3).

The K-types of the summands could be calculated using (12) by applying
the branching rule from M = SU6 to SU3

2 × U2
1 ⊂ M ′′. This in turn could

be computed using the Littlewood-Richardson rule (see [FH, p. 456]).
Note that the summands of the above correspondence also appear in

Theorem 4.3.1(b). This follows from the fact that the dual pairs G′′
0 and

F4,4 × Z/2Z form a see-saw pair in G0. Similarly restrictions of σY and σX

to G′′
0 will yield representations of S̃pin(4, 4) appearing in Theorem 4.3.1(c)

and (d).

8. Dual pair in E7,4.

8.1. Consider G0 = E7,4 ⊃ G′
0 = (E6,4 ×µ3 U1) o Z/2Z and M ′(C) =

GL6 o Z/2Z. The nontrivial element in Z/2Z acts on E6,4 as the outer
automorphism. It also acts on U1 by sending z 7→ z−1.

Set s = 4 and define V0 as in (36). z ∈ U1(C) = C∗ will act on V0 by

(0, J, J ′, 0) → (0, zJ, z−1J ′, 0).
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Recall K4 = M2(C) and let Ku (resp. Kl) denote the subspace of strictly
upper (resp. lower) triangular matrices. Define

Ju = {(0, 0, 0; c1, c2, c3) ∈ J (K4) : ci ∈ Ku}
Vu = {(0, J, J ′, 0) ∈ V0 : J, J ′ ∈ Ju}.

Similarly we define Jl and Vl by replacing Ku with Kl. Vu (resp. Vl) gives
the standard (resp. dual) representation of GL6. Thus V0 = C6 ⊕ (C6)∗ as
a representation of M ′(C) = GL6 o Z/2Z.

There are only two nontrivial proper orbits of M ′ in PV0 (cf. §6 [GW2]).
Their closures are

X1 = PC6 ∪ P(C6)∗

F = {(v, v∗) ∈ PV0 : f0 := 〈v, v∗〉 = 0}.

Note that X1 ⊂ F . The inner product f0 defining F is an M ′-invariant
quadratic form in S2V0 and this in turn induces an inclusion

SnV0 · f0 ↪→ Sn+2V0.

The coordinate ring An(F) is the quotient of the above inclusion. Recall
§4.7 where we define Va,b = πSL6(a$1 + b$6). Then

An(F) =
∑

a+b=n

Va,b ⊗ χa−b
1(37)

An(PV0) = An(F)[f0] =
∑

a+b+2m=n

Va,b ⊗ χa−b
1

as a representation of GL6 = SL6 ×µ6 U1.

Lemma 8.1.1.

(a) PV0 ∩ Z = PC6 ∪ P(C6)∗.
(b) F = PV0 ∩X = PV0 ∩ Y .

Proof. Define

s =
(

0 1
0 0

)
, t =

(
0 0
1 0

)
∈ K4 = M2(C),

x1 = (0, 0, 0; s, 0, 0), x2 = (0, 0, 0; t, 0, 0) ∈ J (K4),

T1 = (0, x1, 0, 0), T2 = (0, x1 + x2, 0, 0), T3 = (0, x1, x2, 0) ∈ V0.

By Lemma 5.5.1 p(T1) ∈ Z ∩ PV0. Hence Z ∩ PV0 is nontrivial and it must
contain X1. x1 + x2 has rank 2 so p(T2) ∈ Y \Z (cf. §5.7) and p(T2) 6∈ X1.
This proves (a) and implies that PV0 ∩ Y ⊇ F .

Next p(T3) ∈ PV0\F . f4(T3) 6= 0 so T3 6∈ X. Since F is maximal proper,
F ⊇ X ∩ PV0 ⊇ Y ∩ PV0. This proves (b). �
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Proof of Theorem 4.7.1. (a) The image of r2 must be cut out X1 so it is
either V1,1 or Cf0 + V1,1 in S2V0.

We claim that the image cannot be V1,1. Indeed if otherwise by Theo-
rem 3.5.1(b) the restriction of σZ will contain σ′ = σ(E6,4, C[6]). σ′ contains
the lowest K ′-type τ = S4eα(C2)⊗ C (K ′ = SU2(α̃)× SU6). Therefore τ is a
subrepresentation of the K-type

S4eα(C2)⊗ πSpin (12)(2$6)

in σZ . However the tables of [KP] show that the above does not contain τ .
This proves the claim.

Finally since V1,1 + Cf0 generates the homogeneous ideal of X1 so R• =
A•(F) (cf. (37)). This proves (a).

(b) Similar to (a) the image of r3 cuts out F and it has to be V0 · f0 ⊂
S3V0. The ideal generated by V0f0 contains all homogeneous polynomials
vanishing on F except Cf0. Thus R• = A•(F) + Cf0. Finally we note that
H(E6,4, C[12]) is irreducible (cf. §3.3).

(c) By (20) we get

(38) 0 → Res σX →
∑
a,b,n

H(Ẽ6,4, Va,b[15 + 2n + a + b])⊗ χa−b
1

→
∑
a,b,n

H(Ẽ6,4, Va,b[19 + 2n + a + b])⊗ χa−b
1 → 0.

The summands on the right are all irreducible and unitary, and they also
appear as summands in the middle term. Therefore removing these repre-
sentations from (38) gives

0 → Res σX →
∑

n=0,1

∑
a,b

H(Ẽ6,4, Va,b[15 + 2n + a + b])⊗ χa−b
1 → 0.

This completes the proof of (c). �

Note that in (c) the image of r4 is one dimensional and it cuts out F and
it has to be (f0)2 ⊂ S4V0. Therefore R• is not reduced. This example shows
that the containment in Theorem 3.5.1(b) may be proper.
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9. Dual pairs in E8,4.

9.1. In this section we consider Ẽ8,4 ⊃ Ẽ7,4×µ3 SU2 and M ′ = Spin (12)×
SU2. Set s = 8 and define V0 by (36).

9.2. Recall U0 in §5.3. Define Ue := Ce2⊕Ce3 ⊂ U0. By (22) SL(Ue) acts
on K8. This induces an action of SL(Ue) on (0, J, J ′, 0) ∈ V0 where SL(Ue)
acts uniformly on each of the nonzero entries of J and J ′.

For i = 1, 2, define Ji = (0, 0, 0;xi1, xi2, xi3) ∈ J where xij = (0, 0;wij1e2,
−wij2e3) in K8 (cf. (21)) and wijk ∈ C. Let v = (0, J1, J2, 0) ∈ V0. Denote
the set of such vectors v in V0 by V1.

Similarly for i = 1, 2, define J ′i = (0, 0, 0;x′i1, x
′
i2, x

′
i3) ∈ J where x′ij =

(0, 0;w′
ij1e3, w

′
ij2e2) ∈ K8 and w′

ijk ∈ C. Let v′ = (0, J ′1, J
′
2, 0) ∈ V0. Denote

the set of such vectors v′ in V0 by V2.
Note that V0 = V1⊕V2. Both V1 and V2 give the standard representations

of Spin (12) in M(C). The invariant quadratic forms on V1 and V2 are given
respectively by

q1(wijk) =
3∑

j=1

(w1j1w2j2 − w1j2w2j1)

q2(w′
ijk) =

3∑
j=1

(w′
1j1w

′
2j2 − w′

1j2w
′
2j1).

Let ω =
(

0 1
−1 0

)
∈ SL(Ue), (wijk) ∈ V1 and (w′

ijk) ∈ V2. The action

of ω on V0 commutes with that of Spin (12) and ωV2 = V1 by sending
(w′

ijk) 7→ (wijk) where wijk = w′
ijk. Let w1, w2 ∈ V1, define φ : V1⊗Ue → V0

by

φ : w1 ⊗ e2 + w2 ⊗ e3 → w1 + ω−1w2.

Then φ is an isomorphism of representations of M ′(C) = Spin (12)×SL(Ue).

9.3. We will describe the orbits of M ′(C) on PV0. PV0 has a dense M ′(C)
orbit. It contains four additional orbits and we denote their closures by X1,
Y1, Y2, Z1. Let 〈 , 〉 denote the inner product induced by quadratic form q1

on V1 and let v = w1⊗ e2 + w2⊗ e2. Then X1 is a hypersurface whose ideal
is generated by a degree 4 polynomial f ′4

f ′4(v) = det
(
〈w1, w1〉 〈w1, w2〉
〈w2, w1〉 〈w2, w2〉

)
.

Y1 is the complete intersection of the 3 quadrics

〈w1, w1〉 = 〈w1, w2〉 = 〈w2, w2〉 = 0.(39)
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Y2 ⊂ X1 is the subvariety PW×PU . Let Q ⊂ PW be defined by 〈w1, w1〉 = 0.
Then Z1 = Q × PU = Y1 ∩ Y2 is the unique minimal closed orbit in PV0.
Y1 ∪ Y2 is cut out by cubics

fa(v) := det
(
〈w1, w1〉 〈w1, a〉
〈w2, w1〉 〈w2, a〉

)
= 0,(40)

f ′b(v) := det
(

〈b, w1〉 〈b, w2〉
〈w2, w1〉 〈w2, w2〉

)
= 0

for all a, b ∈ W . Let I0 be the homogeneous ideal generated by {fa, f
′
b :

a, b ∈ W}. We claim that I0 is the homogeneous ideal of Y1 ∪ Y2. Indeed
suppose f vanishes on Y1 ∪ Y2, by (39) we may assume that modulo I0

f(w1, w2) = h1(w1)〈w1, w1〉+ h2(w1, w2)〈w1, w2〉+ h3(w2)〈w2, w2〉
where h1, h2, h3 are polynomials on V1, W and V2 respectively. Since f(w1,
w2) = 0 whenever w1 is parallel to w2, we get h1 = h3 = 0 and h2 vanishes
on Y2. Thus f ∈ I0 and this proves the claim.

Recall §4.8 where Va,b = πSpin (12)(a$1 + b$2). Then the coordinate rings
are:

A•(PV0) = A•(X1)[f ′4](41)

An(X1) =
∑

∗Va+2d,c ⊗ Sa+2b(U)

where the sum
∑∗ is taken over a, b, c, d satisfying (16).

An(Y1) =
∑

a+2c=n

Va,c ⊗ Sa(U).(42)

An(Y2) = Sn(W )⊗ Sn(U) =
∑

a+2b=n

Va,0 ⊗ Sn(U).(43)

An(Y1 ∪ Y2) =
∑

a+2b+2c=n, bc=0

Va,c ⊗ Sa+2b(U).

(44)

An(Z1) = Vn,0 ⊗ Sn(U).(45)

The coordinate rings except (44) are given in §5, §6 [GW2]. Since An(Y1 ∪
Y2) is a quotient of An(X1) which is multiplicity free, (44) follows from (42)
and (43).

Lemma 9.3.1.
(a) X ∩ PV0 = X1.
(b) Y ∩ PV0 = Y1 ∪ Y2.
(c) Z ∩ PV0 = Z1.

Proof. For the ease of notations, suppose Ji = (0, 0, 0; ci1, ci2, ci3) ∈ J (i
= 1, 2), then we denote (0, J1, J2, 0) ∈ V0 by (c11, c12, c13|c11, c12, c13). For
i = 2, 3, let xi = (0, 0; ei, ei), yi = (0, 0; ei, 0) ∈ K8 and (cf. (21)).
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(a) Set v1 := (x2, x2, x2|0, 0, 0) ∈ V0. Then f4(v1) 6= 0. Hence X ∩ PV0 is
a hypersurface in PV0 of degree 4 and it has to be X1.

(b) J4 = (0, 0, 0;x2, x2, x2) has rank 3 so p(0, J4, 0, 0) ∈ (X\Y ) ∩ PV0.
Hence Y ∩ PV0 ⊆ Y1 ∪ Y2. J5 = (0, 0, 0;x2, 0, 0) has rank 2 so p(0, J5, 0, 0) ∈
(Y \Z) ∩ (Y1\Z1). Hence Z ∩ PV0 ⊆ Y2 and Y1 ⊆ Y ∩ PV0.

Let v3 = (y2, 0, 0|y3, 0, 0) so that pv3 ∈ Y2\Z1. It is easy to check that v3

satisfies ∂f4/∂v = 0 in §5.7 so pv2 ∈ Y . This implies that Y ⊇ Y2.
(c) We have seen in (b) that Z ∩ PV0 ⊆ Y2. J6 = (0, 0, 0; y2, 0, 0) has

rank 1 so p(0, J6, 0, 0) ∈ Z ∩ PV0. Hence Z ∩ PV0 ⊇ Z1. To complete the
proof it suffices to show that pv3 6∈ Z. Indeed otherwise, by Lemma 5.5.1,
v3 = pB(0, J6, 0, 0) for some B = (βi; di) ∈ J (cf. (27)). Computations show
that pB(J6) = (0, J6, 2B × J6, 0). However 2B × J6 = (∗, ∗, ∗;−β1y2, ∗, ∗) 6=
(0, 0, 0; y3, 0, 0). Hence pv3 6∈ Z. �

Proof of Theorem 4.8.1. (a) This is determined by the map

r2 : e7 = C⊗ S2U + V0,1 + U ⊗ πSpin 12($6) →
→ S2(W ⊗ U) = V2,0 ⊗ S2U + S2(U) + V0,1.

The image of r2 is nonzero so it is either S2U , V0,1 or the sum. By (42)
(resp. (43)) S2U (resp. V0,1) vanishes on Y1 (resp. Y2). By Lemma 9.3.1(c)
the image cuts out Z1 and hence it is must be the sum. Since I•(Z1) is
generated by degree 2 polynomials, Rn = An(Z1).

(b)

r3 : VM = W ⊗ U + πSpin (12)($5) →
→ S3(V0) = V3,0 ⊗ S3(U) + W ⊗ U + W ⊗ S3(U) + V1,2 ⊗ U.

Since r3 is nontrivial, the image has to be W ⊗ U and they are the set of
cubics in (40). We have shown that the set of cubics generates the ideal of
Y1 ∪ Y2 and (b) follows from Theorem 3.5.1(b) and (44).

(c) By (20) and (41) we get

0 → Res σX →
∑
n,m

H(G′, Am(X1)[27 + m + 4n])(46)

→
∑
n,m

H(G′, Am(X1)[31 + m + 4n]) → 0.

The summands on the right also appear in the middle term. Therefore by
removing these representations from (46) we get

0 → Res σX →
∞∑

m=0

H(G′, Am(X1)[27 + m + n]) → 0.

This completes the Proof of Theorem 4.8.1(c).
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(d) This follows from Proposition 3.3.1 and (41). �

9.4. Proof of Corollary 4.10.1. First we recall a well-known fact [FH].

Lemma 9.4.1. The 1 dimensional character deta−b of U2 is the only SU2

fixed vector in πSU3(a$1 + b$2).

Consider the see-saw pair

E7,4 SU3

BC(47)
E6,4 SU2

By Theorem 4.8.1(a), the trivial representation of SU2 corresponds to the
representation σY of E7,4. Applying Lemma 9.4.1 to the see-saw pair (47)
gives

∑
a,b≥0

Θ(a, b)⊗ χa−b
1

(48)

= ResE7,4

E6,4×U1
σY

= H(E6,4, C[12])⊗ χ0
1 +

∑
a,b≥0

σ(E6,4, πSU6(a$1 + b$5)[a + b + 10])⊗ χa−b
1 .

The second equality is Theorem 4.7.1(b). By Table 1B of the Appendix
to [L3], Θ(a, b) contains the right-hand side of (17). Alternatively, one can
deduce this by considering the correspondence of the infinitesimal characters
[Li3]. By (48) the containment is an equality. This proves Corollary 4.10.1.

�
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tres 4, 5 et 6, Hermann, 1968, MR 39 #1590, Zbl 0186.33001.

[FH] W. Fulton and J. Harris, Representation Theory: A First Course, Graduate Text
in Mathematics, 129, Springer-Verlag, 1991, MR 93a:20069, Zbl 0744.22001.

[GL] W.T. Gan and H.Y. Loke, Modular forms of level p on the exceptional tube domain,
J. Ramanujan Math. Soc., 12(2) (1997), 161-202, MR 99c:11052, Zbl 0959.11019.

http://www.ams.org/mathscinet-getitem?mr=42:4674
http://www.emis.de/cgi-bin/MATH-item?0202.07901
http://www.ams.org/mathscinet-getitem?mr=39:1590
http://www.emis.de/cgi-bin/MATH-item?0186.33001
http://www.ams.org/mathscinet-getitem?mr=93a:20069
http://www.emis.de/cgi-bin/MATH-item?0744.22001
http://www.ams.org/mathscinet-getitem?mr=99c:11052
http://www.emis.de/cgi-bin/MATH-item?0959.11019


366 HUNG YEAN LOKE

[G] B. Gross, Letter to Kostant.

[GS] B. Gross and G. Savin, Motives with Galois group of type G2: An exceptional theta-
correspondence, Compositio Math., 114(2) (1998), 153-217, MR 2000e:11071,
Zbl 0931.11015.

[GW1] B. Gross and N. Wallach, A distinguished family of unitary representations for
the exceptional groups of real rank = 4, in ‘Lie Theory and Geometry: In Honor
of Bertram Kostant,’ Progress in Mathematics, 123, Birkhauser, Boston, 1994,
MR 96i:22034, Zbl 0839.22006.

[GW2] , On quaternionic discrete series representations and their continuations,
J. Reine Angew. Math., 481 (1996), 73-123, MR 98f:22022, Zbl 0857.22012.

[HPS] J.S. Huang, P. Pandzic and G. Savin, New dual pair correspondences, Duke Math.,
82(2) (1996), 447-471, MR 97c:22015, Zbl 0865.22009.

[J1] N. Jacobson, Exceptional Lie Algebras, Marcel Dekker, New York, 1971,
MR 44 #1707, Zbl 0215.38701.

[J2] , Lie Algebras, Dover Publications Inc., New York, 1962, MR 26 #1345,
Zbl 0121.27504.

[Kim] H. Kim, Exceptional modular form of weight 4 on an exceptional domain contained
in C27, Revista Matematica Iberoamericana, 9(1) (1993), 139-200, MR 94c:11040,
Zbl 0777.11015.

[Li1] J.-S. Li, Two reductive dual pairs in groups of type E, Manuscripta Math., 91
(1996), 163-177, MR 97j:22037, Zbl 0869.22008.

[Li2] , On the discrete spectrum of (G2, PGSp6), Invent. Math., 30 (1997), 189-
207, MR 98h:22014, Zbl 0913.22010.

[Li3] , The correspondences of infinitesimal characters for reductive dual pairs
in simple Lie groups, Duke Math. J., 97(2) (1999), 347-377, MR 2000b:22014,
Zbl 0949.22017.

[L1] H.Y. Loke, Exceptional Lie Algebras and Lie Groups, Part 2, Harvard Thesis, 1997.

[L2] , Dual pairs correspondences of E8,4 and E7,4. Israel J. Math., 113 (1999),
125-162, MR 2001k:22033, Zbl 0937.22009.

[L3] , Restrictions of quaternionic representations, J. Funct. Anal., 172 (2000),
377-403, MR 2001i:22017, Zbl 0953.22018.

[MS] K. Magaard and G. Savin, Exceptional Θ-correspondences, I, Compositio Math.,
107 (1997), 89-123, MR 98i:22015, Zbl 0878.22011.

[KP] W.G. McKay and J. Patera, Tables of Dimensions, Indices, and Branching Rules
for Representations of Simple Lie Algebras, Lecture Notes in Pure and Applied
Mathematics, 69, M. Dekker, 1981, MR 82i:17008, Zbl 0448.17001.

[SK] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vec-
tor spaces and their relative invariants, Nagoya Math. J, 65 (1977), 1-155,
MR 55 #3341, Zbl 0321.14030.

[S1] W. Schmid, Homogeneous complex manifolds and representations of simple Lie
groups, Dissertation, University of California, Berkeley, 1967; reprinted in ‘Repre-
sentation Theory and Harmonic Analysis on Semisimple Lie Groups’, Mathemati-
cal Surveys and Monographs, 31, AMS, Providence, 1989, 223-286, MR 90i:22025,
Zbl 0744.22016.

[W1] H.W. Wong, Dolbeault Cohomology Realization of Zuckerman Modules Associated
with Finite Rank Representations, Dissertation, Harvard University, 1991.

http://www.ams.org/mathscinet-getitem?mr=2000e:11071
http://www.emis.de/cgi-bin/MATH-item?0931.11015
http://www.ams.org/mathscinet-getitem?mr=96i:22034
http://www.emis.de/cgi-bin/MATH-item?0839.22006
http://www.ams.org/mathscinet-getitem?mr=98f:22022
http://www.emis.de/cgi-bin/MATH-item?0857.22012
http://www.ams.org/mathscinet-getitem?mr=97c:22015
http://www.emis.de/cgi-bin/MATH-item?0865.22009
http://www.ams.org/mathscinet-getitem?mr=44:1707
http://www.emis.de/cgi-bin/MATH-item?0215.38701
http://www.ams.org/mathscinet-getitem?mr=26:1345
http://www.emis.de/cgi-bin/MATH-item?0121.27504
http://www.ams.org/mathscinet-getitem?mr=94c:11040
http://www.emis.de/cgi-bin/MATH-item?0777.11015
http://www.ams.org/mathscinet-getitem?mr=97j:22037
http://www.emis.de/cgi-bin/MATH-item?0869.22008
http://www.ams.org/mathscinet-getitem?mr=98h:22014
http://www.emis.de/cgi-bin/MATH-item?0913.22010
http://www.ams.org/mathscinet-getitem?mr=2000b:22014
http://www.emis.de/cgi-bin/MATH-item?0949.22017
http://www.ams.org/mathscinet-getitem?mr=2001k:22033
http://www.emis.de/cgi-bin/MATH-item?0937.22009
http://www.ams.org/mathscinet-getitem?mr=2001i:22017
http://www.emis.de/cgi-bin/MATH-item?0953.22018
http://www.ams.org/mathscinet-getitem?mr=98i:22015
http://www.emis.de/cgi-bin/MATH-item?0878.22011
http://www.ams.org/mathscinet-getitem?mr=82i:17008
http://www.emis.de/cgi-bin/MATH-item?0448.17001
http://www.ams.org/mathscinet-getitem?mr=55:3341
http://www.emis.de/cgi-bin/MATH-item?0321.14030
http://www.ams.org/mathscinet-getitem?mr=90i:22025
http://www.emis.de/cgi-bin/MATH-item?0744.22016


QUATERNIONIC REPRESENTATIONS 367

[W2] , Dolbeault cohomology realization of Zuckerman modules associated with
finite rank representations, J. Funct. Anal., 129 (1995), 428-454, MR 96c:22024,
Zbl 0855.22014.

Received December 13, 1999 and revised February 9, 2000.

Department of Mathematics
National University of Songapore
10 Kent Ridge Crescent
Singapore 119260
E-mail address: matlhy@math.nus.edu.sg

http://www.ams.org/mathscinet-getitem?mr=96c:22024
http://www.emis.de/cgi-bin/MATH-item?0855.22014
mailto:matlhy@math.nus.edu.sg

