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Using the explicit action of the Hecke operators T (p) acting
on the Fourier coefficients of Siegel modular forms of arbitrary
degree and level, a short and elementary proof and a gener-
alization of a result by Breulmann and Kohnen is obtained,
which says that cuspidal eigenforms are determined by their
coefficients on matrices of square-free content.

1. Introduction.

In a recent paper by Breulmann and Kohnen [BK99], the authors obtain
a weak multiplicity-one result on (integral weight) Siegel-Hecke cuspidal
eigenforms of degree 2, showing that such forms are completely determined
by their coefficients on matrices of the form mS, where S is primitive and
m is square-free. To show this, they twist Andrianov’s identity relating the
Maaß-Koecher series and the spinor zeta function of an eigenform [An74] by
a Größencharacter. This allows them to then use Imai’s converse theorem
for degree 2 forms [Im80] and thereby obtain their result.

In this note, we use an elementary algebraic argument to reprove and
extend their result to Siegel modular forms of arbitrary degree n and arbi-
trary level which are only assumed to be eigenforms for the operators T (p)
(but not necessarily for the full Hecke algebra). We first show that such an
eigenform must have primitive matrices in the support of its Fourier develop-
ment. Then it is immediate from the explicit action of the Hecke operators
on Fourier coefficients that if two such forms have the same eigenvalues for
all T (p) and the same coefficients on primitive matrices then their difference
must be zero. Since, moreover, the assumption of coinciding eigenvalues can
be derived from the above stated assumption of Breulmann and Kohnen, we
recover their result for n = 2.

Note that Andrianov’s identity and Imai’s converse theorem are currently
only known for n = 2 and level 1, so the analytic approach used in [BK99]
cannot at this time be extended to general n.
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2. Preliminaries.

Let F be a degree n Siegel modular form with Fourier expansion

F (τ) =
∑
S

c(S)e{Sτ},

where S runs over all symmetric positive semidefinite even integral n × n
matrices S and e{τ} = exp(πi trace τ). We consider each S to be a quadratic
form on a Z-lattice Λ of rank n relative to some basis for Λ. As S varies, the
pair (Λ, S) varies over all isometry classes of rank n lattices with even integral
positive semi-definite quadratic forms. Also, the isometry class of (Λ, S) is
that of (Λ, S′) if and only if S′ = S[G] = GtSG for some G ∈ GLn(Z).
When k is even, F (τ [G]) = F (τ) for all G ∈ GLn(Z), so it follows that
c(S[G]) = c(S). Hence, (with k even) we can rewrite the Fourier expansion
of F in the form

F (τ) =
∑

class Λ

c(Λ)e∗{Λτ},

where c(Λ) = c(S) for any matrix S representing the quadratic form on Λ,
and with O(Λ) the orthogonal group of Λ we set

e∗{Λτ} =
∑

G∈O(Λ)\GLn(Z)

e{S[G]τ}.

When k is odd, we have F (τ [G]) = detG · F (τ), so c(S[G]) = detG · c(S),
and a completely analogous formula holds with Λ considered as an oriented
lattice (i.e., a pair consisting of a lattice and one of the two orientation classes
of its bases), and the sum in the definition of e∗ being over SO(Λ)\SLn(Z).

In what follows we make use of the ‘content’ and the ‘discriminant’ of
lattice. When Λ is a lattice with quadratic form q, the content cont Λ of Λ
is defined as

cont Λ := gcd{q(x, x)/2 | x ∈ Λ}.
If q on Λ has the Gram matrix S, with respect to some basis, then cont Λ
is just the gcd of the entries sij , i 6= j, sii/2 of S. (The term ‘content’ is
standard for symmetric matrices, but not for lattices; 2 contΛ is equal to
what is usually called the ‘norm’ of the lattice Λ; see [O’M71] for further
information.) The determinant of S does not depend on the choice of the
basis and is called the discriminant disc Λ of Λ. It is zero if the lattice (i.e.,
its quadratic form) is degenerate. In this case, q induces a nondegenerate
form on Λ := Λ/ radΛ, where rad Λ ⊆ Λ denotes the radical of q. The
dimension of Λ is also called the rank of Λ, or rather of (Λ, q). We write

rank Λ := dim Λ = dim Λ− dim radΛ.

For a positive rational number α, the notation Λα means we “scale” Λ, or
rather the pair (Λ, q), by α, i.e., Λα is equipped with the quadratic form αq.
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We summarize here the results on content, scaling and discriminant used
in the proofs below; Λ is a lattice of rank r and Ω a sublattice of finite index.

• [Λ : Ω] = m =⇒ disc Ω = m2 disc Λ.
• disc Λα = αr disc Λ.
• cont Λα = α cont Λ.

The first formula is well-known and is verified e.g., by taking a pair of
elementary divisor bases of Ω ⊆ Λ and their corresponding Gram matrices;
the other two formulas are obvious.

We now recall from e.g., [Fr83], Kapitel IV, the notion of the Hecke op-
erators T (p), for all primes p, acting on Siegel modular forms degree n, level
` and character χ (and any fixed weight k). The Siegel modular form T (p)F
or F |T (p), with F as above, is defined by averaging F over the double coset

Γn(`)gΓn(`) of the rational symplectic similitude g =
(

pIn 0
0 In

)
, where

Γn(`) =
{(

A B
C D

)
∈ Spn(Z) | C ≡ 0 (mod `)

}
.

See e.g., [Fr83] for the precise definition (and for the definition of the other
Hecke operators Tj(p2), j = 1, . . . , n − 1, which apparently cannot be used
to improve the result below).

We denote by T (p)c(Λ) the Λ’th Fourier coefficient of T (p)F . In §4 and
§6 of [HaWa], it is shown that, for p prime,

T (p)c(Λ) =
∑

pΛ(Ω⊆Λ

γ(Ω)c(Ω1/p) + c(Λp),

with

γ(Ω) = χ(pn−j) pk(n−j)+j(j+1)/2−n(n+1)/2 where [Λ : Ω] = pj .

For level ` = 1, this description of T (p) is essentially already contained in
the classical work [Ma51] by Maaß; it is also readily derived from the well-
known coset representatives for the above double coset, as described e.g.,
in [Fr83], Kapitel 4. The generalization to arbitrary ` is easy since we are
only dealing with the T (p); notice that the sum over Ω in the above formula
disappears for p|`.

When F is an eigenform and T (p)F = λF (p)F , we shall refer to this
formula as the ‘Hecke eigenform equation’.

3. The result.

We immediately proceed to our main result.

Theorem 3.1. Suppose F,G are degree n eigenforms of arbitrary level and
character, for all T (p), with the same eigenvalues (i.e., λF (p) = λG(p) for
all p), and that their Fourier coefficients agree on primitive lattices and on
0. Then F = G.
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Proof. By the support supp F of a Siegel modular form as above, we mean
the support of its Fourier coefficients, i.e., the set of lattices Λ with c(Λ) 6= 0.
Suppose F 6= G. Then F −G is an eigenform for all T (p) with no primitive
lattice in its support. But this is impossible by the following lemma:

Lemma 3.2. Let F be a degree n eigenform for T (p) for all primes p. Then
there is at least one primitive lattice in the support of F .

Proof. Suppose the contrary. For 1 ≤ r ≤ n let

suppr F = {Λ ∈ suppF | rank Λ = n− dim radΛ = r}.

We first consider the case suppn F 6= ∅. Let N be the minimal content of
lattices in suppn F (so N > 1). Take a prime p|N . Then among the lattices
in suppn F with content N , choose Λ s.t. the p-part of disc Λ is minimal.
Since Λ1/p is integral, the Hecke eigenform equation says

λF (p)cF (Λ1/p) =
∑

pΛ(Ω⊆Λ

γ(Ω)cF

(
1
pΩ

)
+ cF (Λ).

For Ω s.t. pΛ ( Ω ⊆ Λ, we have Λ ( 1
pΩ and hence the p-part of disc

(
1
pΩ

)
is

strictly smaller than that of disc Λ. Similarly, disc Λ1/p = p−n disc Λ. Hence
Λ1/p, 1

pΩ 6∈ suppn F , for pΛ ( Ω ⊆ Λ; so the Hecke eigenform equation says
0 = cF (Λ), contradicting that Λ was chosen in suppn F .

Now we consider the case suppn F = ∅ and let r be maximal with
suppr F 6= ∅. Note that r > 0. We use Siegel’s Φ-operator (see [Fr83],
Kapitel IV, §4) to reduce this case to the previous one. Indeed, this opera-
tor lowers the degree by 1 and commmutes up to a constant with T (p), thus
G := F |Φn−r is a degree r eigenform for all T (p). Moreover

suppr F = {Λ ⊥ 0n−r | Λ ∈ suppr G}.

Since, by the preceding case, suppr G contains a primitive lattice, so does
suppr F .

The next lemma shows, for cusp forms, the equivalence between our as-
sumption of coinciding eigenvalues and the assumption used in [BK99].

Lemma 3.3. Let F,G be degree n cuspidal eigenforms for each T (p), p
prime, s.t. the coefficients of F and G agree on primitive lattices. Then
λF (p) = λG(p) for all p if and only if the coefficients of F,G agree on all
primitive lattices scaled by non-squares.

Proof. Suppose λF (p) = λG(p) for all p. Let Q ∈ N be square-free, and let
p be a prime not dividing Q. Suppose we know that the coefficients of F,G
agree on all primitive lattices scaled by divisors of Q. (Note that we are
assuming this for Q = 1.) We show that the coefficients of F,G must then
agree on all primitive lattices scaled by divisors of pQ.
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Let Λ be a primitive lattice scaled by some divisor of Q s.t. p - disc Λ.
(Note that disc Λ 6= 0 since F is cuspidal.) Then for pΛ ( Ω ⊆ Λ, we have
[Λ : Ω] = ps with s < n. Hence disc Ω = p2s · disc Λ, so p2s‖disc Ω. Thus
p2 - cont Ω (else p2n|disc Ω), so Ω is a primitive lattice scaled by some divisor
of pQ. This means either Ω1/p is not integral or is a primitive lattice scaled
by a divisor of Q; in either case cF (Ω1/p) = cG(Ω1/p). This together with
the Hecke eigenform equation then gives us

cF (Λp) = λF (p)cF (Λ)−
∑

pΛ(Ω⊆Λ

γ(Ω)cF (Ω1/p)

= λG(p)cG(Λ)−
∑

pΛ(Ω⊆Λ

γ(Ω)cG(Ω1/p)

= cG(Λp).

Now suppose that for some t ≥ 1 we know the coefficients of F,G agree on
primitive lattices ∆ scaled by a divisor of pQ provided pt - disc ∆. Let Λ be
a primitive lattice scaled by a divisor of Q s.t. pt‖disc Λ. Take Ω s.t. pΛ (
Ω ⊆ Λ. Since p2‖ cont(pΛ) and cont Ω | cont(pΛ), we have p3 - cont Ω. Thus
1
pΩ is either non-integral, or primitive scaled by some divisor of pQ. Also
since pΛ ( Ω, we know [Λ : Ω] = pr for some r < n, so p2(r−n)+t‖disc 1

pΩ.
Hence by hypothesis, cF (1

pΩ) = cG(1
pΩ). Consequently, the Hecke eigenform

equation, with all terms rescaled by 1
p , gives us cF (Λ) = cG(Λ).

Induction on t shows that cF (Λ) = cG(Λ) for all Λ that are primitive
lattices scaled by a divisor of pQ. Induction on the number of primes dividing
Q shows cF (Λ) = cG(Λ) for all Λ that are primitive lattices scaled by non-
squares.

Conversely, suppose the coefficients of F,G agree on all primitive lattices
scaled by non-squares. Fix a prime p. Choose a primitive lattice Λ ∈ suppF .
Then as shown above, for Ω s.t. pΛ ( Ω ⊆ Λ, Ω1/p is either non-integral or
a primitive lattice scaled by a non-square. Thus∑

Ω

γ(Ω)cF (Ω1/p) + cF (Λp) =
∑
Ω

γ(Ω)cG(Ω1/p) + cG(Λp),

so the Hecke eigenform equation implies

λF (p)cF (Λ) = λG(p)cG(Λ).

Also cF (Λ) = cG(Λ) by hypothesis, and cF (Λ) 6= 0. Hence λF (p) = λG(p).

Remark 3.4. Using the Φ-operator as before, one can easily remove the
restriction to cusp forms in the previous lemma.
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