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We extend Voiculescu’s microstates-free definitions of free
Fisher information and free entropy to the non-tracial frame-
work. We explain the connection between these quantities
and free entropy with respect to certain completely positive
maps acting on the core of the non-tracial non-commutative
probability space. We give a condition on free Fisher infor-
mation of an infinite family of variables, which guarantees
factoriality of the von Neumann algebra they generate.

1. Introduction.

Free entropy and free Fisher information were introduced by Voiculescu [13],
[14] and [16] in the context of his free probability theory [17] as analogs of
the corresponding classical quantities. These quantities are usually consid-
ered in the framework of tracial non-commutative probability spaces; not
surprisingly, the most striking applications of free entropy theory were to
tracial von Neumann algebras (see e.g., [15], [2] and [10]). Recently, how-
ever, it turned out that some type III factors associated with free probability
theory [5] have certain properties in common with their type II1 cousins [9].
This gives rise to a speculation that there is room for free entropy to exist
outside of the context of tracial non-commutative probability spaces.

The goal of this paper is to initiate the development of free Fisher informa-
tion, based on Voiculescu’s microstates-free approach [16], in the non-tracial
framework. The key idea is that all of the ingredients going into the defi-
nition of free Fisher information in this case must behave covariantly with
respect to the modular group [11] of the non-tracial state. The principal
example of a family of variables for which free Fisher information is nontriv-
ial, and which belong to an algebra not having any traces, are semicircular
generators of free Araki-Woods factors, taken with free quasi-free states [5].

We describe another route towards free Fisher information, which is based
on first converting the non-tracial von Neumann algebra into a larger alge-
bra, the core (having an infinite trace), and then considering free Fisher
information relative to a certain completely positive map (in the spirit of
[7]). We should point out that it is this approach that is most likely to
connect with the microstates free entropy (as suggested by [3]; see also [8]),
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since it is at present unclear what a microstates approach to free entropy in
the non-tracial framework should be.

We finish the paper with a look at free Fisher information on von Neu-
mann algebras that have traces. Our first result is that once the algebra has
a trace, the free Fisher information is automatically infinite when computed
with respect to a non-tracial state. It is likely that on any von Neumann
algebra, free Fisher information can be finite for only very special states
(however, we do not have any results in this direction in the non-tracial
category). Another result of the present paper is a statement guaranteeing
factoriality of a tracial von Neumann algebra, once we know that it has
an infinite generating family whose free Fisher information is bounded in a
certain way.

2. Free Fisher information for arbitrary KMS states.

2.1. Free Brownian motion in the presence of a modular group. Let
M be a von Neumann algebra, φ : M → C be a normal faithful state on M .
Denote by σφ

t the modular group of φ. Denote by L2(M sa, φ) ⊂ L2(M,φ)
the closure of the real subspace of self-adjoint elements M sa ⊂ M .

Let X = X∗ ∈ M and let B ⊂ M be a subalgebra. Assume that σφ
t (B) ⊂

B for all t ∈ R.
Consider the von Neumann algebra M = Γ(L2(M sa, φ) ⊂ L2(M,φ)),

taken with the free quasi-free state φM. Consider the element Y = s(X) ∈
M (see [5] for definitions and notation). Then φM(Y σφM

t (Y ))=φ(Xσφ
t (X)),

for all t ∈ R.
Consider the algebra N = (M,φ) ∗ (M, φM), and denote by φ̂ the free

product state onN . Note that σφ̂
t = σφ

t ∗σ
φM
t . The elements Xε = X+

√
εY ,

ε ≥ 0 form a natural free Brownian motion, which behaves nicely under the
action of the modular group. In particular, note that for all ε ≥ 0 and t ∈ R,

φ̂(Xεσ
φ̂
t (Xε)) = φ(Xσφ

t (X)) · (1 + ε).

Furthermore, for each ε > 0, the distribution of Xε is that of a free Brownian
motion at time ε, starting at X; this is because Y is a semicircular variable,
free from X.
2.2. Conjugate variables. Let B[X] denote that algebra generated by B

and all translates σφ
t (X), t ∈ R. Assume that {σφ

t (X)} are algebraically
free over B, i.e., satisfy no algebraic relations modulo B. Denote by ∂X :
B[X] → N the derivation given by:

1. ∂X(σφ
t (X)) = σφ̂

t (Y )
2. ∂X(b) = 0, b ∈ B.

Notice that the range of ∂X actually lies in the subspace B[X] ·span{σφ̂
t (Y ) :

t ∈ R} ·B[X] ⊂ N . Note also that since ∂X(σφ
t (X)) is self-adjoint, we have
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that for P ∈ B[X], ∂X(P ∗) = ∂X(P )∗, i.e., ∂X is a ∗-derivation. Observe

finally that ∂X is covariant with respect to the modular groups σφ
t and σφ̂

t :

∂X(σφ
t (P )) = σφ̂

t (∂X(P )), P ∈ B[X].

Define the conjugate variable Jφ(X : B) ∈ L2(B[X], φ) to be such a vector
ξ that

〈ξ, P 〉L2(B[X],φ) = 〈Y, ∂X(P )〉L2(N ,φ̂), ∀P ∈ B[X],(2.1)

if a vector ξ satisfying such properties exists. Formally, this means that
ξ = ∂∗X(Y ), where ∂X : L2(B[X], φ) → L2(N , φ̂) is viewed as a densely
defined operator.

It is clear, because of the density of B[X] in L2(B[X], φ), that ξ is unique,
if it exists.

It is convenient to talk about Jφ(X : B) even in the case that {σt(X)}t∈R
are not algebraically free over B (such is the case, for example, when φ is a
trace, and hence σφ

t (X) = X for all t). In this case, one can view ∂X as a
multi-valued map, the set of values given by the results of application of the
definition of ∂X in all possible ways; the definition of Jφ is then that (2.1)
is valid for all values of ∂X .

Note that Jφ(X : B) depends on more than just the joint distribution of
X and B with respect to the state φ; it depends on the joint distribution of
the family B ∪ {σφ

t (X) : t ∈ R}.
We continue to denote by σφ

t the extension of σφ
t to the Hilbert space

L2(M,φ) (this is precisely the one-parameter group of unitaries ∆it
φ , where

∆φ is the modular operator). In particular, if φ is a trace, then the defini-
tion of Jφ is (up to a multiple) precisely that of the conjugate variable of
Voiculescu [16].

Lemma 2.1. Assume that ξ = Jφ(X : B) exists. Then ξ ∈ L2(M sa, φ), and
σφ

t (Jφ(X : B)) = Jφ(σφ
t (X) : B).

Proof. We note that, because ∂X is a ∗-derivation,

〈P ∗, ξ〉 = 〈Y, ∂X(P ∗)〉 = 〈∂X(P ), Y 〉 = 〈ξ, P 〉.
From this it follows that ξ is in the domain of the S operator of Tomita
theory, and moreover that Sξ = ξ. Hence ξ ∈ L2(M sa).

One also has

〈σφ
t (ξ), P 〉 = 〈Y, ∂X(P )〉

= 〈σφ
t (Y ), ∂

σφ
t (X)

(P )〉,

since the joint distributions of B[X] and {σφ̂
t (Y )}t∈R is the same as B[X] and

{σφ̂
s+t(Y )}t∈R, for any s. It follows that σφ

t (Jφ(X : B)) = Jφ(σφ
t (X) : B). �
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Lemma 2.2. Let P,Q ∈ B[X], and assume that ξ = Jφ(X) exists and is in
M . Then

φ(PξQ) = φ̂(PY ∂X(Q)) + φ̂(∂X(P )Y Q).

Proof. Recall that φ (and φ̂) satisfy the KMS condition: For all a, b ∈ M
(or ∈ N ), there exists a (unique) function f(z), analytic on the strip {z :

0 < =z < 1}, and so that (writing σt for either σφ
t or σφ̂

t )

φ(aσt(b)) = f(t),
φ(σt(b)a) = f(t + i), t ∈ R.

Fix P,Q ∈ B[X] and let f be as above, so that

φ(σφ
t (P )ξQ) = f(t + i),

φ(ξQσφ
t (P )) = f(t).

Then

f(t) = 〈ξ,Qσφ
t (P )〉

= 〈Y, ∂X(Qσφ
t (P ))〉

= 〈Y, ∂X(Q)σφ
t (P )〉+ 〈Y, Qσφ̂

t (∂X(P ))〉,

where in the last step we used the fact that ∂X intertwines σφ
t and σφ̂

t . Using
the KMS-condition for φ̂, we then get

f(t + i) = φ̂(σφ̂
t (P )Y ∂X(Q)) + φ̂(σφ̂

t (∂X(P ))Y Q)

= φ̂(σφ̂
t (P )Y ∂X(Q)) + φ̂(∂X(σφ̂

t (P ))Y Q).

Since f(t + i) = φ(σφ̂
t (P )ξQ), we get, setting t = 0, that

φ(PξQ) = φ̂(PY ∂X(Q)) + φ̂(∂X(P )Y Q),

as claimed. �
2.3. Conjugate variables as free Brownian gradients. As pointed out
above, X +

√
εY is a natural free Brownian motion, which is covariant with

respect to the appropriate modular groups. The following proposition shows
that Jφ(X : B) plays the role of the free Brownian gradient of X:

Proposition 2.3. Assume that ξ = Jφ(X : B) exists and belongs to M ⊂
L2(M,φ). Let P (Z1, . . . , Zn) be any non-commutative polynomial in n vari-

ables Z1, . . . , Zn, with coefficients from B. Write Xt = σφ
t (X), Yt = σφ̂

t (Y ),
ξt = σφ

t (ξ), t ∈ R.
Then for all t1, . . . , tn ∈ R, we have

φ̂(P (Xt1 +
√

εYt1 , . . . , Xtn +
√

εYtn))

=
1
2
φ(P (Xt1 + εξt1 , . . . , Xtn + εξtn)) + O(ε2).
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Proof. We may assume, by linearity, that P is a monomial, i.e., P (Z1, . . . ,
Zn) = b0Z1b1 . . . bn−1Znbn, for bj ∈ B. In this case, we have

φ̂(b0(Xt1 +
√

εYt1)b1 . . . bn)

= φ(P (Xt1 , . . . , Xtn)) + O(ε2)

+ ε
∑
k<l

φ̂(b0Xt1 . . . blYtl+1
bl+1Xtl+2

. . . bkYtk+1
bk+1Xtk+2

. . . Xtnbn)

= φ(P (Xt1 , . . . , Xtn)) + O(ε2)

+
1
2
ε
∑

l

φ̂(b0Xt1 . . . XtlblYtl+1
∂Xtl+1

(bl+1Xtl+2
. . . Xtnbn))

+
1
2
ε
∑

k

φ̂(∂Xtk+1
(b0Xt1 . . . Xtkbk)Ytkbk+1Xtk+2

. . . Xtnbn)

= φ(P (Xt1 , . . . , Xtn)) + O(ε2)

+
1
2

∑
k

φ(b0Xt1 . . . Xtkbkεξtkbk+1Xtk+2
. . . Xtnbn),

the last equality by Lemma 2.2. �

2.4. Examples of conjugate variables.

2.4.1. Tracial case. We have seen before that if φ is a trace, then the
definition of Jφ(X : B) coincides with the definition of conjugate variables
given by Voiculescu, up to a constant (which has to do with the fact that
we choose Y so that ‖Y ‖L2(φ̂) = ‖X‖L2(φ), and not 1). In particular,

Jφ(X : B) = J(X : B) · 1
‖X‖2

L2(φ)

, if φ is a trace.

2.4.2. Free quasi-free states. Let µ be a positive finite Borel measure on
R, so that µ is symmetric, µ(−X) = µ(X) for all Borel subsets X ⊂ R.
Let HR be the real Hilbert space of µ-square-integrable functions, satisfying
f(−x) = f(x) for all x ∈ R. Denote by Ut the representation of R on HR,
given by

(Utf)(x) = e2πitxf(x), x, t ∈ R.

Let h denote the vector 1 ∈ HR, and consider

M = Γ(HR, Ut)′′, φ = φU , X = s(h) ∈ M

(see [5] for definitions and notation).
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Then X = Jφ(X : C). Indeed, set Xt = σφ
t (X) = s(Uth); then we have

φ(X ·Xt1 . . . Xtn) =
∑

k

φ(XXtk)φ(Xt1 . . . Xtk−1
) · φ(Xtk+1

. . . Xtn)

=
∑

k

φ̂(Y σφ̂
tk

(Y ))φ(Xt1 . . . Xtk−1
) · φ(Xtk+1

. . . Xtn)

=
∑

k

φ̂(Y Xt1 . . . Xtk−1
Y Xtk+1

. . . Xtn)

= φ̂(Y ∂X(Xt1 . . . Xtn)),

so that X satisfies the defining property of Jφ(X : C), and hence Jφ(X : C)
exists and equals X.

2.5. Free Fisher information. Following [16], we define the free Fisher
information Φ∗φ(X : B) to be

Φ∗φ(X : B) = ‖Jφ(X : B)‖2
2 · ‖X‖−2

2

(the extra factor ‖X‖−2
2 comes from the fact that ∂X(X) does not have unit

norm in our definition). For several variables, we set

Φ∗φ(X1, . . . , Xn)

=
∑

Φ∗φ(Xi : W ∗(σφ
t1

(X1), . . . , X̂i, . . . , σ
φ
tn(Xn) : t1, . . . , tn ∈ R))

(here X̂i means that Xi is omitted).

3. Free Fisher information relative to the core.

Recall [11] that if (M,φ) is as above, its core is defined to be the von
Neumann algebra crossed product P = M oσφ R. There is a canonical
inclusion M ⊂ P , and P is densely spanned by elements of the form

mUt, t ∈ R,

where m ∈ M , and Ut satisfy UtmU∗t = σφ
t (m). The elements Ut : t ∈ R

generate a copy of the group von Neumann algebra L(R) ⊂ P ; the map

Eφ : mUt 7→ φ(m)Ut, m ∈ M, t ∈ R
extends to a normal conditional expectation from P onto L(R).

For X ∈ M self-adjoint, define the completely positive map ηX : L(R) →
L(R) by

ηX(g) = Eφ(XgX), g ∈ L(R).

Identify L(R) with L∞(R) via Fourier transform. For each t ∈ R, set

η(t) = 〈X, σφ
t (X)〉 = Eφ(XUtX).

Then ηX(f) = η̂∗f , if f ∈ L∞(R) ∼= L(R); here η̂ denotes Fourier transform.
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Define on P an L(R)-valued inner product

〈a, b〉L(R) = Eφ(a∗b), a, b ∈ P.

Denote by L2(P,Eφ) the L(R)-Hilbert bimodule arising from the completion
of P with respect to the norm induced by this inner product. Note that the
restriction of 〈·, ·〉L(R) to M ⊂ P is valued in the complex field, and coincides
with the inner product 〈a, b〉 = φ(a∗b) on L2(M).

Denote by 〈·, ·〉η the L(R)-valued inner product on P⊗P (algebraic tensor
product) given by

〈a⊗ b, a′ ⊗ b′〉η = Eφ(b∗η(Eφ(a∗a′)b′)), a, a′, b, b′ ∈ P.

Denote by 1⊗η 1 the vector 1⊗ 1 ∈ P ⊗ P .
Let δX : B[X] · L(R) → P ⊗ P be determined by

δX(X) = 1⊗η 1, δX(B · L(R)) = 0

and the fact that δX is a derivation.

Theorem 3.1. Let (M,φ) be as above, and let P be its core. Let i :
L2(M,φ) → L2(P,Eφ) be the extension of the inclusion of M ⊂ P . Then
ζ = i(Jφ(X : B)) satisfies

〈ζ, Q〉L(R) = 〈1⊗η 1, δX(Q)〉ηX(3.1)

for all Q ∈ B[X]∨L(R). Conversely, if there exists a vector ζ ∈ L2(P,Eφ),
so that (3.1) is satisfied, then Jφ(X : B) exists and ζ = i(Jφ(X : B)).

Proof. Assume first that Jφ(X : B) exists. Set ζ = i(Jφ(X : B)). We must
verify that (3.1) holds. By linearity, and the fact that L(R)BL(R) ⊂ BL(R),
it is sufficient to consider the case when Q = b0U

s1Xt1b1U
s2 . . . XtnbnU sn ,

with bj ∈ B and Xt = σφ
t (X). Then Q = P · U r, where r =

∑
sj , and

P = b0Xt′1
b′1 . . . b′n, with b′j = σφ

sj−1 ◦ . . . σφ
s1(bj), t′j = sj−1 + · · · + s1 + tj .

Note that for x, y, x′, y′ ∈ P , 〈x ⊗ y, x′ ⊗ Uy′〉η = 〈x ⊗ y, x′U ⊗ y〉η, and
〈x⊗ y, U r(x′ ⊗ y′)U s〉η = 〈U−rx⊗ yU−s, x′ ⊗ y′〉η . Using this, we get

〈ζ, Q〉L(R)

= 〈ζ, P 〉L(R)g

= 〈ζ, P 〉L2(M,φ) · U r

= φ̂(Y ∂X(P )) · U r

=
∑

j

φ(b′0Xt′1
. . . Xt′j

b′j)φ(b′j+1Xt′j+2
. . . Xt′nb′n) · φ̂(Y Ytj )U

r

=
∑

j

φ(b′0Xt′1
. . . Xt′j

b′j)φ(b′j+1Xt′j+2
. . . Xt′nb′n) · φ(XU t′jXU−t′j )U r

=
∑

j

φ(b′0Xt′1
. . . Xt′j

b′j)φ(b′j+1Xt′j+2
. . . Xt′nb′n) · Eφ(XU t′jXU−t′jU r)
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=
∑

j

φ(b′0Xt′1
. . . Xt′j

b′j)φ(b′j+1Xt′j+2
. . . Xt′nb′n) · ηX(U t′j )U r−t′j

=
∑

j

ηX ◦ Eφ(b′0Xt′1
. . . Xt′j

b′jU
t′j ) · Eφ(U r−t′jb′j+1Xt′j+2

. . . Xt′nb′n)

=
∑

j

〈1⊗η 1, b′0Xt′1
. . . Xt′j

b′jU
t′j ⊗ U r−tjb′j+1Xt′j+2

. . . Xt′nb′n〉η

=
∑

j

〈1⊗η 1, b0U
s1Xt1 . . . XtjbjU

sjU t′j ⊗

U r−tjU sj+1bj+1Xtj+2 . . . XtnbnU snU−r〉η
=

∑
j

〈1⊗η 1, b0U
s1Xt1 . . . XtjbjU

sj ⊗ U sj+1bj+1Xtj+2 . . . XtnbnU sn〉η

= 〈1⊗η 1, δX(Q)〉η.

Conversely, assume that ζ satisfying (3.1) exists. Since the argument
above is reversible, it is sufficient to prove that ζ is in the image of i :
L2(M) → L2(P,Eφ). Let θt be the dual action of R on P , given by θt(Us) =
exp(2πist), θt(m) = m, m ∈ M . It is sufficient to prove that θt(ζ) = ζ,
since i(L2(M)) consists precisely of those vectors, which are left fixed by θ.
It is sufficient to prove that θs(Eφ(ζmUt)) = exp(2πist) if m ∈ M . Since ζ
is assumed to be in the closure of B[X] ∨ L(R), it is sufficient to check this
for m ∈ B[X]. But then by (3.1),

Eφ(ζmUt) = 〈ζ, mUt〉L(R)

= 〈1⊗η 1, δX(mU)〉η
= 〈1⊗η 1, δX(m)〉ηU
∈ M · Ut,

which gives the desired result, since θs acts trivially on M . �

Note that (3.1) means that ζ is equal to J(X : B∨L(R), η) in the notation
of [7]. (This is strictly speaking incorrect, since the setting of [7] presumes
the existence of a finite trace on B[X] ∨ L(R); however, it is not hard to
check that the arguments in [7] go through also in the case of a semifinite
trace, which exists in our case.)

This fact has many consequences for the conjugate variables Jφ(X : B),
coming from the properties of J(X : B ∨L(R), η). Note in particular that if
W ∗(D, {σφ

t (X) : t ∈ R}) is free from B with amalgamation over D ⊂ B with
respect to some conditional expectation E : B → D, and E is φ-preserving,
then X is free from B ∨ L(R) with amalgamation over D ∨ L(R) (see [12],
[6]). We record this as:
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Theorem 3.2. Assume that E : B → D is a φ-preserving conditional ex-
pectation. If W ∗(D, {σφ

t (X) : t ∈ R}) is free from B over D, then

Jφ(X : B) = Jφ(X : D).

In a similar way, one can generalize to Jφ(X : B) all the properties of the
conjugate variable J(X : B, η) proved in [7].

Reformulating gives the following properties of Φφ, which we list for
reader’s convenience, since they are needed in the rest of the paper:

Theorem 3.3. Let φ be a normal faithful state on M , B ⊂ M be globally
fixed by the modular group (i.e., σφ

t (B) = B for all t), and Xi ∈ M . Then:

(a) Φ∗φ(λX1, . . . , λXn : B) = λ−2Φ∗φ(X1, . . . , Xn : B) for all λ ∈ R \ {0}.
(b) If B ⊂ A ⊂ M and A is globally fixed by σφ, then Φ∗φ(X1, . . . , Xn :

A) ≥ Φ∗(X1, . . . , Xn : B).
(c) If C ⊂ M is globally fixed by σφ, and W ∗(X1, . . . , Xn) and B are free

with amalgamation over C (with respect to the unique φ-preserving
conditional expectation from M onto C), then Φ∗φ(X1, . . . , Xn : B ∨
C) = Φ∗φ(X1, . . . , Xn : C).

(d) If Yi ∈ M are self-adjoint, D ⊂ B, D ⊂ C subalgebras of M , which
are globally fixed by σφ, and B[X1, . . . , Xn] is free from C[X1, . . . , Xn]
over D (with respect to the unique φ-preserving conditional expecta-
tion from M onto D), then Φ∗φ(X1, . . . , Xn, Y1, . . . , Ym : B ∨ C) =
Φ∗φ(X1, . . . , Xn : B) + Φ∗φ(Y1, . . . , Yn : C).

(e) Φ∗φ(X1, . . . , Xn, Y1, . . . , Yn : B) ≥ Φ∗φ(X1, . . . , Xn : B) + Φ∗φ(Y1, . . . ,

Ym : B).
(f) Φ∗φ(X1, . . . , Xn : B) · φ(

∑
X∗

i Xi)2 ≥ n2. Equality holds iff {σφ
t1

(X1),

. . . , σφ
tn(Xn) : t1, . . . , tn ∈ R} have the same distribution as the semi-

circular family {κs(σφ
t1

(X1)), . . . , κs(σφ
tn(Xn)) : t1, . . . , tn ∈ R} with

respect to the free quasi-free state, κ > 0.

We mention that all of the statements in Sections 3 and 4 of [7] remain
valid for Φ∗φ; we leave details to the reader.

One can also define and study free entropy χ∗φ(X1, . . . , Xn) by setting
Xε

i = Xi +
√

εYi to be the free Brownian motion described in the beginning
of the paper, and letting

χ∗φ(X1, . . . , Xn) =
1
2

∫ ∞

0

(
n

1 + t
− Φ∗φ(Xt

1, . . . , X
t
n)

)
dt.

The properties of χ∗(. . . , η) once again generalize to χ∗φ (compare Section 8
of [7]).
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4. States on a II1 factor.

4.1. Φ∗
φ vs. Φ∗

τ . The following theorem is somewhat surprising, since it
shows that Φ∗φ is identically infinite for most states φ on a II1 factor (the
analogy with classical Fisher information would instead suggest that φ 7→ Φ∗φ
would have some nice convexity properties). This, on the other hand, goes
well with the “degenerate convexity” property of the microstates free entropy
χ [15] (which is reflected in that it is identically −∞ on generators of any
von Neumann algebra with more than one unital trace).

Theorem 4.1. Let M be a tracial von Neumann algebra, φ a faithful nor-
mal state on M , B ⊂ M a subalgebra so that σφ

t (B) = B for all t, and
X = X∗ ∈ M . Then if Jφ(X : B) exists, the modular group of φ must fix
X.

Proof. Let d ∈ M be a positive element, so that φ(x) = τ(dx), where τ is a
normal faithful trace on M , and d is an unbounded operator on L2(M, τ),
affiliated to M . The modular group of φ is then given by σφ

t (x) = ditxd−it,
x ∈ M . Denoting by Xt the element σφ

t (X), we then get

X = X0 = d−itXtd
it, t ∈ R.

Consider

φ(X2
0 ) = φ(Jφ(X : B) ·X0) = φ(Jφ(X : B)d−itXtd

it).

Let b1 and b2 be two elements in the domain of ∂X , so that b1 = b∗2. Then

we get, writing Yt = σφ̂
t (Y ):

φ(Jφ(X : B)b1Xtb2) = φ̂(Y0b1Ytb2)

+ φ̂(Y0∂X(b1)Xtb2) + φ̂(Y0b1Xt∂X(b2))

= φ(b1)φ(b2)φ̂(Y0Yt)

+ φ̂(Y0∂X(b1)Xtb2) + φ̂([∂X(b∗2)Xtb
∗
1Y0]∗)

= φ(b1)φ(b∗1)φ̂(Y0Yt)

+ φ̂(Y0∂X(b1)Xtb
∗
1) + φ̂([∂X(b1)Xtb

∗
1Y0]∗).

Now, for all m,n ∈ M , we have

φ̂(Y0mY0n) = φ(m)φ(n) = φ̂(mY0nY0),
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so that

φ̂(Y0∂X(b1)Xtb
∗
1) + φ̂([∂X(b1)Xtb

∗
1Y0]∗)

= φ̂(Y0∂X(b1)Xtb
∗
1) + φ̂([Y0∂X(b1)Xtb

∗
1]
∗)

= φ̂(Y0∂X(b1)Xtb
∗
1) + φ̂(Y0[∂X(b1)Xtb∗1])

∈ R.

It follows that

=φ(Jφ(X : B)b1Xtb
∗
1) = =φ̂(Y0b1Ytb

∗
1).

Now fix t ∈ R and choose an in the domain of ∂X , ‖an‖ ≤ 1, so that

an → dit, a∗n → d−it strongly.

One can choose an, for example, to be elements of the algebra B[X]. Then

0 = =φ(X2
0 ) = =φ(Jφ(X : B) ·X0)

= =φ(Jφ(X : B)d−itXtd
it)

= lim
n→∞

=φ(Jφ(X : B)anXta
∗
n)

= lim
n→∞

=φ̂(Y0anYta
∗
n)

= lim
n→∞

=(φ(an)φ(a∗n)φ̂(Y0Yt))

= lim
n→∞

φ(an)φ(a∗n)=φ̂(Y0Yt)

= φ(dit)φ(d−it)=φ̂(Y0Yt).

Since φ̂(Y0Yt) = φ(X0Xt), for t sufficiently close to zero (so that φ(dit) 6= 0),
we get that

φ(XXt) ∈ R.

Thus

0 = τ(dXXt)− τ(d(XXt)∗)

= τ(dXditXd−it − ditXd−itXd)

= τ((dX −Xd)ditXd−it)

= τ([d, X]ditXd−it).

Differentiating this in t, and noting that (d/dt)t=0(ditXd−it) = i[d, X] gives

iτ([d, X]2) = 0.

Since [d,X] is anti-self-adjoint, this implies that τ(|[d, X]|2) = 0, so that
[d, X] = 0, because τ is faithful. This means that σφ

t (X) = X for all t. �
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Corollary 4.2. Suppose that X1, . . . , Xn are self-adjoint generators of a II1
factor M . Let φ be a normal faithful state on M , and denote by τ the unique
faithful normal trace on M . Then Φ∗φ(X1, . . . , Xn) < +∞ implies that:

(1) Φ∗τ (X1, . . . , Xn) < ∞, and
(2) φ is a multiple of the trace τ on M .

Proof. Clearly, the second statement implies the first. To get the second
statement, write φ(·) = τ(d·) and apply the theorem to conclude that
[d, Xi] = 0. Since X1, . . . , Xn generate M , d must be in the center of M ,
which must consist of multiples of identity, since M is a factor. But then d
is a scalar multiple of identity, so that φ and τ are proportional. �

4.2. Factoriality. Voiculescu showed [15] that for his microstates entropy
χ the following implication holds:

χ(X1, . . . , Xn) > −∞⇒ W ∗(X1, . . . , Xn) is a factor.

In fact, the conclusion is stronger: Not only is the center of W ∗(X1, . . . , Xn)
trivial, but so is its asymptotic center. Unfortunately, we don’t know if
the same implication holds for the non-microstates free entropy χ∗ intro-
duced by Voiculescu in [16], or even under the stronger assumption that
Φ∗(X1, . . . , Xn) is finite. We prove a weaker version of the assertion above
for Φ∗ = Φ∗τ . We first need a technical lemma:

Lemma 4.3. Let φ be a normal faithful state on M . Let X ∈ M be self-
adjoint and B ⊂ M be a subalgebra, so that σφ

t (B) = B for all t. Assume
that p ∈ B is a self-adjoint projection, φ(p) = α, and so that σφ

t (p) = p for
all t. Assume that ‖[X, p]‖2 < δ. Then

Φ∗φ(X : B) > 4
α2(1− α)2

δ2
.

Proof. Let (A, τ) be a copy of L(F2), free from B[X]. Since Φ∗φ(X : B) =

Φ∗φ(X : B ∨A), and since the centralizer of {σφ
t (B)}t ∨A is a factor [1], we

can find a projection q ∈ B ∨ A, which is fixed by the modular group, and
so that ‖[X, q]‖2 < δ, and τ(q) = β = m/n is rational and close to α. We
may moreover find a family of matrix units eij ∈ B ∨ A, 1 ≤ i, j ≤ n, fixed
by the modular group, and so that

e∗ij = eji, eijekl = δjkeil

τ(eii) =
1
n

, q =
m∑

i=1

eii.

Denote by C the algebra generated in B ∨ A by {eij}1≤i,j≤n. Note that
C ∼= Mn×n, the algebra of n × n matrices. The restriction of φ ∗ τ to C is
the usual matrix trace. Then

Φ∗φ(X : B) = Φ∗φ∗τ (X : B ∨A) ≥ Φ∗φ∗τ (X : C).



FREE FISHER INFORMATION FOR NON-TRACIAL STATES 387

Write Xij = e1iXej1. Then the inequality ‖[X, q]‖2 < δ implies that

δ > ‖xq − qx‖2

= ‖qxq + (1− q)xq − qxq − qx(1− q)‖2

= ‖(1− q)xq − qx(1− q)‖2

=
√

2 · ‖qx(1− q)‖2,

since (1− q)xq and qx(1− q) are orthogonal. Hence

‖qX(1− q)‖2 < δ/
√

2.

It follows that ∑
1≤i≤m, m<j≤n

φ(X∗
ijXij) +

∑
m<i≤n, 1≤i≤n

φ(X∗
ijXij) < δ2.

Denote by φ′ the state n(φ ∗ τ)(e11 · e11) on e11W
∗(X, C)e11. Then

Φ∗φ′({Xij}) ≥
∑
i,j

Φ∗φ′({Xij})

> 2m(n−m)
1

n(δ2/2m(n−m))

=
(2m(n−m))2

nδ2

= n34
β2(1− β)2

δ2
.

Arguing exactly as in [4, Proposition 4.1], we get that

Φ∗φ∗τ (X : C) =
1
n3

Φ∗φ′({Xij}) > 4
β2(1− β)2

δ2
.

Since β was a rational number, arbitrarily close to α, we get the desired
estimate for Φ∗φ(X : B). �

Theorem 4.4. Assume that M is a von Neumann algebra with a faithful
normal trace τ , and Xi are a family of self-adjoint elements in M , ‖Xi‖ = 1.
Assume that Bi form an increasing sequence of subalgebras of M , so that
M = ∪Bi

w. Assume further that for some normal faithful state φ on M ,

sup
j

lim inf
i

Φ∗φ(Xi : Bj) < +∞.

Then M is a factor.

Proof. In view of Theorem 4.1, we may assume that φ is a trace, τ . Assume
that M is not a factor. Then there exists a central projection p ∈ M of
some trace α = τ(p), α(1− α) 6= 0. Moreover, [p, Xi] = 0 for all i. Since Bi
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increase to all of M , given δ > 0, there is a large enough j and a projection
q ∈ Bj , so that ‖q − p‖2 < δ/2. Then for any k,

‖[q, Xk]‖2 = ‖qXk −Xkq‖2

= ‖(q − p)Xk −Xk(q − p) + pXk −Xkp‖2

≤ ‖(q − p)Xk‖2 + ‖Xk(q − p)‖2 + 0

≤ 2‖(q − p)‖2‖Xk‖
< 2(δ/2) = δ.

Now applying Lemma 4.3, we deduce that for any i > j,

Φ∗τ (Xi : Bj) > 4
α2(1− α)2

δ2
.

Hence lim infi Φ∗τ (Xi : Bj) > 4α2(1−α)2/δ2, which is a contradiction, since
δ was arbitrary. �

The hypothesis of the theorem is satisfied for some von Neumann algebras.
For example, let M = L(F∞) generated by an infinite semicircular family
Xi, i = 1, 2, 3, . . .. Then if Bi = W ∗(Xj : j < i), the assumptions of the
theorem are satisfied. In fact if Yi is any family of elements of a tracial
von Neumann algebra, so that ‖Yi‖ = 1, and Xi are a free semicircular
family, then letting Zi(ε) = Yi + εXi, Mε = W ∗(Z1(ε), Z2(ε), . . . ) and Bj =
W ∗(Z1(ε), . . . , Zj(ε)), we see that Mε is a factor. In other words, generators
of an arbitrary tracial von Neumann algebra can be perturbed (in a certain
representation of this algebra) by an arbitrarily small amount ε in uniform
norm, to produce a II1 factor. Another way of putting it is to note that the
free Brownian motion ε 7→ Zj(ε) started at {Y1, Y2, . . . } generates a factor
at any time ε > 0.

4.3. Factoriality in the non-tracial case. In a similar way, we get the
following:

Theorem 4.5. Assume that M is a von Neumann algebra with a faithful
normal state φ, and Xi are a family of self-adjoint elements in M , ‖Xi‖ = 1.
Assume that Bi form an increasing sequence of subalgebras of M , σφ

t (Bi) =
Bi for all t and i, and assume that Mφ = ∪(Bi ∩Mφ)

w
. Let Ri be the

operator of right multiplication by Xi densely defined on L2(M,φ). Assume
that supi ‖Ri‖ = C < +∞. Assume further that

sup
j

lim inf
i

Φ∗φ(Xi : Bj) < +∞.

Then M is a factor.

Proof. Assume that M is not a factor. Then there exists a central projection
p ∈ M , α = φ(p), α(1 − α) 6= 0. Moreover, [p, Xi] = 0 for all i. Since
automatically p ∈ Mφ and Bi∩Mφ increase to all of Mφ, given δ > 0, there
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is a large enough j and a projection q ∈ Bj∩Mφ, so that ‖q−p‖2 < δ/(1+C).
Then for any k,

‖[q, Xk]‖2 = ‖qXk −Xkq‖2

= ‖(q − p)Xk −Xk(q − p) + pXk −Xkp‖2

≤ ‖(q − p)Xk‖2 + ‖Xk(q − p)‖2 + 0

≤ ‖Rk‖‖(q − p)‖2 + ‖(q − p)‖2‖Xk‖
< (1 + C)(δ/(1 + C)) = δ.

The rest of the argument proceeds just like in the tracial case. �

Note that the assumption on the norms of Ri is satisfied if each Xi is
analytic for σφ

t and satisfies supk ‖σ
φ
i (Xk)‖ = C < +∞.
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