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Let © be a nonwandering, nonrecurrent Fatou component
for a holomorphic self-map f of P? of degree d > 2, and let
h be a normal limit of the family of iterates of f. We prove
that ¥ := h(Q) is either a fixed point of f or its normalization
is a hyperbolic Riemann surface, so that the dynamics of f|s
may be lifted to the unit disk. We also show that basins of
attraction for holomorphic self-maps of P*¥ of degree d > 2
are taut.

1. Introduction.

Let f : P¥ — P* be holomorphic. By definition, therefore, there exists a
homogeneous polynomial mapping f : C*+1\ {0} — C*+1\ {0} such that
the following diagram commutes:

CH I {0} L ok o)

p| E
P —_— Pk,
f
Here p denotes the standard projection from C**1\ {0} onto P*. The degree
d of f is by definition the degree of f. Throughout this paper we assume
that d > 1.

The Fatou set F(f) is the largest open subset of P*¥ on which the family
{f™}nen is normal. In [7], Ueda shows that f has a bounded basin of
attraction A to the origin. Let 2 be any connected component of F(f).
Ueda shows that there exists a set Q C OA such that the restriction of p to
Q) is a holomorphic covering map onto §2. A corollary of this construction is
the Kobayashi hyperbolicity of 2. Fornaess and Sibony have exploited this
fact in their classification of recurrent Fatou components for holomorphic
maps on P? ([4]).

Suppose now that € is a fixed, nonrecurrent Fatou component; that is,
satisfies f(Q2) = Q and f"(z) — 0N for all z € Q. Let h be a normal limit
of some subsequence of {f"}, so that f™ — h locally uniformly on Q as
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i — 00. Then ¥ := h(Q) C 9Q. The principal aim of this paper is to prove
the following result:

Theorem 1. Suppose that f : P2 — P2 is holomorphic, and Q a fized,
nonrecurrent Fatou component for f. Let 3 be as described above. Then
either ¥ is a fixed point of f, or there exists a locally injective holomorphic
mapping o : A — X, where A C C is the unit disk, and a holomorphic
function F : A — A such that the following diagram commutes:

AL A

di |

Yy — 3.

f

In the latter case, F' must either be conjugate to an irrational rotation, or
F(z) — 0A for all z € A.

The proof is given in Section 2.

Remark 1. A more general theorem was stated by Fornaess and Sibony in
[3], but the proof seems incomplete.

A complex manifold M is called taut if the family of maps from the unit
disk A to M is normal. Abate has asked ([1]) whether Fatou components for
holomorphic self-maps of P* are taut. In Section 3, we prove the following:

Theorem 2. Let Q be a Fatou component for f : P¥ — PF which is prepe-
riodic to a basin of attraction. Then ) is taut.

2. Proof of Theorem 1.

Let f be a holomorphic self-map of P* and Q a fixed, nonrecurrent Fatou
component. Choose and fix some subsequence f™ which converges locally
uniformly on Q. Let h = lim;_,o, f™, and let ¥ = h(€2). Then X C 09.

Lemma 1. Let ¥ be as above. Then f(X) = X.

Proof. Since h = lim;_, f™, h commutes with f on ). Let z € ¥, = €
h=Y(z). Let y € f~(x) N Q. Then f(z) = f(h(z)) = h(f(x)) € %, so
f(X) € ¥. And h(y) € ¥ with f(h(y)) = h(f(y)) = h(z) = z. Thus
f(E)=x. O

Let p be the natural projection from C*1\ {0} to P*, and f : CF1\
{0} — CF¥*1\ {0} the homogeneous polynomial lift of f by p. It was shown
by Ueda ([7]) that any homogeneous polynomial self-map of C*\ {0} has a
bounded basin of attraction to the origin. Let A be the bounded basin of
attraction to the origin for f. Ueda showed further the existence of a set
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Q C OA such that the restriction of p to Qisa holomorphic covering map
onto €.

Lemma 2. Let U be an open subset of Q0 sufficiently small that a local
inverse q : U — Q of plg may be defined. Then there exists h:U — 0A
holomorphic (as a mapping into CkH) such that p o h = h. Furthermore,
if hi is one such lift, then hs is another if and only if hy = €hy for some
real 0.

Proof. Write h = lim f™. On U, we have po (fm oq) = f™. Since {fm oq}
is uniformly bounded as a family of mappings into C*t1, by passing to a

subsequence, if necessary, we may assume that it has a holomorphic limit A
on U. Taking limits of both sides of

po(f*oq)=f"
gives
po h = h.
To prove the second statement, note that hyi(z) and he(z) are in the same
fiber of p for all z € U; i.e., in the same complex line in C*¥*1. Thus

hi(2) = A(2)ha(2)
for z € U, A : U — C holomorphic. Recall also that hji(z), ha(z) are

contained in JA. If G is the Green’s function for A, we have 0A = {G = 0}.
It is shown in [7] that for A € C, G satisfies

G(A\z) = G(z) + log ||
Thus

(h1(2)) +log |\ (2)|.

Thus |A(z)| =1 for all z € U. Since \ is holomorphic, this gives A = ¢ for
some 6 € R.

This shows that any two lifts h of h differ by a multiplicative constant of
absolute value one. Conversely, it is easy to check that if h:U — 0Ais a
lift of h, then so is €h : U — O A. O

The next lemma is part of the classical construction of the desingulariza-
tion of a Riemann surface; see [5]. We omit the proof.

Lemma 3. Let f be a germ at 0 of a nonconstant holomorphic mapping
from C to C™. Then there exists another germ g at 0 of a holomorphic
mapping from C to C™ such that g is injective in a neighborhood of 0, and
such that the images of f and g agree as germs.
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Lemma 4. Given z € X, let x € h™1(2), and let L be a complex line through
x such that h|f, is not constant. Then there exists a ball U centered at x
such that the restriction of p to h(L NU) is injective.

Proof. Let U be sufficiently small that we may define hon U, as in Lemma 2.
By shrinking U, if necessary, we may assume that x is the only critical point
of both h and of poh in LNU. Let D = LNU, and D* = D\ {z}. By
Lemma 3, shrinking U further, we may assume that both h(D*) and poh(D*)
are biholomorphic to punctured disks. Thus if p| (D) is not injective, we
may assume, making the Bottcher coordinate change, that it is of the form
w — w?® for some s > 2.

But then we can replace h by another lift goﬁ, where g, in the appropriate
coordinates, is a nontrivial rotation of h(D) about h(z). In particular, g o
h(x) = h(z). But by Lemma 2, goh must be of the form e?h. Furthermore,
h(z) # 0, since it is in A. Thus e = 1, and ¢ is the trivial rotation. This
contradiction establishes the lemma. (]

For the remainder of this section, we will assume that £ = 2, and that
h : QQ — 0Q is nonconstant. In this case, for z € €, there is an irreducible
piece 3, of a Riemann surface, possibly with singularities, and a neighbor-
hood U(z) such that h(U(z)) = ¥;. We define R to be the abstract union
U 2, for a covering {U (z;)} of 2, with identifications of z; € ¥, to z; € Xy,
if the images under h agree there as germs. R is Hausdorff, by the identity
theorem. It is a one-dimensional Riemann surface, possibly with singular-
ities. Let S be its smooth normalization. The map h factors naturally as
w1 0 hy, where h1 : Q@ — S and 7 : S — X.

Near a regular value of hi, hy has an inverse ¢ onto some linear disk in
Q. Define f; locally by fi = hy o f oq. It is straightforward to check that
f1 is thereby well-defined and holomorphic away from critical values of hq,
and may be extended continuously to S. Thus f : ¥ — X lifts naturally by
m to f1: 85— S.

Lemma 5. The Riemann surface S described above is hyperbolic.

Proof. Given zy € S, let U be a neighborhood of zy sufficiently small that
m2(U) C R contains at most one singular point, wg := m2(2p). Assume also
that U is small enough that there exists a linear disk L C € such that p
maps h(L) injectively onto some set containing 71 o mo(U), as in Lemma 4.

Let z1 € U\ {20}. Then there exists a neighborhood V' of z; and an open
subset W C L such that g := h|w is a biholomorphism onto 7 o ma(V).
Consider

¢p:V —0A

zhog tom omy(z).
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Then ¢ is holomorphic, and po ¢ = 7 o . Any other choice of ¢ (obtained
by choosing a different subset W C L) must therefore differ from the first
by a multiplicative constant of absolute value one. Since z; was arbitrary,
¢ may therefore be extended along any path in U \ {zp}. Since p|;L(L) is
injective, this extension gives rise to a single-valued holomorphic mapping,
of which zg is a removable singularity. Thus ¢ is holomorphic on U, with
po ¢ =m omy. Again, any other choice of ¢ must differ from this one by a
multiplicative constant of absolute value one; and since zg was arbitrary, ¢
may therefore be extended along any path in S. But this defines a covering
surface S C A of S. Since S is covered by a bounded subset of C3, it is
hyperbolic. (]

There are four a priori possibilities for fa : S — S (see [6]):

1. Some iterate of fo is the identity.

2. There exists a € R such that f3'(z) — a for all z € S.

3. f3(z) diverges to infinity with respect to the Poincaré metric on S for
all z € S.

4. S is conformally a disk, punctured disk, or annulus, and the action of
f2 on S is conjugate to irrational rotation.

In our case, (1) is impossible, since then some iterate of f would fix ¥. But
by Bezout’s theorem the number of fixed points of a holomorphic self-map
of complex projective space is finite. In Case (2), the point a would be
an attractive or semi-attractive fixed point of f. But then the topological
dynamics in a neighborhood U of a are well understood. In both cases,
if U is sufficiently small, points in F(f) N U cannot converge to X \ {a}.
But this contradicts our assumption that A is nonconstant. Thus (2) is also
impossible.

Now, we note that fs can in turn be lifted to a holomorphic self-map F
of the unit disk, A. Cases (3) and (4) above give the following possibilities
for F:

1. F(z) — OA locally uniformly on A.
2. F'is an irrational rotation of A.

Collecting the preceding lemmas gives us the following theorem:
Theorem 1. If h is a limit of some subsequence f™ on Q and % := h(Q2),
then either X is a fized point of f or there exists a surjective, locally injective

holomorphic mapping o : A — X := h(Q), and a holomorphic self-map F of
A satisfying (1) or (2) above, such that the following diagram commutes:

AL A

di |

¥y — 3.

f



396 B.J. WEICKERT

Since ¥ does not contain an entire curve of singularities, Case (2) gives
that X is a disk, punctured disk, or annulus, with at most one singularity, at
the fixed point. An example of this type of behavior is the following: Take

f:P?2 - p?
[2:w:t] — [zt 4 22 dwt 4+ w? : 7],

where A = €2™ and 6 satisfies a Diophantine condition. Let S be the Siegel

disk centered at 0 for the mapping w — Aw + w?. Then {f"} is compactly
divergent on the Fatou component containing the point [—1 : 0 : 1], any
uniform limit h satisfies

Y=hQ)={0,w,1] :w e S}

(note that ¥ is conformally a disk), and f|x is conjugate to multiplication
by A.

In Case (1) above, the mapping o may be very complicated. I have no
example of this type of behavior, nor a proof that it cannot occur.

3. Proof of Theorem 2.

Theorem 2. Let Q be a Fatou component for f : P* — P¥ which is prepe-
riodic to a basin of attraction. Then ) is taut.

Proof. Replacing f by an iterate, we may assume that 2 is an invariant
basin of attraction to ¢ € 2. Assume, to get a contradiction, that there
exists a sequence of holomorphic mappings {g; : A — Q} with no convergent
subsequence. Since (2 is covered by a bounded set in C**1, the family {g;} is
normal as a family of maps from A into P*. Thus, passing to a subsequence
if necessary, we may assume that

G —g: A —Q.

But, by assumption, g(A) ¢ Q and g(A) ¢ 0f.

For each i, let g; : A — 0A be a lift of g; Then {g;} is uniformly bounded
as a family of maps into C**1, so it is normal. By passing to a subsequence
if necessary, we may assume that

gi — g: A — J0A.
Taking limits of both sides of
pogi =gi
gives
pog=y.
Now,

pofrtogi=fropogi=[f"og.
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Thus, for each n and each i, f” og; is a lift of f™ o g;. Taking limits with
respect to ¢ gives N

poflog=[frog.
But {f” 0g} is uniformly bounded as a family of mappings into C**!. Thus
it is normal, and so therefore is { f"og}. Let h be a normal limit of { /™o g}.
Then h = q on g~ (g(A)NQ), so h = g on A. But this is impossible, since
frog(z) € 00 for all z € g~ 1(g(A) N o). O
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