Pacific Journal of Mathematics

NONWANDERING, NONRECURRENT FATOU COMPONENTS IN P²

BRENDAN J. WEICKERT

Volume 211 No. 2

October 2003

NONWANDERING, NONRECURRENT FATOU COMPONENTS IN P²

BRENDAN J. WEICKERT

Let Ω be a nonwandering, nonrecurrent Fatou component for a holomorphic self-map f of P^2 of degree $d \geq 2$, and let h be a normal limit of the family of iterates of f. We prove that $\Sigma := h(\Omega)$ is either a fixed point of f or its normalization is a hyperbolic Riemann surface, so that the dynamics of $f|_{\Sigma}$ may be lifted to the unit disk. We also show that basins of attraction for holomorphic self-maps of P^k of degree $d \geq 2$ are taut.

1. Introduction.

Let $f : \mathbf{P}^k \to \mathbf{P}^k$ be holomorphic. By definition, therefore, there exists a homogeneous polynomial mapping $\tilde{f} : \mathbf{C}^{k+1} \setminus \{0\} \to \mathbf{C}^{k+1} \setminus \{0\}$ such that the following diagram commutes:

$$\begin{array}{cccc} \mathbf{C}^{k+1} \setminus \{0\} & \stackrel{\widetilde{f}}{\longrightarrow} & \mathbf{C}^{k+1} \setminus \{0\} \\ p & & & \downarrow^{p} \\ \mathbf{P}^{k} & \stackrel{}{\longrightarrow} & \mathbf{P}^{k}. \end{array}$$

Here p denotes the standard projection from $\mathbf{C}^{k+1} \setminus \{0\}$ onto \mathbf{P}^k . The degree d of f is by definition the degree of \tilde{f} . Throughout this paper we assume that d > 1.

The Fatou set $\mathcal{F}(f)$ is the largest open subset of \mathbf{P}^k on which the family $\{f^n\}_{n\in\mathbb{N}}$ is normal. In [7], Ueda shows that \tilde{f} has a bounded basin of attraction A to the origin. Let Ω be any connected component of $\mathcal{F}(f)$. Ueda shows that there exists a set $\tilde{\Omega} \subset \partial A$ such that the restriction of p to $\tilde{\Omega}$ is a holomorphic covering map onto Ω . A corollary of this construction is the Kobayashi hyperbolicity of Ω . Fornæss and Sibony have exploited this fact in their classification of recurrent Fatou components for holomorphic maps on \mathbf{P}^2 ([4]).

Suppose now that Ω is a fixed, nonrecurrent Fatou component; that is, Ω satisfies $f(\Omega) = \Omega$ and $f^n(z) \to \partial \Omega$ for all $z \in \Omega$. Let h be a normal limit of some subsequence of $\{f^n\}$, so that $f^{n_i} \to h$ locally uniformly on Ω as

 $i \to \infty$. Then $\Sigma := h(\Omega) \subset \partial \Omega$. The principal aim of this paper is to prove the following result:

Theorem 1. Suppose that $f : \mathbf{P}^2 \to \mathbf{P}^2$ is holomorphic, and Ω a fixed, nonrecurrent Fatou component for f. Let Σ be as described above. Then either Σ is a fixed point of f, or there exists a locally injective holomorphic mapping $\sigma : \Delta \to \Sigma$, where $\Delta \subset \mathbf{C}$ is the unit disk, and a holomorphic function $F : \Delta \to \Delta$ such that the following diagram commutes:

In the latter case, F must either be conjugate to an irrational rotation, or $F^n(z) \to \partial \Delta$ for all $z \in \Delta$.

The proof is given in Section 2.

Remark 1. A more general theorem was stated by Fornaess and Sibony in [3], but the proof seems incomplete.

A complex manifold M is called *taut* if the family of maps from the unit disk Δ to M is normal. Abate has asked ([1]) whether Fatou components for holomorphic self-maps of \mathbf{P}^k are taut. In Section 3, we prove the following:

Theorem 2. Let Ω be a Fatou component for $f : \mathbf{P}^k \to \mathbf{P}^k$ which is preperiodic to a basin of attraction. Then Ω is taut.

2. Proof of Theorem 1.

Let f be a holomorphic self-map of \mathbf{P}^k , and Ω a fixed, nonrecurrent Fatou component. Choose and fix some subsequence f^{n_i} which converges locally uniformly on Ω . Let $h = \lim_{i \to \infty} f^{n_i}$, and let $\Sigma = h(\Omega)$. Then $\Sigma \subset \partial \Omega$.

Lemma 1. Let Σ be as above. Then $f(\Sigma) = \Sigma$.

Proof. Since $h = \lim_{i \to \infty} f^{n_i}$, h commutes with f on Ω . Let $z \in \Sigma$, $x \in h^{-1}(z)$. Let $y \in f^{-1}(x) \cap \Omega$. Then $f(z) = f(h(x)) = h(f(x)) \in \Sigma$, so $f(\Sigma) \subset \Sigma$. And $h(y) \in \Sigma$ with f(h(y)) = h(f(y)) = h(x) = z. Thus $f(\Sigma) = \Sigma$.

Let p be the natural projection from $\mathbf{C}^{k+1} \setminus \{0\}$ to \mathbf{P}^k , and $\tilde{f} : \mathbf{C}^{k+1} \setminus \{0\} \to \mathbf{C}^{k+1} \setminus \{0\}$ the homogeneous polynomial lift of f by p. It was shown by Ueda ([7]) that any homogeneous polynomial self-map of $\mathbf{C}^k \setminus \{0\}$ has a bounded basin of attraction to the origin. Let A be the bounded basin of attraction to the origin for \tilde{f} . Ueda showed further the existence of a set $\widetilde{\Omega} \subset \partial A$ such that the restriction of p to $\widetilde{\Omega}$ is a holomorphic covering map onto Ω .

Lemma 2. Let U be an open subset of Ω sufficiently small that a local inverse $q: U \to \widetilde{\Omega}$ of $p|_{\widetilde{\Omega}}$ may be defined. Then there exists $\hat{h}: U \to \partial A$ holomorphic (as a mapping into \mathbf{C}^{k+1}) such that $p \circ \hat{h} = h$. Furthermore, if \hat{h}_1 is one such lift, then \hat{h}_2 is another if and only if $\hat{h}_2 = e^{i\theta}\hat{h}_1$ for some real θ .

Proof. Write $h = \lim f^{n_i}$. On U, we have $p \circ (\tilde{f}^{n_i} \circ q) = f^{n_i}$. Since $\{\tilde{f}^{n_i} \circ q\}$ is uniformly bounded as a family of mappings into \mathbf{C}^{k+1} , by passing to a subsequence, if necessary, we may assume that it has a holomorphic limit \hat{h} on U. Taking limits of both sides of

$$p \circ (f^{n_i} \circ q) = f^{n_i}$$

gives

 $p \circ \hat{h} = h.$

To prove the second statement, note that $\hat{h}_1(z)$ and $\hat{h}_2(z)$ are in the same fiber of p for all $z \in U$; i.e., in the same complex line in \mathbf{C}^{k+1} . Thus

$$h_1(z) = \lambda(z)h_2(z)$$

for $z \in U$, $\lambda : U \to \mathbf{C}$ holomorphic. Recall also that $h_1(z)$, $h_2(z)$ are contained in ∂A . If G is the Green's function for A, we have $\partial A = \{G = 0\}$. It is shown in [7] that for $\lambda \in \mathbf{C}$, G satisfies

$$G(\lambda z) = G(z) + \log |\lambda|.$$

Thus

$$0 = G(\hat{h}_1(z)) = G(\hat{h}_2(z))$$
$$= G(\lambda(z)\hat{h}_1(z))$$
$$= G(\hat{h}_1(z)) + \log|\lambda(z)|$$

Thus $|\lambda(z)| = 1$ for all $z \in U$. Since λ is holomorphic, this gives $\lambda \equiv e^{i\theta}$ for some $\theta \in \mathbf{R}$.

This shows that any two lifts \hat{h} of h differ by a multiplicative constant of absolute value one. Conversely, it is easy to check that if $\hat{h}: U \to \partial A$ is a lift of h, then so is $e^{i\theta}\hat{h}: U \to \partial A$.

The next lemma is part of the classical construction of the desingularization of a Riemann surface; see [5]. We omit the proof.

Lemma 3. Let f be a germ at 0 of a nonconstant holomorphic mapping from \mathbf{C} to \mathbf{C}^n . Then there exists another germ g at 0 of a holomorphic mapping from \mathbf{C} to \mathbf{C}^n such that g is injective in a neighborhood of 0, and such that the images of f and g agree as germs. **Lemma 4.** Given $z \in \Sigma$, let $x \in h^{-1}(z)$, and let L be a complex line through x such that $h|_L$ is not constant. Then there exists a ball U centered at x such that the restriction of p to $\hat{h}(L \cap U)$ is injective.

Proof. Let U be sufficiently small that we may define \hat{h} on U, as in Lemma 2. By shrinking U, if necessary, we may assume that x is the only critical point of both \hat{h} and of $p \circ \hat{h}$ in $L \cap U$. Let $D = L \cap U$, and $D^* = D \setminus \{x\}$. By Lemma 3, shrinking U further, we may assume that both $\hat{h}(D^*)$ and $p \circ \hat{h}(D^*)$ are biholomorphic to punctured disks. Thus if $p|_{\hat{h}(D)}$ is not injective, we may assume, making the Böttcher coordinate change, that it is of the form $w \mapsto w^s$ for some $s \ge 2$.

But then we can replace \hat{h} by another lift $g \circ \hat{h}$, where g, in the appropriate coordinates, is a nontrivial rotation of $\hat{h}(D)$ about $\hat{h}(x)$. In particular, $g \circ \hat{h}(x) = \hat{h}(x)$. But by Lemma 2, $g \circ \hat{h}$ must be of the form $e^{i\theta}\hat{h}$. Furthermore, $\hat{h}(x) \neq 0$, since it is in ∂A . Thus $e^{i\theta} = 1$, and g is the trivial rotation. This contradiction establishes the lemma.

For the remainder of this section, we will assume that k = 2, and that $h: \Omega \to \partial \Omega$ is nonconstant. In this case, for $x \in \Omega$, there is an irreducible piece Σ_x of a Riemann surface, possibly with singularities, and a neighborhood U(x) such that $h(U(x)) = \Sigma_x$. We define R to be the abstract union $\bigcup \Sigma_{x_i}$ for a covering $\{U(x_i)\}$ of Ω , with identifications of $z_i \in \Sigma_{x_i}$ to $z_j \in \Sigma_{x_j}$ if the images under h agree there as germs. R is Hausdorff, by the identity theorem. It is a one-dimensional Riemann surface, possibly with singularities. Let S be its smooth normalization. The map h factors naturally as $\pi_1 \circ h_1$, where $h_1: \Omega \to S$ and $\pi_1: S \to \Sigma$.

Near a regular value of h_1 , h_1 has an inverse q onto some linear disk in Ω . Define f_1 locally by $f_1 = h_1 \circ f \circ q$. It is straightforward to check that f_1 is thereby well-defined and holomorphic away from critical values of h_1 , and may be extended continuously to S. Thus $f: \Sigma \to \Sigma$ lifts naturally by π_1 to $f_1: S \to S$.

Lemma 5. The Riemann surface S described above is hyperbolic.

Proof. Given $z_0 \in S$, let U be a neighborhood of z_0 sufficiently small that $\pi_2(U) \subset R$ contains at most one singular point, $w_0 := \pi_2(z_0)$. Assume also that U is small enough that there exists a linear disk $L \subset \Omega$ such that p maps $\hat{h}(L)$ injectively onto some set containing $\pi_1 \circ \pi_2(U)$, as in Lemma 4.

Let $z_1 \in U \setminus \{z_0\}$. Then there exists a neighborhood V of z_1 and an open subset $W \subset L$ such that $g := h|_W$ is a biholomorphism onto $\pi_1 \circ \pi_2(V)$. Consider

$$\phi: V \to \partial A$$
$$z \mapsto \hat{h} \circ g^{-1} \circ \pi_1 \circ \pi_2(z).$$

Then ϕ is holomorphic, and $p \circ \phi = \pi_1 \circ \pi_2$. Any other choice of ϕ (obtained by choosing a different subset $W \subset L$) must therefore differ from the first by a multiplicative constant of absolute value one. Since z_1 was arbitrary, ϕ may therefore be extended along any path in $U \setminus \{z_0\}$. Since $p|_{\hat{h}(L)}$ is injective, this extension gives rise to a single-valued holomorphic mapping, of which z_0 is a removable singularity. Thus ϕ is holomorphic on U, with $p \circ \phi = \pi_1 \circ \pi_2$. Again, any other choice of ϕ must differ from this one by a multiplicative constant of absolute value one; and since z_0 was arbitrary, ϕ may therefore be extended along any path in S. But this defines a covering surface $\tilde{S} \subset \partial A$ of S. Since S is covered by a bounded subset of \mathbb{C}^3 , it is hyperbolic. \Box

There are four a priori possibilities for $f_2: S \to S$ (see [6]):

- 1. Some iterate of f_2 is the identity.
- 2. There exists $a \in R$ such that $f_2^n(z) \to a$ for all $z \in S$.
- 3. $f_2^n(z)$ diverges to infinity with respect to the Poincaré metric on S for all $z \in S$.
- 4. S is conformally a disk, punctured disk, or annulus, and the action of f_2 on S is conjugate to irrational rotation.

In our case, (1) is impossible, since then some iterate of f would fix Σ . But by Bezout's theorem the number of fixed points of a holomorphic self-map of complex projective space is finite. In Case (2), the point a would be an attractive or semi-attractive fixed point of f. But then the topological dynamics in a neighborhood U of a are well understood. In both cases, if U is sufficiently small, points in $\mathcal{F}(f) \cap U$ cannot converge to $\Sigma \setminus \{a\}$. But this contradicts our assumption that h is nonconstant. Thus (2) is also impossible.

Now, we note that f_2 can in turn be lifted to a holomorphic self-map F of the unit disk, Δ . Cases (3) and (4) above give the following possibilities for F:

- 1. $F^n(z) \to \partial \Delta$ locally uniformly on Δ .
- 2. F is an irrational rotation of Δ .

Collecting the preceding lemmas gives us the following theorem:

Theorem 1. If h is a limit of some subsequence f^{n_i} on Ω and $\Sigma := h(\Omega)$, then either Σ is a fixed point of f or there exists a surjective, locally injective holomorphic mapping $\sigma : \Delta \to \Sigma := h(\Omega)$, and a holomorphic self-map F of Δ satisfying (1) or (2) above, such that the following diagram commutes:

$$\begin{array}{ccc} \Delta & \xrightarrow{F} & \Delta \\ \sigma & & & \downarrow \sigma \\ \Sigma & \xrightarrow{f} & \Sigma. \end{array}$$

Since Σ does not contain an entire curve of singularities, Case (2) gives that Σ is a disk, punctured disk, or annulus, with at most one singularity, at the fixed point. An example of this type of behavior is the following: Take

$$\begin{split} f: \mathbf{P}^2 &\to \mathbf{P}^2 \\ [z:w:t] &\mapsto [zt+z^2:\lambda wt+w^2:t^2], \end{split}$$

where $\lambda = e^{2\pi i\theta}$ and θ satisfies a Diophantine condition. Let S be the Siegel disk centered at 0 for the mapping $w \mapsto \lambda w + w^2$. Then $\{f^n\}$ is compactly divergent on the Fatou component containing the point [-1:0:1], any uniform limit h satisfies

$$\Sigma = h(\Omega) = \{[0, w, 1] : w \in S\}$$

(note that Σ is conformally a disk), and $f|_{\Sigma}$ is conjugate to multiplication by λ .

In Case (1) above, the mapping σ may be very complicated. I have no example of this type of behavior, nor a proof that it cannot occur.

3. Proof of Theorem 2.

Theorem 2. Let Ω be a Fatou component for $f : \mathbf{P}^k \to \mathbf{P}^k$ which is preperiodic to a basin of attraction. Then Ω is taut.

Proof. Replacing f by an iterate, we may assume that Ω is an invariant basin of attraction to $q \in \Omega$. Assume, to get a contradiction, that there exists a sequence of holomorphic mappings $\{g_i : \Delta \to \Omega\}$ with no convergent subsequence. Since Ω is covered by a bounded set in \mathbf{C}^{k+1} , the family $\{g_i\}$ is normal as a family of maps from Δ into \mathbf{P}^k . Thus, passing to a subsequence if necessary, we may assume that

$$g_i \to g : \Delta \to \overline{\Omega}.$$

But, by assumption, $g(\Delta) \not\subset \Omega$ and $g(\Delta) \not\subset \partial \Omega$.

For each *i*, let $\tilde{g}_i : \Delta \to \partial A$ be a lift of g_i Then $\{\tilde{g}_i\}$ is uniformly bounded as a family of maps into \mathbf{C}^{k+1} , so it is normal. By passing to a subsequence if necessary, we may assume that

$$\widetilde{g}_i \to \widetilde{g} : \Delta \to \partial A.$$

Taking limits of both sides of

$$p \circ \widetilde{g}_i = g_i$$

gives

$$p \circ \widetilde{g} = g.$$

Now,

$$p \circ \widetilde{f}^n \circ \widetilde{g}_i = f^n \circ p \circ \widetilde{g}_i = f^n \circ g_i.$$

Thus, for each n and each i, $\tilde{f}^n \circ \tilde{g}_i$ is a lift of $f^n \circ g_i$. Taking limits with respect to i gives

$$p \circ f^n \circ \widetilde{g} = f^n \circ g.$$

But $\{\widetilde{f}^n \circ \widetilde{g}\}$ is uniformly bounded as a family of mappings into \mathbb{C}^{k+1} . Thus it is normal, and so therefore is $\{f^n \circ g\}$. Let h be a normal limit of $\{f^n \circ g\}$. Then $h \equiv q$ on $g^{-1}(g(\Delta) \cap \Omega)$, so $h \equiv q$ on Δ . But this is impossible, since $f^n \circ g(z) \in \partial \Omega$ for all $z \in g^{-1}(g(\Delta) \cap \partial \Omega)$.

References

- [1] M. Abate, seminar talk.
- J.E. Fornæss, Dynamics in Several Complex Variables, CBMS Regional Conference Series in Mathematics, 87, 1996, MR 96j:32033, Zbl 0840.58016.
- J.E. Fornæss and N. Sibony, Complex dynamics in higher dimensions, Complex potential theory (Montreal, PQ, 1993), 131-186, Kluwer Acad. Publ., Dordrecht, 1994, MR 96k:32057, Zbl 0811.32019.
- [4] _____, Classification of recurrent domains for some holomorphic mappings, Math. Ann., 301(4) (1995), 813-820, MR 96c:32030, Zbl 0829.58005.
- [5] F. Kirwan, Complex Algebraic Curves, Cambridge University Press, 1992, MR 93j:14025, Zbl 0744.14018.
- J. Milnor, Dynamics in one complex variable: Introductory lectures, Institute for Math. Sci., SUNY Stony Brook, 1999, MR 2002i:37057, Zbl 0946.30013.
- [7] T. Ueda, Fatou sets in complex dynamics on projective spaces, J. Math. Soc. Japan, 46 (1994), 545-555, MR 95d:32030, Zbl 0829.58025.

Received September 17, 2002.

DEPARTMENT OF MATHEMATICS WASHINGTON AND LEE UNIVERSITY LEXINGTON, VA 24450 *E-mail address*: weickertb@wlu.edu