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For a planar convex compact set E, we describe the mu-
tual range of its area, width, and logarithmic capacity. This
result will follow from a more general theorem describing the
mutual range of area, logarithmic capacity, and length of or-
thogonal projection onto a given axis of an arbitrary compact
set, connected or not.

1. Introduction.

For a planar convex compact set E, let A(E), w(E), and capE denote the
area, width, and logarithmic capacity of E respectively. The width w(E) is
the minimal orthogonal projection of E, i.e.,

w(E) = min
0≤θ≤π

projθ E,

where projθ E denotes the length of the orthogonal projection of E onto the
line lθ = {z = teiθ : −∞ < t < ∞}. The logarithmic capacity capE of a
compact set E is defined by

− log capE = lim
z→∞

(g(z)− log |z|),

where g(z) denotes Green’s function of the unbounded component Ω(E) of
C \E having singularity at z = ∞. This notion combines several character-
istics of a compact set such as transfinite diameter, Chebyshev’s constant,
and outer radius, see [3, 4, 7, 8, 10] and [12].

How large can the area of E be if the width and logarithmic capacity of
E are prescribed? — For convex sets, the answer to this question is given
by:

Theorem 1.1. For a planar convex compact set E, let 2h = w(E)/capE.
Then 0 ≤ h = h(E) ≤ 1 and

A(E) ≤ cap 2E
(
πβ2 + 4hβ′E(β′, β′−1)

)
,(1.1)

where E denotes the elliptic integral of the second kind, β′ =
√

1− β2, and
β = β(h) is a solution to the equation

h = βE(β, β−1)(1.2)
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unique in the interval 0 < β < 1. In addition, for a fixed capE = c, the
right-hand side of (1.1) strictly increases from 0 to πc2 as h runs from 0
to 1.

Equality occurs in (1.1) if and only if E coincides up to a linear transfor-
mation with the set Eh, symmetric w.r.t. the coordinate axes, complemen-
tary to the image f(U∗) of U∗ = {z : |z| > 1} under a univalent conformal
mapping w = f(z) with f = g ◦ τ , where

g(τ) = h+
1
2

∫ τ

2

τ +
√
τ2 − 4β2

√
τ2 − 4

dτ, τ = (1/2)(z +
√
z2 − 4)(1.3)

with the principal branches of the radicals.

Figure 1 displays extremal configurations for some typical values of h.

Figure 1. Typical extremal confugurations.

Let A(h) = maxA(E), where the maximum is taken among all convex
compact sets E such that capE = 1, w(E) = 2h. Then by Theorem 1.1,
A(h) equals the right-hand side of (1.1). The graph of A(h) coincides with
a part, for 0 ≤ h ≤ 1, of the graph in Figure 2, which shows the maximal
area among all compact sets with logarithmic capacity 1 and prescribed
projection onto the real axis, as it is explained in Theorem 1.2.

The Proof of Theorem 1.1 given in Section 3 actually leads to a more
general result: Inequality (1.1) holds true with the same uniqueness assertion
for all compact sets E (connected or not) such that 0 ≤ h(E) ≤ 1. However,
we prefer to speak about convex sets since the inequalities 0 ≤ h(E) ≤ 1
give the whole range of h(E) over the family of all such sets with equalities
h(E) = 0 and h(E) = 1 only for rectilinear segments and disks, respectively.
This follows from the well-known isoperimetric inequalities:

w(E) ≤ 1
π

∫ π

0
proj0E dθ =

1
π

length (∂E),

1
2π

length (∂E) ≤
(

areaE
π

)1/2

≤ capE,
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Figure 2. Graph of A(h)

cf. [10, pp. 8, 164].
In contrast, the range of h(E) over the set of all continua (= connected

compact sets) E is not known. There is an open question, first referenced
by Erdös, Herzog and Piranian [5], and later commented on by Ch. Pom-
merenke [11] to find max h(E). Erdös et al. conjectured that max h(E)
would be 1; however, Pommerenke gave an counterexample, E6, the sym-
metric star with six rays, for which h(E6) > 1. An easy computation shows
that for E3, the symmetric star with three rays, that h(E3) > h(E6). How-
ever, counter to intuition, there are intermediate stars (between E3 and E6)
which show that E3 cannot be the extremal configuration for max h(E).
This remark points out that the problem on the maximal area of E among
all continua E with prescribed h(E) > 1 is potentially quite difficult.

A characteristic of a compact set E, dual to the width, is the diameter of
E which can be defined as

diamE = max
0≤θ≤π

projθ E.

In [1, Theorem 2], we found the maximal area A(d) = maxA(E) among all
continua E such that capE = 1, diamE = 2d. The range of d = d(E), if E
is connected and capE = 1, is given by the classical inequalities 1 ≤ d ≤ 2.
The first of them is due to G. Pólya [9] and the second one is due to G. Faber
[6]. The upper bound for d shows that the range of the length of projection
of E onto a fixed axis, say on R, is

0 ≤ proj0E ≤ 4.

For a half of this range, when the projection is between 0 and 2, the
arguments used to prove Theorem 1.1 show also that (1.1) holds true with
the same uniqueness assertion for all compact sets E such that capE = 1
and 0 ≤ proj0E ≤ 2. This result combined with Theorem 2 in [1] gives:
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Theorem 1.2. Let E be a compact set in C such that capE = 1 and
proj0E = 2h, where 0 ≤ h ≤ 2. Then

A(E) ≤

 πβ2 + 4hβ′E(β′, β′−1), if 0 ≤ h ≤ 1,

πβ2 − 2πh(β − 1), if 1 ≤ h ≤ 2,
(1.4)

where β = β(h), 0 ≤ β ≤ 1 is defined by (1.2) in the first case and 1 ≤ β ≤ 2
is the unique solution to the equation h = β−(β−1) log(β−1) in the second
case. In addition, the right-hand side of (1.4) strictly increases from 0 to π
as h runs from 0 to 1 and strictly decreases from π to 0 as h runs from 1
to 2.

For 0 ≤ h ≤ 1, extremal configurations are described in Theorem 1.1.
For 1 ≤ h ≤ 2, equality occurs in (1.4) if and only if E coincides up to a
linear transformation with the complement to the image f(U∗) of U∗ under a
conformal mapping f(z) = h+

∫ z
1 ϕ(z;h) dz, where ϕ maps U∗ conformally

onto the complement of the “double anchor”

F (β, ψ) = [−iβ, iβ] ∪
{
βeit :

π

2
− ψ ≤ t ≤ π

2
+ ψ

}
∪
{
βeit :

3π
2
− ψ ≤ t ≤ 3π

2
+ ψ

}
with ψ = (1/2) cos−1(8β−1 − 8β−2 − 1).

For the right-hand side of (1.4) we will keep notation A(h), where now
0 ≤ h ≤ 2; in context of Theorem 1.1, A(h) was defined only for 0 ≤ h ≤ 1.

2. Geometry and closed form of the extremals.

In Lemma 2.1 we summarize well-known symmetrization results necessary
for our main proofs, see [3, 7, 2] and [1].

Lemma 2.1. For any compact set E, let E∗∗ be the result of successive
Steiner symmetrizations of E w.r.t. the real and imaginary axes, respectively.
Then

A(E∗∗) = A(E), proj0E
∗∗ = proj0E, capE∗∗ ≤ capE(2.1)

with the sign of equality in the third relation if and only if E∗∗ coincides
with E a.e. up to shifts in the directions of the coordinate axes.

It follows from (2.1) that in proving Theorem 1.2 we may restrict ourselves
with continua possessing double Steiner symmetry w.r.t. the coordinate axes.
Furthermore, since capE, w(E), projθ E, and (A(E))1/2 all change linearly
w.r.t. scaling, we may assume in what follows that capE = 1. Then, w(E)
in Theorem 1.1 may vary in between 0 and 2, and proj0E in Theorem 1.2
varies in between 0 and 4.
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If E is connected and Steiner symmetric, then ΩE = C\E is a simply con-
nected domain containing the point z = ∞. Let f be a conformal mapping
from U∗ onto ΩE . If capE = 1, we can normalize f such that

f(ζ) = ζ + a0(f) + a1(f)ζ−1 + · · · .(2.2)

The set of all analytic functions univalent in U∗ and normalized by (2.2)
constitute the standard class Σ, see [3, 4] and [8].

For f ∈ Σ, let Df = f(U∗) and Ef = C\Df . Our previous considerations
show that the problem in Theorem 1.2 is equivalent to the problem on the
maximal omitted area for the class Σ under the additional constraint

proj0Ef = 2h,

0 ≤ h ≤ 2. The set of functions f ∈ Σ such that 0 ∈ Ef and projection of
Ef onto R coincides with the segment [−h, h] will be denoted by Σh. The
omitted area Af = A(Ef ) can be computed as

Af = π

(
1−

∞∑
n=1

n|an(f)|2
)
.

Let AΣ(h) = supf∈Σh Af . Since the area functional Af is lower semi-
continuous, the existence of an extremal function, at least one for each h,
easily follows from the compactness of the class Σh. Thus, the proof of
Lemma 2.2 is standard (see [1] and [2]) and left to the reader.

Lemma 2.2. For every 0 ≤ h ≤ 2, there exists f ∈ Σh such that Af =
AΣ(h). In addition, AΣ(h) is continuous in 0 ≤ h ≤ 2.

Let f be an extremal function in Σh, 0 < h < 2. By Lemma 2.1, we may
assume that Ef possesses Steiner symmetry w.r.t. the coordinate axes. This
implies that the boundary Lf = ∂Ef contains two “free” parts L+

fr = {z ∈
∂Ef : =z > 0, |<z| < h} and L−fr = {z : z ∈ L+

fr}. The double symmetry of
Ef and a standard subordination argument easily imply that L+

fr is Jordan
rectifiable, see similar considerations in [1].

For the “non-free” part of Lf there are two possibilities: Either it consists
of two vertical segments (possibly degenerate) I± = {w = ±h + is : |s| ≤
sf}, 0 ≤ sf ≤ 2, or it consists of two horizontal segments I± = {w = ±t :
hf ≤ t ≤ h}, 0 ≤ hf ≤ h.

Let l+fr = {eiθ : θ0 < θ < π − θ0} and l−fr = {eiθ : e−iθ ∈ l+fr} be the “free
arcs”, i.e., l±fr are the preimages of L±fr under the mapping f . Similarly, let
l±nf = f−1(I±) if the non-free boundary is vertical and l±nf = f−1(I±) if it is
horizontal.

Lemma 2.3. For a fixed h, 0 ≤ h ≤ 2, let f ∈ Σh be extremal for AΣ(h)
possessing Steiner symmetry w.r.t. the coordinate axes and having a vertical
non-free boundary. Then:
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(i) |f ′(z)| = β with some 0 < β < 1 for all z ∈ l±fr;
(ii) |f ′(eiθ)| strictly decreases from ρ = |f ′(1)| to β as θ runs from 0 to θ0.

Proof. First, we show that |f ′(z)| is constant a.e. on l+fr. Since L+
fr is Jordan

rectifiable it follows that the nonzero finite limit

f ′(ζ) = lim
z→ζ, z∈U∗

f(z)− f(ζ)
z − ζ

6= 0,∞(2.3)

exists a.e. on lfr. This easily follows from [12, Theorem 6.8] applied to the
univalent function 1/f(1/z). Assume that

0 < β1 = |f ′(eiθ1)| < |f ′(eiθ2)| = β2 <∞(2.4)

for eiθ1 , eiθ2 ∈ l+fr. Note that (2.3) and (2.4) allow us to apply the two point
variational formulas of Lemma 5 in [1], see also [2, Lemma 10] for similar
variational formulas for analytic functions univalent in the unit disk U =
{z : |z| < 1}. Namely, for fixed positive k1, k2 such that 0 < k1 < 1 < k2

and k1β
−1
1 > k2β

−1
2 and fixed ϕ > 0 small enough, we consider the two

point variation D̃ of Df centered at w1 = f(eiθ1) and w2 = f(eiθ2) with
inclinations ϕ and radii ε1 = k1ε, ε2 = k2ε respectively, see Section 2 in [1].
Computing the change in the area by formula (2.11) [1], we find

Area (C \ D̃)−Area (C \Df ) =
2πϕ− sin 2πϕ

2 sin2 πϕ
ε2(k2

2 − k2
1) + o(ε2)(2.5)

> 0

for all ε > 0 small enough. Similarly, applying formula (2.10) [1], we get

log
R(D̃,∞)
R(Df ,∞)

=
[
ϕ(2 + ϕ)
6(1 + ϕ)2

k2
1

β2
1

− ϕ(2− ϕ)
6(1− ϕ)2

k2
2

β2
2

]
ε2 + o(ε2) > 0(2.6)

for all ε > 0 small enough and ϕ chosen such that the expression in the
brackets is positive.

Inequalities (2.5) and (2.6), via a standard subordination argument, lead
to a contradiction with the extremality of f for AΣ(h). Thus |f ′(eiθ)| = β
a.e. on l±fr with some β > 0.

Since Ef is Steiner symmetric w.r.t. R, the strict monotonicity of |f ′(eiθ)|
in 0 ≤ θ < θ0 follows from Lemma 3 [1]. To prove that |f ′(eiθ)| > β
for all eiθ ∈ l+nf , we assume that β = |f ′(eiθ1)| > |f ′(eiθ2)| = β2 with
eiθ1 ∈ l+fr and some eiθ2 ∈ l+nf . Then applying the two point variation
as above, we get inequalities (2.5) and (2.6), again, via a subordination
argument, contradicting the extremality of f for AΣ(h). Hence, |f ′(eiθ)| ≥ β
for all eiθ ∈ l±nf , which combined with the strict monotonicity property of
|f ′| leads to the strict inequality |f ′(eiθ)| > β for eiθ ∈ l±nf .
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To prove that |f ′| = β everywhere on l+fr, we consider the function g(z) =
1/f(1/z). The double symmetry property of Lemma 2.1 implies that Dg =
g(U) is Jordan rectifiable and starlike w.r.t. w = 0. Therefore, it is a Smirnov
domain, see [12, p. 163]. This implies that log |g′(z)| = log |f ′(1/z)| −
2 log |zf(1/z)|, and therefore log |f ′(1/z)|, can be represented by the Poisson
integral

log |f ′(1/z)| = 1
2π

∫ 2π

0
P (r, θ − t) log |f ′(e−it)| dt(2.7)

with boundary values defined a.e. on T = {z : |z| = 1}, see [12, p. 155].
Equation (2.7) along with relations |f ′| = β a.e. on l±fr and |f ′| > β every-
where on l±nf shows that 1 = |f ′(∞)| ≥ β with equality only for the function
f(z) ≡ z.

If l+n = ∅ or consists of a single point, then the previous arguments show
that |f ′| = β identically on U∗. Therefore, f(z) ≡ z, which can happen only
for h = 1. Hence, l+n 6= ∅ and therefore 0 < θ0 < π/2 if h 6= 1. Let v be
a bounded harmonic function on U with boundary values log(β) on l±fr and
log |f ′(e−iθ)| on l±nf . Then v(z)− log |f ′(1/z)| has nontangential limit 0 a.e.
on T. Therefore, v(z)− log |f ′(1/z)| ≡ 0 on U. Hence, |f ′| = β everywhere
on l±fr.

To show that f ′ is continuous at ±e±iθ0 , we note that by the reflection
principle, f can be continued analytically through l+nf and f ′ can be con-
tinued analytically through l+fr. This implies that f can be considered as a
function analytic in a slit disk {z : |z − eiθ0 | < ε} \ [(1 − ε)eiθ0 , eθ0 ] with
ε > 0 small enough.

Using the Julia-Wolff lemma, see [12, Proposition 4.13], boundedness of
log f ′, and well-known properties of the angular derivatives, see [12, Proposi-
tions 4.7, 4.9], one can prove that f ′ has a finite limit f ′(eiθ0), |f ′(eiθ0)| = β,
along any path in U∗ ending at eiθ0 and by double symmetry at −e±iθ0 and
e−iθ. The details of this proof are similar to the arguments in Lemma 13 in
[2].

Since |f ′| takes its minimal values on T, it follows that |f ′(z)| > β for all
z ∈ U∗. In particular, β < |f ′(∞)| = 1. The proof is complete. �

Summing up the results of this section we can prove the following lemma,
which allows us to find a closed form for extremal functions.

Lemma 2.4. Let f ∈ Σh, 0 ≤ h ≤ 2, be extremal for AΣ(h) having the
vertical non-free boundary. Then ϕ(z) = zf ′(z) maps U∗ univalently onto
a domain Ω(β, ρ) = C \ {Uβ ∪ [−ρ, ρ]} with ρ = 1 +

√
1− β2 and some

β = β(h) ∈ (0, 1).
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Proof. Considering boundary values of ϕ, we have arg ϕ(eiθ) = 0 for 0 ≤
θ ≤ θ0 since < f(eiθ) is constant for such θ. Since |ϕ(eiθ)| = |f ′(eiθ)| strictly
increases in 0 < θ < θ0, ϕ maps the arc {eiθ : 0 ≤ θ ≤ θ0} continuously and
one-to-one onto the segment {w = t : β ≤ t ≤ ρ} with ρ = |f ′(1)|.

For θ0 ≤ θ ≤ π−θ0, |ϕ(eiθ)| = β. Since |ϕ(z)| > β for all z ∈ U∗ it follows
that ϕ′(eiθ) 6= 0 for θ0 < θ < π− θ0. Hence ϕ is locally univalent on l+fr and
therefore argϕ(eiθ) strictly increases when θ runs from θ0 to π − θ0.

Let ~n(θ) be the inner unit normal to L+
fr at f(eiθ). Then 0 ≤ arg ~n(θ) ≤ π

for θ0 ≤ θ ≤ π − θ0 since Ef is Steiner symmetric. Since arg ~n(θ) = θ +
arg f ′(riθ) = argϕ(eiθ), the total variation of argϕ(eiθ) on l+fr is < π.
This together with the equalities argϕ(eiθ0) = 0 and argϕ(−e−iθ0) = π
shows that ϕmaps l+fr continuously and one-to-one onto the upper semicircle
{βeiψ : 0 < ψ < π}.

Since Ef possesses double symmetry w.r.t. the coordinate axes it fol-
lows that ϕ maps T continuously and one-to-one in the sense of boundary
correspondence onto the boundary of Ω(β, ρ). Now by the argument prin-
ciple, ϕ maps U∗ conformally and one-to-one onto Ω(β, ρ). Since ϕ′(∞) =
f ′(∞) = 1, an easy computation shows that ρ = 1 +

√
1− β2. The lemma

is proved. �

3. Proof of the theorems.

Proof of Theorem 1.2. By Lemma 2.1, we may restrict ourselves to con-
nected compact sets, which are Steiner symmetric w.r.t. the coordinate axes.
Let E be such a continuum extremal for AΣ(h), 0 ≤ h ≤ 2 and let f ∈ Σh

map U∗ onto Ω(E).
First we consider the case when the non-free boundary is vertical. By

Lemma 2.4, ϕ = zf ′ maps U∗ conformally onto Ω(β, ρ) with ρ = 1 +√
1− β2 and some 0 < β < 1. The function ϕ can be represented as

ϕ = β(g−1(β−1g(z)), where g(z) = z + 1/z is Joukowski’s function. There-
fore,

f(z) = h+ β

∫ z

1
z−1g−1(β−1g(z)) dz.

Changing the variable of integration τ = g(z), we get

f(z) = h+
1
2

∫ τ

2

τ +
√
τ2 − 4β2

√
τ2 − 4

dτ,(3.1)

which gives (1.3). Since <f(i) = 0 and τ(i) = 0, we find from (3.1),

h =
1
2
<
∫ 2

0

τ +
√
τ2 − 4β2

√
τ2 − 4

dτ = β

∫ β

0

√
1− β−2x2

1− x2
dx,(3.2)
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which is equivalent to (1.2). From (3.2) it is clear that βE(β, β−1) strictly
increases in β. Since

lim
β→0+

βE(β, β−1) = 0 and βE(β, β−1)
∣∣
β=1

= 1,

it follows that for every fixed 0 ≤ h ≤ 1, (1.2) has exactly one solution in
0 ≤ β ≤ 1. Moreover, this shows that for 1 < h ≤ 2, (1.2) has no solutions
and therefore extremal continua with the vertical non-free boundary can
exist only for 0 ≤ h ≤ 1.

The case of extremal continua with horizontal non-free boundary was
studied in [1, Theorem 2], which proves (1.4) for 1 ≤ h ≤ 2 and shows, in
particular, that extremal continua with horizontal non-free boundary can
exist only for 1 ≤ h ≤ 2. In addition, in case h = 1 the unit disk U is the
unique extremal configuration of the problem under consideration.

In case 1 ≤ h ≤ 2, the maximal area A(h) was found in [1, Theorem 2]. To
compute A(h) for 0 ≤ h ≤ 1, we consider the function f ∈ Σh, such that Ef
is extremal for the problem under consideration and symmetric w.r.t. the
coordinate axes. Applying the standard line integral formula to compute
A(h) = A(Ef ), we get

A(Ef ) =
1
2
=
∫
∂Ef

w dw =
1
2
=
∫
Lnf

w dw +
1
2
=
∫
Lfr

w dw

= 2hv0 +
1
2
=
∫
Lfr

w dw,

where

v0 = =f(eiθ0) =
1
2
=
∫ 2β

2

τ +
√
τ2 − 4β2

√
τ2 − 4

dτ =
∫ 1

β

x+
√
x2 − β2

√
1− x2

dx.

Now, taking the condition |f ′(z)| = β for z ∈ lfr into account, we find
the integral over the free boundary:

1
2
=
∫
Lfr

w dw =
1
2
<
∫
lfr

f(eiθ)e−iθf ′(eiθ) dθ

=
β2

2
<
∫ π

−π

f(eiθ)eiθ

e2iθf ′(eiθ)
dθ − β2

2
<
∫
lnf

f(eiθ)
eiθf ′(eiθ)

dθ

=
β2

2
=
∫

T

f(z)
z2f ′(z)

dz − 2β2h

∫ θ0

0

dθ

|f ′(eiθ)|

=
β2

2
=Res

[
f(z)
z2f ′(z)

,∞
]
− 2β2h

∫ θ0

0

dθ

|f ′(eiθ)|

= πβ2 − 2β2h

∫ θ0

0

dθ

|f ′(eiθ)|
.
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To find
∫ θ0
0

dθ
|f ′(eiθ)| , we change the variable of integration z = (1/2)(τ +

√
τ2 − 4), then we get∫ θ0

0

dθ

|f ′(eiθ)|
= 2

∫ 2

2β

dτ
√

4− τ2(τ +
√
τ2 − 4β2)

= β−2

∫ 1

β

x−
√
x2 − β2

√
1− x2

dx.

Combining all these computations, we obtain

A(h) = πβ2 + 4h
∫ 1

β

√
x2 − β2

√
1− x2

dx = πβ2 + 4hβ′E(β′, β′−1),

which proves (1.4) for 0 ≤ h ≤ 1.

The monotonicity of A(h) for 1 ≤ h ≤ 2 was established in [1]. To prove
that A(h) is monotone in 0 ≤ h ≤ 1, one can show by direct computation
that A′(h) > 0 for 0 < h < 1. Here we prefer another argument of a general
nature. Since capE = 1, diamE ≥ 2 > 2h. Since ∂Eh is smooth, it follows
that for every h′, h < h′ ≤ 1 there is θ′ = θ′(h′), 0 < θ′ < π, such that
projθ′ Eh = 2h′. This implies that the continuum Eh,θ

′
= {z : eiθ

′
z ∈ Eh}

is admissible for the problem on AΣ(h′) but not extremal since Eh,θ
′
clearly

does not have Steiner symmetry w.r.t. R. Therefore AΣ(h′) > A(Eh,θ
′
) =

AΣ(h). The Proof of Theorem 1.2 is complete. �

Proof of Theorem 1.1. Let E be a compact set such that capE = 1 and
w(E) = 2h, 0 < h < 1 and let Eh be the continuum from the Proof of
Theorem 1.2 extremal for AΣ(h). It follows from Theorem 1.2 that A(E) ≤
A(Eh) with the sign of equality only if E coincides a.e. with Eh up to a
linear transformation. Note that w(Eh) = 2h. Indeed, if w(Eh) = 2h′ < 2h,
then A(h) = A(Eh) ≤ A(h′) contradicting the strict monotonicity property
of A(h). This shows that Eh has the maximal area among all compact sets,
connected or not, with logarithmic capacity 1 and prescribed width 2h.

To complete the Proof of Theorem 1.1, we consider the function f ∈ Σh,
which maps U∗ onto Ω(Eh). By Lemma 2.4, ϕ = zf ′ maps U∗ onto Ω(β, ρ)
with certain ρ ≥ β ≥ 0. Since C \ Ω(β, ρ) is starlike w.r.t. the origin, it
follows from the classical Alexander’s theorem, see [4, p. 43], that Lf is
convex. Thus, Eh is a unique up to a linear transformation convex compact
set, which maximizes the area among all such sets with capE = 1 and
prescribed width w(E) = 2h. �
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