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ON ULTRADISTRIBUTIONS

Rüdiger W. Braun, Reinhold Meise, and B.A. Taylor

Let Pm be a homogeneous polynomial of degree m in n ≥ 2
variables for which the associated partial differential operator
Pm(D) admits a continuous linear right inverse on C∞(Rn).
Examples suggest that then for each polynomial Q of degree
less than m there exists a number 0 < β < 1 such that the op-
erator (Pm+Q)(D) admits a continuous linear right inverse on
the space of all ωβ-ultradifferentiable functions on Rn, where
ωβ(t) = (1 + t)β. The main result of the present paper is to
determine the optimal value of β for which the above holds
for all perturbations Q of a given degree in the case n = 3.
When n > 3 sufficient conditions as well as necessary condi-
tions of this type are presented, but there is a gap between
them. The results are illustrated by several examples.

1. Introduction.

The problem of determining when a given partial differential operator P (D)
with constant coefficients admits a continuous linear right inverse on the
space E(G) (respectively D′(G)) of all C∞ functions (respectively distribu-
tions) on an open set G in Rn was solved in Meise, Taylor, and Vogt [11],
where various equivalent characterizing conditions were given. In [13] these
characterizations were extended to ω-ultradifferentiable functions E(ω)(G)
and to ω-ultradistributions D′

(ω)(G) of Beurling type. Since all of these
equivalent characterizations are rather involved, several attempts were made
to derive other characterizations in terms of the symbol P or its zero variety.

One way to attack this problem is based on a result from [15] which shows
that if P (D) admits a continuous linear right inverse on E(ω)(Rn) then so
does Pm(D), where Pm is the principal part of P . Thus, one might treat
P as a perturbation of its principal part Pm. In [4] this idea led to an
explicit characterization of the homogeneous polynomials Pm of degree m in
n variables for which (Pm + Q)(D) admits a continuous linear right inverse
on E(Rn) (or on D′(Rn)) for each polynomial Q of degree at most m − 1.
The main part of this characterization is that — up to a complex multiple
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— Pm is a real polynomial of principal type; i.e., Pm has real coefficients
and gradPm(x) 6= 0 for 0 6= x ∈ Rn.

Our aim in this paper is to refine the perturbation result just cited. The
goal is to explain in terms of Pm and l = deg(Q) < m the optimal choice
of β = β(l, Pm) so that (Pm + Q)(D) has a continuous linear right inverse
on E(ωβ)(Rn) for all polynomials Q of degree at most l. In dimension three,
this is achieved in the following theorem:

Theorem 1.1. Let Pm ∈ C[x, y, z] be homogeneous of degree m ≥ 2 and let
ν = max{deg(Pm)θ : θ ∈ V (Pm)∩S2}, where (Pm)θ denotes the localization
of Pm at θ (see Definition 3.4). For 0 ≤ l < m, let β(l) := max{0, 1− m−l

ν }
and let E(ω0)(R3) := E(R3). Then Pm(D) admits a continuous linear right
inverse on E(R3) if and only if for each polynomial Q ∈ C[x, y, z], deg(Q) ≤
l, the operator (Pm + Q)(D) admits a continuous linear right inverse on
E(ωβ(l))(R

3).
Moreover, the number β(l) is optimal in the following sense: If for some

number 0 ≤ γ < 1 the operator (Pm+Q)(D) admits a continuous linear right
inverse on E(ωγ)(R3) for each Q ∈ C[x, y, z] with deg Q ≤ l, then γ ≥ β(l).

The proof of the theorem is carried out by establishing three new results
about the Phragmén-Lindelöf condition PL(Rn, ω) (see Definition 2.4) that
was shown in [13] to characterize the existence of a continuous linear right
inverse for P (D). First, we show (Proposition 3.3) that the condition can
be localized to cones about the real points in V (Pm)∩Sn−1. Second, we use
the lemma of Boutroux-Cartan and Rouche’s theorem to derive a sufficient
condition for such Phragmén-Lindelöf conditions to hold. From this, we then
derive a sufficient condition which ensures that for a given homogeneous
polynomial Pm in n variables and for all perturbations Q with deg(Q) ≤
l < m, the variety V (Pm + Q) satisfies PL(Rn, ωβ) where β is given by
the formula in Theorem 1.1. Third, we use a result from [4] to show that
γ ≥ β(l) when (Pm + Q)(D) admits a continuous linear right inverse on
E(ωγ)(Rn) for each polynomial Q of degree l, where m − ν ≤ l < m. The
argument is based on the fact that the maximal degree of the localization of a
homogeneous polynomial Pm ∈ C[z1, . . . , zn] at the points in V (Pm) ∩ Sn−1

greatly influences the existence of a continuous linear right inverse. The
combination of these results then implies Theorem 1.1. We remark that the
case n = 2 is much simpler and was already known.

Our results also imply that we can extend the perturbation theorem from
[4] to ultradifferentiable functions. Further, we show that under additional
hypotheses on the localization at a singular point ξ ∈ V (Pm) ∩ S2, a better
result concerning Phragmén-Lindelöf conditions in cones can be obtained
(Lemma 4.1). Finally, quite a number of examples are provided. They
also show the known effect that for a fixed polynomial Q, the operator
(Pm + Q)(D) may do better than predicted by Theorem 1.1. Namely, it
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may have a continuous linear right inverse on E(ωσ)(Rn) for some σ < β.
When n = 3, the optimal value for σ can be determined. However, this is
a much more complicated procedure, based on hyperbolicity considerations,
for which we refer to our forthcoming paper [6].

2. Preliminaries.

In this preliminary section we introduce the basic definitions, notation, and
a few results which will be used subsequently.

Throughout this paper, |.| denotes the Euclidean norm on Cn and Bn(ξ, r)
denotes the ball of center ξ and radius r in Cn.

Definition 2.1. Let ω : ]0,∞[ → ]0,∞[ be continuous and increasing and
assume that it has the following properties:
(α) ω(2t) = O(ω(t)),
(β)

∫∞
1

ω(t)
t2

dt < ∞,
(γ) log t = O(ω(t)) as t tends to infinity,
(δ) x 7→ ω(ex) is convex.

Then its radial extension to Cn, defined by ω : z 7→ ω(|z|), z ∈ Cn, will be
called a weight function. Throughout this paper we assume that ω(0) ≥ 1.
It is easy to check that this can be assumed without loss of generality.

Example 2.2. Examples of weight functions are
(a) ω0(t) = log(e + t),
(b) ωα(t) = (1 + t)α for 0 < α < 1.

Definition 2.3. Let V be an algebraic variety in Cn and Ω an open subset
of V . A function u : Ω → [−∞,∞[ will be called plurisubharmonic if it is
locally bounded above, plurisubharmonic in the usual sense on Ωreg, the set
of all regular points of V in Ω, and satisfies

u(z) = lim sup
ξ∈Ωreg,ξ→z

u(ξ)

at the singular points of V in Ω. By PSH(Ω) we denote the set of all
plurisubharmonic functions on Ω.

Definition 2.4. Let V ⊂ Cn be an algebraic variety and let ω be a weight
function. Then V satisfies the condition PL(Rn, ω) if the following holds:

There exists A ≥ 1 such that for each ρ > 1 there exists B > 0 such that
each u ∈ PSH(V ) satisfying (α) and (β) also satisfies (γ), where:
(α) u(z) ≤ |Im z|+ O(ω(z)), z ∈ V ,
(β) u(z) ≤ ρ |Im z|, z ∈ V ,
(γ) u(z) ≤ A |Im z|+ Bω(z), z ∈ V .

Phragmén-Lindelöf conditions and continuous linear right in-
verses 2.5. To explain the significance of the condition PL(Rn, ω), let
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n ≥ 2, let P (z) =
∑

|α|≤m aαzα be a complex polynomial of degree m > 0,
and let

V (P ) := {z ∈ Cn : P (−z) = 0}
denote its zero variety. Then V (P ) satisfies PL(Rn, ω) if and only if the
linear partial differential operator

P (D) : E(ω)(Rn) → E(ω)(Rn), P (D)f :=
∑
|α|≤m

aαi−|α|
∂|α|f

∂xα

admits a continuous linear right inverse, where E(ω)(Rn) is the Fréchet space
of all ω-ultradifferentiable functions of Beurling type (see [2]). This follows
from the general characterization in Meise, Taylor, and Vogt [15]. Recall
that E(ω0)(Rn) = C∞(Rn) and that in this case the characterization of the
existence of continuous linear right inverses was already obtained in Meise,
Taylor, and Vogt [12]. Note also that Palamodov [17] proved that a differ-
ential complex of C∞-functions over Rn splits if and only if the associated
varieties satisfy PL(Rn, ω0).

From [12], Lemma 2.9, we recall the following lemma:

Lemma 2.6. For each n ∈ N the function H : Cn → R, defined as H(z) :=
1
2((Im z)2 − (Re z)2) is plurisubharmonic and has the following properties:
(a) H(z) ≤ |Im z| , |z| ≤ 1,
(b) H(z) ≤ |Im z| − 1

2 , |z| = 1,
(c) H(x) ≤ 0, x ∈ Rn,
(d) H(iy) ≥ 0, y ∈ Rn.

Definition 2.7. For d = (d1, . . . , dn) 6= (0, . . . , 0) with dj ∈ N0, 1 ≤ j ≤ n,
a nonzero polynomial P ∈ C[z1, . . . , zn] is said to be d-quasihomogeneous of
d-degree m ≥ 0 if

P (z) =
∑

〈d,α〉=m

aαzα, z ∈ Cn,

where 〈d, α〉 =
∑n

j=1 djαj . The zero polynomial is considered to be d-
quasihomogeneous of d-degree −∞.

Combining Lemma 3.2 and Lemma 3.6 from [4] we get the following
lemma:

Lemma 2.8. For n ≥ 2 let P ∈ C[z1, . . . , zn] be d-quasihomogeneous of
d-degree m and let Q ∈ C[z1, . . . , zn] be the sum of d-quasihomogeneous
polynomials of d-degrees less than m. Assume that for some k, 1 ≤ k < n,
the following conditions are fulfilled :

(1) d1 = · · · = dk < dj for j > k,
(2) there exists ζ = (ζ ′, ζ ′′) ∈ Ck × Rn−k satisfying P (ζ) = 0 and ζ ′′ 6= 0,
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(3) if P (z′, ζ ′′) = 0 then Im z′ 6= 0.
If V (P + Q) satisfies PL(Rn, ω) for some weight function ω and D :=
max{dj : ζj 6= 0}, then ω satisfies td1/D = O(ω(t)) as t tends to infinity.

3. Main results.

The aim of this section is to derive conditions which imply that for a homo-
geneous poynomial P ∈ C[z1, . . . , zn] for which V (P ) satisfies PL(Rn, ω0) the
variety V (P +Q) satifies PL(Rn, ωβ(l)) for all polynomials Q of degree l < m.
The number β(l) will be shown to be sharp.

Throughout this section we assume n ≥ 2 unless other assumptions are
made.

Instead of working with the property PL(Rn, ω) as it is given in Defini-
tion 2.4, it is often easier to consider the intersection of the variety V with
cones. This will be made more precise in Proposition 3.3. To formulate this
proposition, recall that for a point ξ in the unit sphere Sn−1 ⊂ Rn, a set M
with M ⊂ Bn(0, 1), and r > 0 the cone Γ(ξ, M, r) around the ray generated
by ξ with profile M , truncated at r, is defined as

Γ(ξ, M, r) :=
⋃
t>r

t(ξ + M).

Definition 3.1. For P ∈ C[z1, . . . , zn] \C let V := V (P ), let ω be a weight
function, and let Γ := Γ(ξ, G, r) be a cone for which G is an open neighbor-
hood of zero in Cn. We say that V satisfies the condition PL(V (P ),Γ, ω)
if there exist a compact set K ⊂ G which is a neighborhood of zero and
numbers A1 ≥ 1 and r1 ≥ r such that for each ρ > 0 there exists Bρ such
that for each u ∈ PSH(V ∩ Γ) the following two conditions:
(α) u(z) ≤ |z|, z ∈ V ∩ Γ,
(β) u(z) ≤ ρ |Im z|, z ∈ V ∩ Γ,

imply
(γ) u(z) ≤ A1 |Im z|+ Bρω(z), z ∈ V ∩ Γ(ξ, K, r1).

Lemma 3.2. For a polynomial P ∈ C[z1, . . . , zn] \ C denote by Pm its
principal part and let ω be a weight function. If V (P ) satisfies the con-
dition PL(Rn, ω) then for each ξ ∈ V (Pm) ∩ Sn−1, r ≥ 1, and each open
zero neighborhood G with G ⊂ Bn(0, 1), the variety V (P ) has the property
PL(V (P ),Γ(ξ,G, r), ω).

Proof. Fix ξ ∈ V (Pm) ∩ Sn−1, r ≥ 1, and G as in the statement of the
lemma. Then fix a compact zero neighborhood K ⊂ G, choose 0 < η < 1 so
small that K + B(0, 2η) ⊂ G and note that max{|z| : z ∈ K} ≤ 1. Next fix
u ∈ PSH(V (P ) ∩ Γ(ξ,G, r)) and assume that u satisfies Conditions 3.1 (α)
and (β). Now fix
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z0 = t0ξ + t0w0 ∈ Γ(ξ,K, r)

and distinguish the following two cases:

Case 1: |Im z0| ≥ ηt0.

Then |z0| ≤ t0 |ξ + w0| ≤ 2t0, the present hypothesis, and Condition 3.1 (α)
on u imply

u(z0) ≤ |z0| ≤ 2t0 ≤
2
η
|Im z0| .

Case 2: |Im z0| < ηt0.

Then note that for each z ∈ B(Re z0, ηt0) the present hypothesis and the
choice of η imply

z − t0ξ = z − Re z0 − i Im z0 + z0 − t0ξ ∈ t0B(0, 2η) + t0K ⊂ t0G.

Hence we can define ϕ : V (P ) → [−∞,∞[ by

ϕ(z) := max
{

η

9
u(z) + ηt0H

(
z − Re z0

ηt0

)
, |Im z|

}
, z ∈ V ∩B(Re z0, ηt0)

and by ϕ(z) := |Im z| elsewhere on V , where H denotes the function defined
in Lemma 2.6. To see that ϕ is plurisubharmonic on V , note that for
z ∈ V ∩ ∂B(Re z0, ηt0) the above estimate for z0 implies

|z| = |z − Re z0 + Re z0| ≤ ηt0 + |z0| ≤ 3t0.

Hence Condition 3.1 (α) for u gives u(z) ≤ 3t0. By the properties of H, this
implies

η

9
u(z) + ηt0H

(
z − Re z0

ηt0

)
≤ η

3
t0 + |Im z| − η

2
t0 < |Im z|

for each z ∈ V (P ) ∩ ∂B(Re z0, ηt0). Thus, ϕ is plurisubharmonic on V (P ).
From 3.1 (β) and the properties of H it follows that

ϕ(z) ≤
(η

9
ρ + 1

)
|Im z| , and ϕ(z) = |Im z|+ O(1), z ∈ V.

Since V (P ) satisfies PL(Rn, ω), we conclude from these estimates the exis-
tence of A ≥ 1 depending only on V (P ), and of B, depending on ρ, such
that

ϕ(z) ≤ A |Im z|+ Bω(z), z ∈ V.

Evaluating this estimate at z0 and using the properties of H together with
the definition of ϕ, we get

A |Im z0|+ Bω(z0) ≥ ϕ(z0) ≥
η

9
u(z0) + ηt0H

(
i Im z0

ηt0

)
≥ η

9
u(z0),
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and hence

u(z0) ≤
9A

η
|Im z0|+

9B

η
ω(z0).

Both cases together show that u satisfies Condition 3.1 (γ) with A1 := 9A
η

and Bρ := 9B
η . �

Proposition 3.3. Let P ∈ C[z1, . . . , zn] be a polynomial of degree m ≥ 1
and denote by Pm its principal part. Then for a given weight function ω the
following two conditions are equivalent :

(a) V (P ) satisfies PL(Rn, ω).
(b) V (Pm) satisfies PL(Rn, ω0) and for each ξ ∈ V (Pm)∩Sn−1 there exist

an open neighborhood Gξ of zero and rξ > 0 such that V (P ) satisfies
PL(V (P ),Γ(ξ, Gξ, rξ), ω).

Proof. (a) ⇒ (b): If V (P ) satisfies PL(Rn, ω) then also V (Pm) satisfies
PL(Rn, ω0) by Meise, Taylor, and Vogt [15], Theorem 4.1. Hence the first
condition of (b) is fulfilled. The second one holds by Lemma 3.2.

(b) ⇒ (a): Since V (Pm) satisfies PL(Rn, ω0) by the present hypothesis, it
follows from [15], Theorem 3.13, and Meise, Taylor, and Vogt [12], The-
orem 5.1, that V (P ) satisfies Condition (RPL) defined in [12], 2.2. This
means that there exists A0 ≥ 1 such that for each ρ > 0 there exists Bρ > 0
such that each u ∈ PSH(V (P )) satisfying

u(z) ≤ |z|+ o(|z|) and u(z) ≤ ρ |Im z| , z ∈ V (P )

also satisfies

u(z) ≤ A0 |z|+ Bρ, z ∈ V (P ).(3.1)

From this we get in particular that each u ∈ PSH(V (P )) which satisfies Con-
ditions 2.4 (α) and (β) of PL(Rn, ω) already satisfies (3.1). Consequently,
v(z) := 1

A0
u(z)−Bρ satisfies Conditions 3.1 (α) and (β) with ρ′ := ρ

A0
in any

cone Γ(ξ,Gξ, rξ), ξ ∈ V (Pm) ∩ Sn−1. Therefore we can use the hypothesis
and a compactness argument to conclude similarly as in the proof of Meise
and Taylor [10], Proposition 4.5, that there exist A1 ≥ 1 and Cρ > 0 such
that u satisfies

u(z) ≤ A1 |Im z|+ Cρω(z), z ∈ V (P ).

Hence (a) holds. �

To apply Proposition 3.3 we will use the following lemma, which is the
key step for our positive results. To formulate it we need the following
definitions:
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Definition 3.4. Let P ∈ C[z1, . . . , zn] and θ ∈ Cn be given. Then the local-
ization Pθ of P at θ is defined as the lowest order nonvanishing homogeneous
polynomial in the Taylor series expansion of P at θ.

Definition 3.5. For P ∈ C[z1, . . . , zn] the variety V (P ) is said to be locally
hyperbolic at ξ ∈ V (P ) ∩ Rn if there exist a projection π : Cn → Cn and an
open neighborhood U of ξ such that the following conditions are satisfied:

(a) kerπ and im π are spanned by real vectors, dim kerπ = 1, and (ker π)∩
V (Pξ) = {0}.

(b) Whenever z ∈ V (P ) ∩ U and π(z) is real then z is real.

Lemma 3.6. Let Pm ∈ C[z1, . . . , zn] be homogeneous of degree m ≥ 2.
Assume Pm(ξ) = 0, deg(Pm)ξ = µ, and (Pm)ξ(0, . . . , 0, 1) 6= 0 for ξ =
(1, 0, . . . , 0) and define β(l) := max(0, 1 − m−l

µ ) for 0 ≤ l < m. Then for
each Q ∈ C[z1, . . . , zn], deg Q ≤ l < m, there exist η, σ > 0 and R,C > 1
such that the following holds:

(a) For each (z1, z
′) ∈ Cn−1 satisfying

∣∣∣ z1
|z1| − 1

∣∣∣ < η, |z1| > R, and
|z′| < η |z1|, and for each ζ ∈ C satisfying |ζ| < σ |z1| and (Pm +
Q)(z1, z

′, ζ) = 0, there exists w ∈ C satisfying |w| < σ |z1|, Pm(z1, z
′,

w) = 0, and

|ζ − w| ≤ C |z1|β(l) .

(b) If V (Pm) is locally hyperbolic at ξ with respect to the projection π :
(z′′, zn) 7→ (z′′, 0), then the parameters η, σ,R and C in (a) can be cho-
sen in such a way that for each (z1, z

′, ζ) satisfying (Pm+Q)(z1, z
′, ζ) =

0 and
∣∣∣ z1
|z1| − 1

∣∣∣ < η, |z1| > R, |z′| < η |z1|, |ζ| < σ |z1|, and (z1, z
′)

real, we have

|Im ζ| ≤ C |z1|β(l) .

Proof. The present hypotheses imply for the Taylor series expansion of Pm

at ξ (see [3], Lemma 3.9)

Pm(z1, z
′, zn) =

m∑
j=µ

zm−j
1 pj(z′, zn),

where pj is either homogeneous of degree j or identically zero, and where
(Pm)ξ(z1, z

′, zn) = pµ(z′, zn). From this expansion and the hypotheses we
get

Pm(1, 0′, zn)=
m∑

j=µ

zj
npj(0′, 1) = zµ

n

(Pm)ξ(0, 0′, 1) +
m∑

j=µ+1

zj−µ
n pj(0, 0′, 1)

.

Hence we can choose σ > 0 such that zn 7→ Pm(1, 0′, zn) has exactly µ zeros
in the disk B1(0, σ) and does not vanish on ∂B1(0, σ). Hence it follows from
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the Weierstraß preparation theorem that we can choose η > 0 such that for
(z1, z

′, zn) ∈ G := B1(1, η)×Bn−2(0, η)×B1(0, σ) we have

Pm(z1, z
′, zn) = U(z1, z

′, zn)
µ∑

j=0

zj
ncj(z1, z

′)(3.2)

= U(z1, z
′, zn)

µ∏
j=1

(zn − βj(z1, z
′)),

where U is a holomorphic function which does not vanish on G. In fact,
shrinking η if necessary, we may assume that there exists α > 0 such that
|U(z)| > α for all z ∈ G. We also may assume |βj(z1, z

′)| ≤ σ/2 for (z1, z
′) ∈

B1(1, η)×Bn−2(0, η) and 1 ≤ j ≤ µ. Next note that by the homogeneity of
Pm, U is also homogeneous and extends holomorphically to the cone

Γ :=
{

(z1, z
′, zn) ∈ Cn :

∣∣∣∣ z1

|z1|
− 1
∣∣∣∣ < η,

∣∣z′∣∣ < η |z1| , |zn| < σ |z1| , and |z1| > 1
}

.

For z = (z1, z
′, zn) ∈ Γ we have

|U(z)| = |z1|m−µ

∣∣∣∣U ( z

|z1|

)∣∣∣∣ ≥ α |z1|m−µ .(3.3)

Also by homogeneity the functions βj extend to the cone

Γ′ :=
{

(z1, z
′) ∈ Cn−1 :

∣∣∣∣ z1

|z1|
− 1
∣∣∣∣ < η, and

∣∣z′∣∣ < η |z1|
}

.

For (z1, z
′) ∈ Γ′ define F (z1, z

′, zn) :=
∏µ

j=1(zn−βj(z1, z
′)) and note that by

the Lemma of Boutroux-Cartan (see Levin [9], Theorem I.10) the following
holds: For each (z1, z

′) ∈ Γ′ and each δ > 0 there exist finitely many disks
Dl(z1, z

′), 1 ≤ l ≤ d(z1, z
′), for which the sum of the radii is at most 2δ,

such that ∣∣F (z1, z
′, zn)

∣∣ ≥ (δ

e

)µ

whenever zn ∈ C\
d⋃

l=1

Dl.(3.4)

We may assume that the Dl(z1, z
′) are constructed as in the proof that is

given in [9]; then each Dl(z1, z
′) contains at least one zero of F (z1, z

′, ·).
Now fix Q ∈ C[z1, . . . , zn], deg Q ≤ l < m. Then it is easy to check that
there exists a constant M > 1 such that

|Q(z)| ≤ M |z1|l , z ∈ Γ.
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Choose r > 1 and R > 1 so large that αrµ > M and such that 4ertβ(l) < σ
2 t

for t ≥ R. Next fix (z1, z
′) ∈ Γ′ satisfying |z1| > R and let

δ := er |z1|β(l) .

Then it follows from (3.2), (3.3), (3.4), and our choice of r that for each
zn ∈ C \

⋃d
l=1 Dl(z1, z

′) satisfying |zn| < σ |z1| we have∣∣Pm(z1, z
′, zn)

∣∣ ≥ α |z1|m−µ

(
δ

e

)µ

(3.5)

= αrµ |z1|m−µ+µβ(l)

> M |z1|l ≥
∣∣Q(z1, z

′, zn)
∣∣ .

Let now ζ ∈ B1(0, σ |z1|) with (Pm + Q)(z1, z
′, ζ) = 0 be given. Then

|Pm(z1, z, ζ)| =
∣∣Q(z1, z

′, ζ)
∣∣ ≤ M |z1|l ,

and thus there is l ≤ d(z1, z
′) with ζ ∈ Dl(z1, z

′). Let w ∈ Dl(z1, z
′) be a

zero of F (z1, z
′, ·). Then |ζ − w| < 4δ since the sum of the radii of all disks

Dl(z1, z
′) is at most 2δ. We have shown that the estimate in (a) holds. To

see that |w| < σ |z1|, note that F (z1, z
′, w) = 0 implies the existence of j,

1 ≤ j ≤ µ, such that w = βj(z1, z
′). Hence the choice of η implies

|w| ≤ |z1|
∣∣βj(1, z′/ |z1|)

∣∣ ≤ σ |z1|
2

.

Thus the proof of Part (a) is complete.
To prove (b) we note first that under the present hypothesis we can choose

η and σ so small that B1(1, η)×Bn−2(0, η)×B1(0, σ) is contained in the set
U which exists by local hyperbolicity. This implies that the zeros βj(z′, zn)
are all real whenever (z′, zn) ∈ Γ′ is real. Hence the estimate in (a) implies
the one in (b). �

Lemma 3.7. Let V be an algebraic variety in Cn and ω a weight function.
Assume that for ξ = (1, 0, . . . , 0) and G = Bn−1(0, δ)×B1(0, σ) (0 < δ, σ ≤
1) the map π : V ∩ Γ(ξ, G, r) → Γ(ξ, G, r), π(z′, zn) := (z′, 0), is proper and
satisfies the following condition:

There exists C > 0 such that |Im zn| ≤ Cω(z)(3.6)

for each z ∈ V ∩ Γ(ξ,G, r) with π(z) real.

Then V satisfies PL(V,Γ(ξ, G, r), ω).

Proof. To show that there are a compact set K ⊂ G and a constant A1 ≥ 1
such that V satisfies PL(V,Γ(ξ, G, r), ω) let K := 1

2G, fix u ∈ PSH(V ∩
Γ(ξ,G, R)), and assume that u satisfies Conditions 3.1 (α) and (β). Then
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let G′ := Bn−1(0, δ), fix t > r, and define

ϕ : G′ → [−∞,∞[,

z′ 7→ max{u(tξ + tz) : tξ + tz ∈ V, z ∈ G, π(z) = (z′, 0)}.
Then ϕ is plurisubharmonic outside the branch locus of π. Since π is proper
by hypothesis, it follows from Hörmander [8], Lemma 4.4, that ϕ extends
to a plurisubharmonic function on G′. Condition 3.1 (α) for u and 0 < δ,
σ ≤ 1 imply

ϕ(z′) ≤ max{|t(ξ + z)| : z ∈ G} ≤ 2t,

while Condition 3.1 (β) together with (3.6) implies

ϕ(z′) ≤ max{ρ |Im(tξ + tz)| : tξ + tz ∈ V, z ∈ G, π(z) = (z′, 0)}
≤ max{ρCω(tz) : z ∈ G} ≤ ρCω(t).

From these two estimates for ϕ and classical estimates of the harmonic
measure of the half disk (see, e.g., Nevanlinna [16], Section 38) it now follows
that there is a constant A0, depending only on the dimension, so that

ϕ(z′) ≤ A0

δ
2t
∣∣Im z′

∣∣+ ρCω(t), z ∈ Bn−1(0, δ/2).

To evaluate this further, note that for k ∈ K we have

|tξ + tk| ≥ t(1− |k|) ≥ t

2
.

Note also that our requirements on the weight functions imply the existence
of a constant L > 0 such that ω(2s) ≤ Lω(s) for s ≥ 0. Therefore, the
definition of ϕ and the previous estimates imply for tξ + tk ∈ V

u(tξ + tk) ≤ ϕ(k) ≤ 2A0

δ
t |Im k|+ ρCω(t)

≤ 2A0

δ
|Im(tξ + tk)|+ ρCLω(tξ + tk).

Since k ∈ K and t > r were chosen arbitrarily, this estimate shows that u
satisfies 3.1 (γ) for A1 := 2A0

δ and Bρ := ρCL. �

Theorem 3.8. Let Pm ∈ C[z1, . . . , zn] be homogeneous of degree m ≥ 2 and
assume that V (Pm) satisfies PL(Rn, ω0). Let

ν := max
{
deg(Pm)θ : θ ∈ V (Pm) ∩ Sn−1

}
and define

β(l) := max
(

0, 1− m− l

ν

)
for 0 ≤ l < m.(3.7)

If for each ξ ∈ V (Pm)sing∩Sn−1 the variety V (Pm) is locally hyperbolic at ξ,
then for each Q ∈ C[z1, . . . , zn] with deg Q ≤ l < m the variety V (Pm + Q)
satisfies PL(Rn, ωβ(l)), where ωβ is defined in Example 2.2.
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Proof. Since V (Pm) satisfies PL(Rn, ω0) by hypothesis, the theorem follows
from Proposition 3.3 once we show that the second condition in 3.3 (b) is
fulfilled. To show this, we first factorize Pm =

∏s
j=1 q

kj

j , where the poly-
nomials qj are irreducible and where

∏s
j=1 qj is square-free. Since V (Pm)

satisfies PL(Rn, ω0), also V (qj) has this property for each j. By Meise, Tay-
lor, and Vogt [14], Lemma 2, this implies that there exists cj ∈ C, |cj | = 1,
so that cjqj has real coefficients. Hence it is no restriction to assume that
each qj has real coefficients.

Now fix a regular point a ∈ V (Pm) of length 1. Then there exists an
index i so that qi(a) = 0. This implies qj(a) 6= 0 for all j 6= i by the
following argument: If qj(a) = 0 for some j 6= i then V (qj) and V (qi) must
coincide in a neighborhood of a since a is a regular point of V (Pm). But
then V (qj) = V (qi) since both varieties are irreducible. Hence qj and qi are
proportional, in contradiction to

∏s
l=1 ql being square-free.

Next note that

(Pm)a = ((qi)a)ki
∏
j 6=i

(qj(a))kj .

Since a is a regular point of V (Pm) and hence of V (qi), the localization
satisfies (qi)a(z) =

∑n
j=1

∂qi

∂zj
(a)zj , which implies deg(Pm)a = ki ≤ ν. After a

real linear change of variables we may assume a = (1, 0, . . . , 0) and ∂qi

∂zn
(a) 6=

0. Then the real and the complex implicit function theorem imply the
existence of a neighborhood U of (1, 0, . . . , 0) ∈ Cn−1, of δ > 0, and of a
holomorphic function β : U → B1(0, δ) which is real over real points so that

V (Pm) ∩ (U ×W ) = {(z′, β(z′)) : z′ ∈ U}.

Hence V (Pm) is locally hyperbolic at a with respect to π(z′, zn) := (z′, 0) in
these coordinates.

If a ∈ V (Pm) ∩ Sn−1 is a singular point of V (Pm), then V (Pm) is locally
hyperbolic at a by hypothesis. Then we can perform a real linear change of
coordinates so that in the new coordinates a = (1, 0, . . . , 0) and π : (z′, zn) 7→
(z′, 0) is the projection which exists by local hyperbolicity. If we let µ =
deg(Pm)a, then in both cases the hypotheses of Lemma 3.6 (b) are fulfilled.
Now Lemma 3.6 implies that the hypotheses of Lemma 3.7 are fulfilled in a
suitable cone Γ(a,Ga, ra) for ω = ωβ(l,a), where β(l, a) = max(0, 1 − m−l

µ ).
By the definition of µ we have µ ≤ ν and hence β(l, a) ≤ β(l). Thus,
the second condition of Proposition 3.3 (b) holds with ω = ωβ(l), which
completes the proof of the theorem. �

Remark. Theorem 3.8 also holds if we replace the hypothesis “V (Pm) sat-
isfies PL(Rn, ω0)” by the following one: “Each irreducible factor of Pm has
real coefficients up to a complex factor and is not elliptic”. Under this hy-
pothesis, the present proof shows that V (Pm) is locally hyperbolic at each
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real regular point of V (Pm) ∩ Sn−1. Hence the hypotheses imply that this
property holds at each point of V (Pm) ∩ Sn−1. By Hörmander [8], Theo-
rem 6.5, this implies that V (Pm) satisfies Condition (HPL) and therefore
it follows from Meise, Taylor, and Vogt [15], Corollary 3.14 that V (Pm)
satisfies PL(Rn, ω0), which is needed for the application of Proposition 3.3.
Otherwise the proof remains unchanged.

Remark. Note that for n ≥ 4 there are homogeneous polynomials Pm ∈
C[z1, . . . , zn] for which V (Pm) satisfies PL(Rn, ω0) but which are not locally
hyperbolic at some singular points of V (Pm) ∩ Sn−1. When n = 3, this
cannot happen, as a result of Hörmander [8] shows. This fact will be used
in Corollary 3.12 below.

As a corollary of Theorem 3.8 we get:

Corollary 3.9. Let kj ∈ N and Pj ∈ R[z1, . . . , zn], 1 ≤ j ≤ s, be given.
Assume that each Pj is irreducible, homogeneous of degree qj, and not elliptic
and that

∏s
j=1 Pj is square-free. Set m :=

∑s
j=1 qjkj, P :=

∏s
j=1 P

kj

j ,
k := max1≤j≤s kj, assume m ≥ 2, and let β(l) be as in (3.7) with ν = k.
If all points in V (P ) ∩ Sn−1 are regular points of V (P ), then for each Q ∈
C[z1, . . . , zn] with deg Q ≤ l the variety V (P + Q) satisfies PL(Rn, ωβ(l)).

Proof. Since the localization of a product equals the product of the local-
izations of its factors, the present hypotheses imply

ν = max{deg(P )θ : θ ∈ V (Pm) ∩ Sn−1} = max
j=1,...,s

kj = k.

Since all points of V (P ) ∩ Sn−1 are regular points of V (P ), the corollary
follows from Theorem 3.8. �

As an obvious consequence of Corollary 3.9 we get the following result
which is a reformulation of [4], Corollary 4.7:

Corollary 3.10. Let P ∈ R[z1, . . . , zn] be homogeneous of degree µ and
assume that gradP (x) 6= 0 for all x ∈ V (P ) ∩ Sn−1. Let k ∈ N be given
so that kµ ≥ 2. Then for each Q ∈ C[z1, . . . , zn] with deg Q =: l < kµ the
variety V (P k + Q) satisfies PL(Rn, ωβ(l)) for β(l) as in (3.7).

It will be shown in Theorem 3.14 that in Corollary 3.10 the condition
gradP (x) 6= 0 for all x ∈ V (P ) ∩ Sn−1 is in fact necessary. To prove this
result, we use the following lemma:

Lemma 3.11. Let P ∈ R[z1, . . . , zn] be homogeneous of degree m ≥ 2, let

ν := max{deg Pθ : θ ∈ V (P ) ∩ Sn−1},
and fix p ∈ N with 1 ≤ p < ν and a weight function ω. If for each Q ∈
C[z1, . . . , zn] with deg Q ≤ m−ν+p the variety V (P+Q) satisfies PL(Rn, ω),
then tp/ν = O(ω(t)) as t tends to infinity.
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Proof. Fix ξ ∈ Sn−1 with deg Pξ = ν. After a real linear change of variables
we may assume ξ = (0, . . . , 0, 1). Hence [3], Lemma 3.9, implies

P (z′, zn) =
m∑

j=ν

zm−j
n Qj(z′),

where the polynomials Qj ∈ C[z1, . . . , zn−1] are either zero or homogeneous
of degree j and where Qν(z′) = Pξ(z′, zn). Now let S := P + izm−ν+p

n

and note that V (S) satisfies PL(Rn, ω) by the present hypothesis. To apply
Lemma 2.8, let d := (p, . . . , p, ν). Then

q(z′, zn) := zm−ν
n Qν(z′) + izm−ν+p

n

has d-degree (m − ν + p)ν. For ν + 1 ≤ j ≤ m the term zm−j
n Qj(z′) has

d-degree (m− j)ν + jp. Since

(m− ν + p)ν − ((m− j)ν + jp) = (j − ν)(ν − p) > 0

the polynomial q is the term in S with the highest d-degree. Next choose
a ∈ Sn−1 such that Qν(a) 6= 0 and consider the polynomial

λ 7→ q(λa, 1) = Qν(λa) + i = λνQν(a) + i.

Since Qν has real coefficients by hypothesis, we can choose λ0 ∈ C \R such
that ζ ′ := λ0a ∈ Cn−1 \ Rn−1 satisfies q(ζ ′, 1) = 0. Finally, note that the
equation

0 = q(z′, 1) = Qν(z′) + i

has no real solutions since Qν has real coefficients. Thus we have shown
that all conditions of Lemma 2.8 are fulfilled. Therefore, the present lemma
follows from Lemma 2.8. �

Corollary 3.12. Let Pm ∈ C[x, y, z] be homogeneous of degree m ≥ 2, let

ν := max{deg(Pm)θ : θ ∈ V (Pm) ∩ S2}

and define β(l) as in (3.7). Then the following assertions are equivalent :
(a) V (Pm) satisfies PL(R3, ω0).
(b) For each 0 ≤ l < m and for each Q ∈ C[x, y, z], deg Q ≤ l, the variety

V (Pm + Q) satisfies PL(R3, ωβ(l)).
(c) There exist Q ∈ C[x, y, z], deg Q < m, and a weight function ω such

that the variety V (Pm + Q) satisfies PL(R3, ω).
Moreover, the numbers β(l) are optimal in the following sense: If l satisfies
m − ν ≤ l < m and if for some weight function ω and each polynomial Q
of degree at most l the variety V (P + Q) satisfies PL(R3, ω), then tβ(l) =
O(ω(t)) as t tends to infinity.

Proof. (b) ⇒ (c): This holds obviously.

(c) ⇒ (a): This holds by Meise, Taylor, and Vogt [15], Theorem 4.1.
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(a) ⇒ (b): Since V (Pm) satisfies PL(R3, ω0) it also satisfies the Phragmén-
Lindelöf condition HPL(R3), considered in Hörmander [8] (by Meise, Taylor,
and Vogt [15], Proposition 3.9). By Hörmander [8], Theorem 6.5, this im-
plies that V (Pm) is locally hyperbolic at each ξ ∈ V (Pm) ∩ S2. Hence (b)
follows from Theorem 3.8.

The additional assertion obviously follows from Lemma 3.11. �

Remark. Note that Corrollary 3.12 implies Theorem 1.1 by the results of
Meise, Taylor, and Vogt [13], mentioned in 2.5.

From Hörmander [7], 10.4.11, we recall the following definition:

Definition 3.13. A polynomial P ∈ C[z1, . . . , zn] is said to be of principal
type if its principal part Pm satisfies

n∑
j=1

∣∣∣∣∂Pm

∂xj
(x)
∣∣∣∣ 6= 0 for each x ∈ Rn \ {0}.

Note that by Euler’s rule 〈x, gradPm(x)〉 = mPm(x), so P is of principal
type if and only if gradPm(x) 6= 0 for each x ∈ V (Pm) ∩ Rn \ {0}.
Theorem 3.14. For a homogeneous polynomial P ∈ C[z1, . . . , zn] of degree
µ ≥ 1 and k ∈ N satisfying µk ≥ 2 the following assertions are equivalent
(for the definition of the weights ωα see Example 2.2):

(a) V (P k+Q) satisfies PL(Rn, ω0) for each Q ∈ C[z1, . . . , zn] with deg Q ≤
(µ− 1)k.

(b) For each p ∈ N0, 0 ≤ p < k, and each Q ∈ C[z1, . . . , zn] with deg Q ≤
(µ− 1)k + p the variety V (P k + Q) satisfies PL(Rn, ωp/k).

(c) There exists p ∈ N0, 0 ≤ p < k, such that the assertion in (b) holds.
(d) P is of principal type and real up to a complex factor, and each irre-

ducible factor of P admits a real zero ξ 6= 0.

Proof. From (d) we get (a) and (b) by Corollary 3.10. Obviously, (a) implies
(c) and also (b) implies (c). Hence it suffices to prove that (c) implies (d). To
do so, note first that V (P k) and hence V (P ) satisfies PL(Rn, ωp/k). Since P
is homogeneous, it follows from Meise, Taylor, and Vogt [15], Theorem 3.3,
that V (P ) satisfies PL(Rn, ω0). From this and [15], Theorem 3.13, we get
that for each irreducible factor q of P we have dimR V (q) ∩ Rn = n − 1.
Thus the last condition in (d) is fulfilled. Since V (P ) satisfies PL(Rn, ω0),
Lemma 2 in Meise, Taylor, and Vogt [14] implies the existence of λ ∈ C\{0}
such that λP has real coefficients. Hence the second condition in (d) holds,
and we may assume that P has real coefficients. To show that P is of
principal type we argue by contradiction and assume that for some a ∈
V (P ) ∩ Sn−1 we have grad P (a) = 0. This implies deg Pa ≥ 2. Since the
localization of a product is the product of the localizations of its factors it
follows that

ν := max{deg(P k)θ : θ ∈ V (P k) ∩ Sn−1} ≥ 2k.
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Now let s := ν − k + p, where 0 ≤ p < k is chosen according to (c). Then
s
ν = 1− ν−1(k − p) > 1− k−1(k − p) = p

k and µk − ν + s = (µ− 1)k + p.

Hence (c) implies that for each Q ∈ C[z1, . . . , zn] with deg Q ≤ µk − ν + s
the variety V (P k + Q) satisfies PL(Rn, ωp/k). By Lemma 3.11 this implies

ts/ν = O(ωp/k(t)) = O(tp/k).

Since s
ν > p

k , this contradiction completes the proof. �

Remark. Theorem 3.14 extends [4], Theorem 4.3 and Corollary 4.7.

4. Further results and examples.

In this section we first indicate that there are further variants of Lemma 3.6
which may be helpful in considering examples. Then we provide several
examples to illustrate the results of the previous section and to explain the
difficulties that one encounters in proving perturbation results.

Lemma 4.1. Let Pm ∈ C[x, y, z] be homogeneous of degree m ≥ 2, let ξ ∈
V (Pm) ∩ S2 satisfy deg(Pm)ξ =: µ ≥ 2, and assume that V (Pm) is locally
hyperbolic at ξ and that (Pm)ξ is square-free. Let Q ∈ C[x, y, z] with deg Q <

m be given. Decompose Q as Q =
∑m−1

j=µ qj, where qj is either homogeneous
of degree j or zero. If deg(qj)ξ ≥ µ for each j, then V (Pm + Q) satisfies
PL(V (Pm + Q), Γ(ξ,Gξ, rξ), ω0) in a suitable cone Γ(ξ,Gξ, rξ).

Proof. After a real linear change of variables we may assume ξ = (1, 0, 0).
By [3], Lemma 3.9, we then have in these coordinates

Pm(x, y, z) =
m∑

j=µ

xm−jpj(y, z),

where pj is either homogeneous of degree j or identically zero and where
pµ(y, z) = (Pm)ξ(x, y, z). We may also assume that the coordinates have
been chosen so that π(x, y, z) := (x, y, 0) is a projection for which the local
hyperbolicity condition holds. Then we get

pµ(y, z) = c

µ∏
j=1

(z − ajy)

for suitable numbers c, a1, . . . , aµ ∈ C. Since pµ is square-free by hypothesis,
we have ai 6= aj for i 6= j and hence

δ := min{|ai − aj | : 1 ≤ i, j ≤ µ, i 6= j} > 0.

By Braun [1], Corollary 12, the local hyperbolicity of V (Pm) at ξ implies
the existence of σ > 0 and 0 < η < 1

2 and of holomorphic functions βj :
B(1, η)×B(0, η) → B(0, σ), 1 ≤ j ≤ µ so that
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V (Pm) ∩ (B(1, η)×B(0, η)×B(0, σ))

=
µ⋃

j=1

{(x, y, βj(x, y)) : (x, y) ∈ B(1, η)×B(0, η)}

and so that βj(x, y) is real for real (x, y). By the homogeneity of Pm we get

βj(x, y) = xβj

(
1,

y

x

)
= x

∞∑
k=1

bj,k

(y

x

)k
, 1 ≤ j ≤ µ,

where {bj,1 : 1 ≤ j ≤ µ} = {aj : 1 ≤ j ≤ µ}. Hence we may assume aj = bj,1

for 1 ≤ j ≤ µ. It is no restriction to assume η to be so small that∣∣∣∣∣
∞∑

k=2

bj,k

(y

x

)k
∣∣∣∣∣ ≤ δ if (x, y) ∈ B(1, η)×B(0, η).

Arguing as in the proof of Lemma 3.6 we get for η > 0 small enough with

Γ :=
{

(x, y, z) ∈ C3 :
∣∣∣∣ x

|x|
− 1
∣∣∣∣ , |x| > R,

∣∣∣y
x

∣∣∣ < η,
∣∣∣ z
x

∣∣∣ < σ

}
and Γ′ := {(x, y) ∈ C3 : (x, y, 0) ∈ Γ} that

Pm(x, y, z) = U(x, y, z)F (x, y, z), (x, y, z) ∈ Γ,

where F (x, y, z) =
∏µ

j=1(z − βj(x, y)). We also get the existence of α > 0
such that

|U(x, y, z)| ≥ α |x|m−µ , (x, y, z) ∈ Γ.

Choosing η small enough, we get∣∣∣βj

(
1,

y

x

)
− aj

y

x

∣∣∣ = ∣∣∣∣∣
∞∑

k=2

bj,k

(y

x

)k
∣∣∣∣∣ ≤ 2δ

∣∣∣y
x

∣∣∣ , 1 ≤ j ≤ µ.

Next fix 1 ≤ i ≤ µ and define for (x, y) ∈ Γ′

z(x, y, λ) := βi(x, y) + λ

where for some ρ > 1 (to be determined later), λ ∈ C satisfies

|λ| = min(ρ, δ |y|).
For j 6= i the previous choices imply

|z(x, y, λ)− βj(x, y)| =

∣∣∣∣∣(ai − aj)y + y

∞∑
k=2

(bi,k − bj,k)
(y

x

)k
+ λ

∣∣∣∣∣
≥ 4δ |y| − 2δ |y| − |y| = δ |y| .

Moreover, we get



42 R.W. BRAUN, R. MEISE, AND B.A. TAYLOR

∣∣∣∣z(x, y, λ)
x

∣∣∣∣ =
∣∣∣∣∣ai

y

x
+

∞∑
k=2

bi,k

(y

x

)k
+

λ

x

∣∣∣∣∣(4.1)

≤ (|ai|+ 2δ + δ)
∣∣∣y
x

∣∣∣
≤ max

1≤j≤µ
(|aj |+ 3δ)η < σ,

provided that η is small enough. All together we get for (x, y) ∈ Γ′

|Pm(x, y, z(x, y, λ))| = |(UF )(x, y, z(x, y, λ))| ≥ α |x|m−µ |λ| (δ |y|)µ−1.

Now fix Q =
∑m−1

j=µ qj as in the hypothesis. For κj := deg(qj)ξ there is
Mj with

|qj(1, η, ζ)| ≤ Mj |(η, ζ)|κj if |(η, ζ)| ≤ 1.

Hence (4.1) implies

|qj(x, y, z(x, y, λ))| =
∣∣∣∣qj

(
1,

y

x
,
z(x, y, λ)

x

)∣∣∣∣ |x|j
≤ Mj(1 + |aj |+ 3δ)κj

∣∣∣y
x

∣∣∣κj

|x|j .

Since κj ≥ µ by hypothesis, the last estimate implies the existence of M
such that

|Q(x, y, z(x, y, λ))| ≤ M |x|m−1

∣∣∣∣xy
∣∣∣∣µ .

Now we claim that we can choose R > 1 and ρ > 1 so that

M < α |λ|
∣∣∣∣xy
∣∣∣∣ δµ−1 for |x| > R, (x, y) ∈ Γ′.(4.2)

To see this, assume first |λ| = δ |y|. Then

α |λ|
∣∣∣∣xy
∣∣∣∣ δµ−1 = αδµ |y|

∣∣∣∣xy
∣∣∣∣ = αδµ |x| > M if |x| > R = max

(
1,

M

δµα

)
.

If |λ| = ρ then

α |λ|
∣∣∣∣xy
∣∣∣∣ δµ−1 = γρ

∣∣∣∣xy
∣∣∣∣ δµ−1 > αρ

1
η
δµ−1 > M

if we choose ρ > ηM
αδµ−1 . Hence (4.2) holds. From it and κj ≤ µ we now get
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|Q(x, y, z(x, y, λ))| ≤ M |x|m−1
∣∣∣y
x

∣∣∣µ(4.3)

< α |λ|
∣∣∣∣xy
∣∣∣∣ δµ−1 |x|m−1

∣∣∣y
x

∣∣∣µ
= α |λ| |x|m−1 δµ−1

∣∣∣y
x

∣∣∣µ−1

≤ α |λ| |x|m−1 δµ−1
∣∣∣y
x

∣∣∣µ−1

≤ |Pm(x, y, z(x, y, λ))| ,

since
∣∣ y
x

∣∣ < 1. From this estimate and the theorem of Rouché it follows for
(x, y) ∈ Γ′, y 6= 0, 1 ≤ i ≤ µ, that the functions ζ 7→ Pm(x, y, ζ) and ζ 7→
(Pm+Q)(x, y, ζ) have the same number of zeros in the disk |ζ − βi(x, y)| < r,
where r = min(ρ, δ |y|). Since Pm has exactly one zero in this disk, we get
that (Pm + Q)(x, y, ·) also has exactly one zero in that disk.

A similar application of the theorem of Rouché shows that for each (x, y) ∈
Γ′ the functions ζ 7→ Pm(x, y, ζ) and (Pm+Q)(x, y, ζ) have the same number
of zeros in the disk of radius σ |x|. All together we have shown that under
the present hypotheses the conclusion of Lemma 3.6 holds with β(l) = 0.
Since βj(x, y) is real for each (x, y) ∈ Γ′ and 1 ≤ j ≤ µ, this implies the
existence of a constant C > 0 such that for each (x, y, ζ) ∈ Γ satisfying
(Pm + Q)(x, y, ζ) = 0 we have the estimate

|Im ζ| ≤ C.

Therefore, the assertion of the lemma follows from Lemma 3.6. �

Lemma 4.1 does not hold without the hypothesis “(Pm)ξ is square-free”.
To provide an example for this fact, we will use the following lemma. Since
its proof uses only basic calculus, we omit it.

Lemma 4.2. For t > 0 and a ∈ R consider the polynomial

p(z; t, a) := (z2 − t2)(z − 2t) + a.

Then for each t > 0 and each a satisfying |a| ≤ 1
2 t3, all zeros of p(·; t, a) are

real.

Example 4.3. Define P6, Q ∈ R[x, y, z] by

P6(x, y, z) := (xz − y2)(xz + y2)(xz − 2y2), Q(x, y, z) := x2y3.

Then the following assertions hold:
(a) For ξ = (±1, 0, 0), the variety V (P6 + Q) satisfies PL(V (P6 + Q),

Γ(ξ,Gξ, rξ), ω1/3).
(b) For each ξ ∈ V (P6)∩S2, the variety ξ 6= (±1, 0, 0), V (P6 +Q) satisfies

PL(V (P6 + Q), Γ(ξ,Gξ, rξ), ω0).
(c) V (P6 + Q) satisfies PL(R3, ω1/3).
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(d) If V (P6+Q) satisfies PL(R3, ω) for some weight function ω then t1/3 =
O(ω(t)) as t tends to infinity.

Proof. (a) Let ξ := (1, 0, 0), define

Γ :=
{

(x, y, z) ∈ C3 :
∣∣∣∣ x

|x|
− 1
∣∣∣∣ < 1

4
, |y| < 1

4
|x| , |z| < 1

4
|x| , |x| > 1

}
,

and let Γ′ = {(x, y) ∈ C2 : (x, y, 0) ∈ Γ}. Fix (x, y) ∈ Γ′ ∩ R2 and assume
first that |y| > (2x)2/3. Then we have∣∣∣∣y3

x

∣∣∣∣ < 1
2

∣∣∣∣y2

x

∣∣∣∣3 .

Hence Lemma 4.2 implies that all zeros of the equation

(P6 + Q)(x, y, z) = x3

((
z2 −

(
y2

x

)2
)(

z − 2
y2

x

)
+

y3

x

)
are real.

Assume next that (x, y) ∈ Γ′ ∩ R2 satisfies |y| < 2 |x|2/3. If y = 0 then
obviously, (P6 + Q)(x, 0, z) has a zero of order 3 at the origin. Hence we
may assume |y| > 0. Then let δ := 21/3e |y| |x|−1/3 and apply the Lemma of
Boutroux-Cartan to get∣∣∣∣∣

(
z2 −

(
y2

x

)2
)(

z − 2
y2

x

)∣∣∣∣∣ ≥
(

δ

e

)3

= 2
∣∣∣∣y3

x

∣∣∣∣ > ∣∣∣∣y3

x

∣∣∣∣
outside a finite number of disks for which the sum of their radii is at most
2δ. Applying the theorem of Rouché at the boundary of these disks we get
that for each zero ζ of the equation (P6 + Q)(x, y, ζ) = 0 we have

|Im ζ| ≤ 4e21/3

∣∣∣∣y3

x

∣∣∣∣1/3

≤ 4e21/3

(
23x2

x

)1/3

≤ e24 |x|1/3 .

Combining this estimate with Lemma 3.7, we get (a) for ξ. Since it is easy
to check that the same arguments apply also for −ξ, the proof of (a) is
complete.

(b) Whenever ξ ∈ V (P6) ∩ S2 and ξ 6= (±1, 0, 0) and ξ 6= (0, 0,±1) then
gradP6(ξ) 6= 0. Hence a real linear change of coordinates shows that we can
apply Lemma 3.6 with µ = 1. Hence in this case the assertion follows from
Lemma 3.6 and 3.7. If ξ = (0, 0, 1) then let

Γ′ :=
{

(y, z) ∈ C2 :
∣∣∣∣ z

|z|
− 1
∣∣∣∣ < 1

4
, |z| > 2, |y| < 1

4
|z|
}

and note that

(P6 + Q)(x, 0, z) = x3z3
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has a zero of order 3 at the origin for each |z| > 0. For (y, z) ∈ Γ′ ∩R2 with
y 6= 0 we have

(P6 + Q)(0, y, z) = 2y6 > 0,

(P6 + Q)
(

3
2

y2

z
, y, z

)
= −5

8
y6 +

9
4

y7

z2
= −y6

(
5
8
− 9

4
y

z2

)
< 0,

(P6 + Q)
(
−2

y2

z
, y, z

)
= −12y6 + 4

y7

z2
= −y6

(
12 +

4y

z2

)
< 0.

Since (P6 + Q)(·, y, z) has degree three and real coefficients, this implies
that for each (y, z) ∈ Γ′ ∩ R2, all zeros of x 7→ (P6 + Q)(x, y, z) are real.
Hence Lemma 3.7 implies the assertion of (b) also in this case. The same
arguments apply for ξ = (0, 0,−1).

(c) This assertion follows from Proposition 3.3 since the second condition
in 3.3 (b) holds by the present parts (a) and (b) and since V (P6) satisfies
PL(R3, ω0). The latter assertion follows from the fact that P6 is the product
of three polynomials, each of which defines a wave operator.

(d) It is easy to check that P6+Q is (3, 2, 1)-quasihomogeneous and that the
polynomial z3−2z2−z+3 has a zero τ which is not real. Then ζ := (1, 1, τ)
satisfies

(P6 + Q)(ζ) = (τ − 1)(τ + 1)(τ − 2) + 1 = τ3 − 2τ2 − τ + 3 = 0.

Hence P := P6 + Q, ζ and d = (3, 2, 1) satisfy the hypotheses of [4], Lem-
ma 3.2. Hence (d) follows from this lemma. �

The following example shows how Lemma 4.1 can be applied.

Example 4.4. Define the polynomial P5 by

P5(x, y, z) := z2y(x2 − y2) + x5 + (x− y)2x3 + y5.

Let q3, q4, and p3 be polynomials in C[x, y], each of which is homogeneous
of degree 3, 4, and 3 respectively or identically zero, and define

Q(x, y, z) := q3(x, y) + q4(x, y) + zp3(x, y).

Then V (P5 + Q) satisfies PL(R3, ω0).
An interesting example of a perturbation Q satisfying the above condi-

tions is given by Q(x, y, z) := x4 − xy2.

Proof. To derive the assertion from Proposition 3.3, let P := P5 + Q, so
that P5 is the principal part of P . Some computation shows that gradP5

vanishes only on V (P5) ∩ {(0, 0, t) : t ∈ C} so that

V (P5)sing ∩ S2 = {(0, 0, 1), (0, 0,−1)}.
Since P5 is irreducible, it follows from Meise, Taylor, and Vogt [15], Corol-
lary 3.14, that V (P5) satisfies PL(R3, ω0) if and only if V (P5) satisfies
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Hörmander’s Phragmén-Lindelöf condition, which by Hörmander [8], Theo-
rem 6.5, is equivalent to V (P5) being locally hyperbolic at each ξ ∈ V (P5)∩
S2. Since P5 has real coefficients, this condition obviously holds at each
regular point ξ ∈ V (P5) ∩ S2. At the singular points ξ± := (0, 0,±1), it
holds by the following observation: The reduction of P5 at ξ±, defined by

q±(x, y) := P5(x, y,±1) = y(x2 − y2) + x5 + (x2 − y2)x3 + y5,

has a zero variety which is locally hyperbolic at the origin. Therefore
it follows from [5], Lemma 6.1, that V (P5) satisfies PLloc(ξ) and hence
V (P5) is locally hyperbolic at ξ±, by Braun [1], Corollary 12. Thus we
have shown that V (P5) satisfies PL(ω0), i.e., the first condition of Proposi-
tion 3.3 (b) holds. To show that also the second one is fulfilled, note that
V (P ) satisfies PL(V (P ),Γ(ξ, Gξ, rξ), ω0) for each ξ ∈ V (P5) ∩ S2 \ {±ξ}
and a suitable cone Γ(ξ,Gξ, rξ) because of Lemma 3.6 and Lemma 3.7,
since gradP5(ξ) is not zero. To show that the same condition also holds
at ξ = ξ±, note that deg(P5)ξ± = 3 and that (P5)ξ±(x, y, z) = y(x2 − y2)
is square-free. The decomposition of Q into homogeneous components is
Q = Q3 + Q4 with Q3(x, y, z) = q3(x, y) and Q4(x, y, z) = q4(x, y) +
zp3(x, y). Hence deg(Qj)ξ± ≥ 3 = deg(P5)ξ± for j = 3, 4, and it follows
from Lemma 4.1 that V (P ) satisfies PL(V (P ),Γ(ξ±, Gξ± , rξ±), ω0) for suit-
able cones Γ(ξ±, Gξ± , rξ±). This shows that also the second condition of 3.3
(b) is fulfilled. Therefore, the assertion follows from Proposition 3.3. �

Example 4.5. Let P ∈ R[x, y, z] be defined as

P (x, y, z) := z2(x2 + y2 − z2)3.

Then for each Q ∈ C[x, y, z] with deg Q ≤ 5 the operator (P +Q)(D) admits
a continuous linear right inverse on D′(R3). If deg Q = 6 or deg Q = 7,
then (P + Q)(D) admits a continuous linear right inverse on D′

(ω1/3)(R
3) or

D′
(ω2/3)(R

3), respectively. This follows from 2.5 and Proposition 3.9.

Remark. In Lemma 3.11 and Theorem 3.14 the statements are optimal
if perturbations by arbitrary polynomials of a given degree are considered.
For an individual polynomial it may happen that (P + Q)(D) admits a
continuous linear right inverse on D′

(σ)(R
n) for a weight function σ which

grows more slowly than indicated by 3.9 or 3.14. Such examples can be
constructed easily from our results, as we show next.

Example 4.6. Let P (x, y, z) := (x2 + y2 − z2)2. Then 2.5 and Theo-
rem 3.14 imply that (P +Q)(D) admits a continuous linear right inverse on
D′

(ω1/2)(R
3) whenever deg Q ≤ 3 and that for each ω satisfying ω(t) = o(t1/2)

there is a polynomial Q of degree 3 such that (P + Q)(D) does not admit a
continuous linear right inverse on D′

(ω)(R
3).
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Nevertheless, in special cases like, e.g., Q0(x, y, z) := (x2+y2−z2)y, more
can be said. For this example

P + Q0 = ST for S := x2 + y2 − z2 and T := x2 + y2 − z2 + y.

Since S(D) is the wave operator, S(D) admits a continuous linear right
inverse on D′(R3). By Proposition 3.9, the same holds for T (D), and thus
also for the product (P + Q0)(D).

Remark 4.7. It has been known for some time that the conclusion of
Proposition 3.9 does not hold in general if there are singular points of V (Pm)
in Sn−1. The simplest example is provided by the polynomial P2 ∈ R[x, y, z],

P2(x, y, z) = xy.

For Q(x, y, z) := iz, the operator (P2 + Q)(D) does not admit a continuous
linear right inverse in D′

(ω)(R
3) if the weight function ω satisfies ω(t) =

o(t1/2). This was shown in Meise, Taylor, and Vogt [15], Example 4.9, but
can also be derived from Lemma 3.11.

In [6] we derive new necessary conditions for a given polynomial P ∈
C[z1, . . . , zn] to satisfy PL(Rn, ω) for a given weight function and we show
that these conditions are characterizing when n = 3. To achieve this, a
more refined analysis of the behavior of V (P ) in conoids is necessary and
ω-hyperbolicity conditions in these conoids play a crucial role.
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