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It is our purpose to study curvature structures of compact
hypersurfaces in the unit sphere Sn+1(1). We proved that
the Riemannian product S1(

√
1 − c2) ×Sn−1(c) is the only

compact hypersurfaces in Sn+1(1) with infinite fundamental
group, which satisfy r ≥ n−2

n−1
and S ≤ (n − 1)n(r−1)+2

n−2
+

n−2
n(r−1)+2

, where n(n − 1)r is the scalar curvature of hyper-

surfaces and c2 = n−2
nr

. In particular, we obtained that the
Riemannian product S1(

√
1 − c2) × Sn−1(c) is the only com-

pact hypersurfaces with infinite fundamental group in Sn+1(1)
if the sectional curvatures are nonnegative.

1. Introduction.

Let M be an n-dimensional hypersurface in a unit sphere Sn+1(1) of dimen-
sion n + 1. It is well-known that the investigation on curvature structures
of compact hypersurfaces is important and interesting. In 1977, S.Y. Cheng
and Yau [4] studied compact hypersurfaces with constant scalar curvature in
the unit sphere Sn+1(1). They proved that let M be an n-dimensional com-
pact hypersurface with constant scalar curvature n(n−1)r, if r ≥ 1 and the
sectional curvatures of M are nonnegative, then M is isometric to the totally
umbilical hypersurface Sn(c) or the Riemannian product Sk(c1)× Sn−k(c2)
1 ≤ k ≤ n− 1, where Sk(c) denote the sphere of radius c. In order to prove
this theorem, they introduced a differential operator � defined by

�f =
n∑

i,j=1

(nHδij − hij)∇i∇jf,

for any C2-function f on M . Where hij and H are components of the second
fundamental form and the mean curvature of M , respectively. We should
notice the following:

(1) The differential operator � is self-adjoint.
(2) The differential operator � is degenerate elliptic if r ≥ 1.

Therefore, in order to prove their theorem, they must make use of the prop-
erties that the differential operator � is self-adjoint and degenerate elliptic.
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And in order to obtain the estimate
∑n

i,j,k=1 h2
ijk ≥ n2|gradH|2, which is

very important in the proof of their theorem, the condition of r ≥ 1 and
the assumption of constant scalar curvature is essential. Where hijk’s are
components of the covariant differentiation of the second fundamental form.
Hence, the condition r ≥ 1 and the assumption of constant scalar curvature
play an essential role in the proof of their theorem. Further, by making use
of the similar method which was used by Nakagawa and the author in [3] and
the differential operator introduced by S.Y. Cheng and Yau, Li [5] proved
that let M be an n-dimensional compact hypersurface with constant scalar
curvature n(n − 1)r, if r ≥ 1 and S ≤ (n − 1)n(r−1)+2

n−2 + n−2
n(r−1)+2 , then M

is isometric to either the totally umbilical hypersurface or the Riemannian
product S1(

√
1− c2)×Sn−1(c) with c2 = n−2

nr ≤ n−2
n , where S is the squared

norm of the second fundamental form of M . These properties that the differ-
ential operator � is self-adjoint and degenerate elliptic are indispensable in
the proof of his theorem again. And the estimate

∑n
i,j,k=1 h2

ijk ≥ n2|gradH|2
is also essential in the proof of his theorem.

On the other hand, for any 0 < c < 1, by considering the standard immer-
sions Sn−1(c) ⊂ Rn, S1(

√
1− c2) ⊂ R2 and taking the Riemannian product

immersion S1(
√

1− c2) × Sn−1(c) ↪→ R2 × Rn, we obtain a compact hy-
persurface S1(

√
1− c2)×Sn−1(c) in Sn+1(1) with constant scalar curvature

n(n − 1)r, where r = n−2
nc2

> 1 − 2
n . Hence, some of Riemannian products

S1(
√

1− c2)×Sn−1(c) do not appear in these results of S.Y. Cheng and Yau
[4] and Li [5]. Moreover, Cheng [2] proved:

Theorem C (Cheng [2]). Let M be an n-dimensional complete hypersur-
face with constant scalar curvature n(n − 1)r in Sn+1(1). If M has only
two distinct principal curvatures one of which is simple, then, r > 1 − 2

n

holds and M is isometric to S1(
√

1− c2) × Sn−1(c) if r 6= n−2
n−1 and S ≥

(n− 1)n(r−1)+2
n−2 + n−2

n(r−1)+2 , where c2 = n−2
nr .

From the assertion above, it is natural and interesting to generalize these
results due to S.Y. Cheng and Yau [4] and Li [5] to the case r > 1− 2

n . That
is, it is interesting to prove the following:

Problem 1 (cf. Cheng [2]). Let M be an n-dimensional compact hypersur-
face with constant scalar curvature n(n− 1)r in Sn+1(1). If r > 1− 2

n and
S ≤ (n− 1)n(r−1)+2

n−2 + n−2
n(r−1)+2 , then M is isometric to the totally umbilical

hypersurface or the Riemannian product S1(
√

1− c2)× Sn−1(c).

It is our purpose to try to solve this problem above. Since the problem
seems to be a very hard problem, we shall try to solve it under a topological
condition. It is known that S1(

√
1− c2)× Sn−1(c) has infinite fundamental
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group. Hence, we shall consider compact hypersurfaces with infinite funda-
mental group in the unit sphere Sn+1(1). The following theorems will be
proved.

Theorem 1. Let M be an n-dimensional compact hypersurface with infinite
fundamental group in Sn+1(1). If r ≥ n−2

n−1 and S ≤ (n − 1)n(r−1)+2
n−2 +

n−2
n(r−1)+2 , then M is isometric to the Riemannian product S1(

√
1− c2) ×

Sn−1(c), where n(n− 1)r is the scalar curvature of M and c2 = n−2
nr .

Theorem 2. Let M be an n-dimensional compact hypersurface with infinite
fundamental group in Sn+1(1). If the sectional curvatures are nonnegative,
then M is isometric to the Riemannian product S1(

√
1− c2)× Sn−1(c).

Remark. In our Theorems 1 and 2, we do not assume that the scalar cur-
vature is constant. And in our Theorem 2, we do not assume any condition
on scalar curvature.

2. Proofs of theorems.

Let M be an n-dimensional hypersurface in a unit sphere Sn+1(1) with
constant scalar curvature n(n−1)r. We take a local orthonormal frame field
{e1, . . . , en+1} in Sn+1(1), restricted to M , so that e1, . . . , en are tangent to
M . Let ω1, · · · , ωn+1 denote the dual coframe fields in Sn+1(1). We shall
make use of the following convention on the ranges of indices:

1 ≤ A,B, C, · · · ,≤ n + 1; 1 ≤ i, j, k, · · · ,≤ n.

Then the structure equations of Sn+1(1) are given by

dωA =
n+1∑
B=1

ωAB ∧ ωB, ωAB + ωBA = 0,

dωAB =
n+1∑
C=1

ωAC ∧ ωCB + ΩAB, ΩAB = −1
2

n+1∑
C,D=1

RABCDωC ∧ ωD,

RABCD = (δACδBD − δADδBC),

where ΩAB (resp. RABCD) denotes the curvature form (resp. the compo-
nents of the curvature tensor) of Sn+1(1). Then, in M ,

ωn+1 = 0.

It follows from Cartan’s Lemma that

ωn+1i =
∑

j

hijωj , hij = hji.(2.1)
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The second fundamental form α and the mean curvature of M are defined
by

α =
∑
i,j

hijωiωjen+1 and nH =
∑

i

hii,

respectively. M is said to be totally umbilical if the hij can be expressed as
hij = Hδij . The structure equations of M are given by

dωi =
n∑

k=1

ωik ∧ ωk, ωij + ωji = 0,(2.2)

dωij =
n∑

k=1

ωik ∧ ωkj + Ωij , Ωij = −1
2

n∑
k,l=1

Rijklωk ∧ ωl,

Rijkl = (δikδjl − δilδjk) + (hikhjl − hilhjk),

where Ωij (resp. Rijkl) denotes the Riemannian curvature form (resp. the
components of the Riemannian curvature tensor) of M . From the above
equation, we have

Rij = (n− 1)δij + nHhij −
n∑

k=1

hikhkj ,(2.3)

n(n− 1)r = n(n− 1) + n2H2 − S,(2.4)

where Rij and n(n− 1)r are components of the Ricci curvature tensor and
the scalar curvature of M , respectively, and S =

∑n
ij=1 h2

ij is the squared
norm of the second fundamental form of M .

Proof of Theorem 1. Since r ≥ n−2
n−1 and S ≤ (n− 1)n(r−1)+2

n−2 + n−2
n(r−1)+2 , we

infer

n + 2(n− 1)(r − 1)− n− 2
n

S ≥ 0.(2.5)

In fact,

n + 2(n− 1)(r − 1)− n− 2
n

S

= n + 2(n− 1)(r − 1)− n− 2
n

{
(n− 1)

n(r − 1) + 2
n− 2

+
n− 2

n(r − 1) + 2

}
+

n− 2
n

{
(n− 1)

n(r − 1) + 2
n− 2

+
n− 2

n(r − 1) + 2
− S

}
≥ n + 2(n− 1)(r − 1)− n− 2

n

{
(n− 1)

n(r − 1) + 2
n− 2

+
n− 2

n(r − 1) + 2

}
=

(n− 2)2

n
+

n− 1
n

{n(r − 1) + 2} − (n− 2)2

n{n(r − 1) + 2}
.
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We consider function f(t) = (n−2)2

n + n−1
n t− (n−2)2

nt . By a direct computation,
we have f(t) ≥ 0 if t ≥ n−2

n−1 . Since r ≥ n−2
n−1 , we have n(r − 1) + 2 ≥ n−2

n−1 .
Thus, we infer

n + 2(n− 1)(r − 1)− n− 2
n

S ≥ 0.

Therefore, when r ≥ n−2
n−1 , we know that

S ≤ (n− 1)
n(r − 1) + 2

n− 2
+

n− 2
n(r − 1) + 2

(2.6)

is equivalent to

n + 2(n− 1)(r − 1)− n− 2
n

S(2.7)

≥ n− 2
n

√
{n(n− 1)(r − 1) + S}{S − n(r − 1)}.

Indeed, we can prove that

S ≤ (n− 1)
n(r − 1) + 2

n− 2
+

n− 2
n(r − 1) + 2

holds if and only if{
n + 2(n− 1)(r − 1)− n− 2

n
S

}2

≥ (n− 2)2

n2
{n(n− 1)(r − 1) + S}{S − n(r − 1)}.

Since (2.5) holds, we obtain that (2.7) is true.
From Gauss equation n(n− 1)r = n(n− 1) + n2H2 − S, we conclude

{S − n(r − 1)} =
n

n− 1
(S − nH2).(2.8)

Hence, from (2.7) and (2.8), we obtain

n + 2nH2 − S ≥ n− 2√
n(n− 1)

√
n2H2(S − nH2).(2.9)

For any point p and any unit vector ~u ∈ TpM , we choose a local orthonormal
frame field {e1, · · · , en} such that en = ~u, we have, from Gauss equation
(2.3),

Ric(~u) = (n− 1) + nHhnn −
n∑

i=1

h2
in.(2.10)

Since

(nH − hnn)2 =

(
n−1∑
i=1

hii

)2

≤ (n− 1)
n−1∑
i=1

h2
ii,
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we have

n2H2 − (n− 1)
n∑

i=1

h2
ii + nh2

nn − 2nHhnn ≤ 0.

From
∑

i(hii −H) = 0 and
∑n

i=1(hii −H)2 =
∑n

i=1 h2
ii − nH2, we have, for

any i,

(hii −H)2 ≤ n− 1
n

(
n∑

i=1

h2
ii − nH2

)
.

0 ≥ n(h2
nn − nHhnn) + (n− 2)nH(hnn −H)

+ 2(n− 1)nH2 − (n− 1)
n∑

i=1

h2
ii

≥ n(h2
nn − nHhnn)− (n− 2)n|H|

√√√√n− 1
n

(
n∑

i=1

h2
ii − nH2

)

+ 2(n− 1)nH2 − (n− 1)
n∑

i=1

h2
ii,

namely,

(h2
nn − nHhnn)

(2.11)

≤ (n− 2)|H|

√√√√n− 1
n

(
n∑

i=1

h2
ii − nH2

)
− 2(n− 1)H2 +

n− 1
n

n∑
i=1

h2
ii.

From (2.10) and (2.11), we have

Ric(~u) ≥ (n− 1)− (n− 2)|H|

√√√√n− 1
n

(
n∑

i=1

h2
ii − nH2

)

+ 2(n− 1)H2 − n− 1
n

n∑
i,j=1

h2
ij

because of n−1
n > 1

2 . Thus, we obtain, from the above inequality and S =∑n
i,j=1 h2

ij ,

Ric(~u) ≥ n− 1
n

{
n + 2nH2 − S − n− 2√

n(n− 1)

√
n2H2(S − nH2)

}
.(2.12)

From (2.9), we have Ric(~u) ≥ 0. In particular, from the assertions above, we
know that if S < (n−1)n(r−1)+2

n−2 + n−2
n(r−1)+2 holds, then Ric(~u) > 0. Thus, if



COMPACT HYPERSURFACES IN A UNIT SPHERE 55

there exists point p in M such that S < (n− 1)n(r−1)+2
n−2 + n−2

n(r−1)+2 , then, at
the point p, the Ricci curvature is positive. From the following Lemma due
to Aubin [1], we know that there exists a metric on M such that the Ricci
curvature is positive on M . According to Myers theorem, we know that
the fundamental group is finite. This is impossible because M has infinite
fundamental group.

Lemma (cf. Aubin [1, p. 344]). If the Ricci curvature of a compact Rie-
mannian manifold is nonnegative and positive at somewhere, then the man-
ifold carries a metric with positive Ricci curvature.

Thus, we must have S = (n− 1)n(r−1)+2
n−2 + n−2

n(r−1)+2 . And at each point,
there exists a unit vector ~u such that Ric(~u) = 0. From the assertions above,
we infer that these inequalities above are equalities. That is, we must have
hij = 0 if i 6= j and h11 = · · · = hn−1n−1,

(hnn −H)2 =
n− 1

n

(
n∑

i=1

h2
ii − nH2

)
=

n− 1
n

(S − nH2)

and
(h11 −H)2 = · · · = (hn−1n−1 −H)2 =

1
n(n− 1)

(S − nH2).

Hence, we conclude that M has only two distinct principal curvatures one
of which is simple. Let {e1, · · · , en} be a local orthonormal frame field such
that hij = λiδij , where λi’s are principal curvatures on M . Without loss
of generality, we can assume µ = λn, λ = λ1 = · · · = λn−1. From Gauss
Equation (2.2) and the definition of the Ricci curvature, we have 1+µλ = 0
because of 1 + λiλj = 1 + λ2 > 0, for any i, j = 1, · · · , n− 1. From (2.4), we
have

µ =
n(r − 1)

2λ
− n− 2

2
λ.

Hence λ2 = n(r−1)+2
n−2 and µ2 = n−2

n(r−1)+2 .
We consider the integral submanifold of the corresponding distribution

of the space of principal vectors corresponding to the principal curvature
λ. Since the multiplicity of the principal curvature λ is greater than 1, we
know that the principal curvature λ is constant on this integral submanifold
(cf. Otsuki [6]). From λ2 = n(r−1)+2

n−2 and µ2 = n−2
n(r−1)+2 , we know that

the scalar curvature n(n − 1)r and the principal curvature µ are constant.
Thus, we obtain that M is isoparametric. Therefore, M is isometric to the
Riemannian product S1(

√
1− c2)× Sn−1(c) because S = (n− 1)n(r−1)+2

n−2 +
n−2

n(r−1)+2 holds. This completes the Proof of Theorem 1.

Proof of Theorem 2. Since the sectional curvatures are nonnegative, we
have that the Ricci curvature is nonnegative. From the arguments in the
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Proof of Theorem 1, we infer that at each point, there exists a unit vector
~u such that Ric(~u) = 0.

Let {e1, · · · , en} be a local orthonormal frame field such that hij = λiδij ,
where λi’s are principal curvatures on M . Then, from Gauss Equation
(2.2), we have 1 + λiλj ≥ 0 for i 6= j. Further, there exists an i such that∑

j 6=i(1 + λiλj) = 0 from the definition of Ricci curvature. Hence, we must
have 1 + λiλj = 0 for j 6= i. Therefore, M has only two distinct principal
curvatures one of which is simple. Let µ = λi and λ = λj for j 6= i. From
(2.4), we have

µ =
n(r − 1)

2λ
− n− 2

2
λ.(2.13)

Since 1+µλ = 0 and (2.13) hold, we have λ2 = n(r−1)+2
n−2 and µ2 = n−2

n(r−1)+2 .
Hence, we have

S = (n− 1)λ2 + µ2 = (n− 1)
n(r − 1) + 2

n− 2
+

n− 2
n(r − 1) + 2

.

By making use of the same assertion as in the Proof of Theorem 1, we infer
that M is isometric to the Riemannian product S1(

√
1− c2)×Sn−1(c). This

completes the Proof of Theorem 2.
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