
Pacific
Journal of
Mathematics

INJECTIVE ENVELOPES OF C∗-ALGEBRAS AS
OPERATOR MODULES

Michael Frank and Vern I. Paulsen

Volume 212 No. 1 November 2003



PACIFIC JOURNAL OF MATHEMATICS
Vol. 212, No. 1, 2003

INJECTIVE ENVELOPES OF C∗-ALGEBRAS AS
OPERATOR MODULES

Michael Frank and Vern I. Paulsen

In this paper we give some characterizations of M. Hama-
na’s injective envelope I(A) of a C∗-algebra A in the set-
ting of operator spaces and completely bounded maps. These
characterizations lead to simplifications and generalizations
of some known results concerning completely bounded pro-
jections onto C∗-algebras. We prove that I(A) is rigid for
completely bounded A-module maps. This rigidity yields a
natural representation of many kinds of multipliers as multi-
plications by elements of I(A). In particular, we prove that
the(n times iterated) local multiplier algebra of A embeds into
I(A).

1. Introduction.

Let A denote a unital C∗-algebra. M. Hamana [13, 14, 16] introduced
the injective envelope of A, I(A), as a “minimal” injective operator system
containing A and established various characterizations and properties of
I(A) in the setting of completely positive mappings and operator systems.

In recent years attention has shifted from completely positive maps and
operator systems to completely bounded maps, operator algebras and ope-
rator spaces. In particular a theory has evolved of operator spaces that are
completely contractive as modules over operator algebras. See for example,
[3, 20].

This theory gives a new categorical framework where one can examine
injective envelopes. While other author’s have pursued this viewpoint they
have generally defined injectivity and rigidity in terms of completely con-
tractive maps. For example, defining injectivity by requiring completely
contractive maps to have completely contractive extensions. This is equiv-
alent to requiring that completely bounded maps have completely bounded
extensions of the same completely bounded norm. Since unital completely
contractive maps on C∗-algebras are completely positive this approach ge-
nerally reduces to M. Hamana’s results in the C∗-algebra setting.

Our approach is different in that we are interested in a setting where our
objects are A-modules and injectivity is defined by requiring that completely
bounded A-module maps have completely bounded A-module extensions,
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but not necessarily of the same norm. We show for example that, as well as
being a minimal injective operator system containing A, that I(A) is in a
certain sense the “minimal” injective left operator A-module containing A.
This immutability of the “injective hull” of C∗-algebras under change of ca-
tegory has some immediate applications to completely bounded projections
and multiplier algebras.

In this paper our primary focus is on the new properties of I(A) and
their applications. For this reason we take the quickest approach, which is
to restrict our attention to the unital case and use M. Hamana’s results to
deduce these new properties by our off-diagonalization trick.

Many of our results do carry over to the case of a non-unital C∗-algebra B
by the simple device of adjoining a unity to B, letting A denote this unital
C∗-algebra and observing that any B-modules are automatically A-modules.
For a greater development of the non-unital case we refer the reader to the
subsequent paper [4].

2. Mapping properties of I(A).

Throughout this section A will denote a unital C∗-algebra and I(A) will
denote its injective envelope as defined in [13, Def. 2.1, Th. 4.1]. We assume
that the reader is familiar with the definitions and elementary properties of
completely bounded and completely positive maps as presented in [20] or
[23].

One of M. Hamana’s fundamental results about I(A) was his rigidity
theorem. This theorem says that if ϕ : I(A) → I(A) is completely positive
with ϕ(a) = a for all a in A then ϕ(x) = x for all x in I(A).

A direct analog of this result is false for general completely bounded
maps. If A 6= I(A), then there exists a nonzero bounded linear functional
f : I(A) → C with f(A) = {0}. Defining the map ϕ : I(A) → I(A) via
ϕ(x) = x + f(x)1 yields a completely bounded map with ϕ(a) = a for
all a in A, but ϕ(x) 6= x for all x in I(A). However, if one recalls that
completely positive maps that fix A are automatically A-bimodule maps
[6], [20, Exercise 4.3] then one is led to the appropriate generalization of
M. Hamana’s rigidity. Surprisingly one does not need bimodules, only left
or right A-modules as the following results show.

Theorem 2.1. Let E ⊆ I(A) be a subspace such that AE ⊆ E (respectively,
EA ⊆ E) and let ϕ : E → I(A) be a completely bounded left (resp., right)
A-module map. Then there exists an element y in I(A) such that ϕ is right
(resp., left) multiplication by y, i.e., ϕ(e) = ey (ϕ(e) = ye) for all e in E
and ‖y‖ = ‖ϕ‖cb . When AEA ⊆ E and ϕ is a bimodule map, then y may
be taken in the center of I(A).

In particular, ϕ extends to a completely bounded, left (resp., right) A-
module map ψ : I(A) → I(A) such that ψ|E = ϕ and ‖ϕ‖cb = ‖ψ‖cb. If
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E ⊆ I(A) contains an invertible element of I(A), then the element y ∈ I(A)
and consequently the extension ψ are unique.

Proof. It will suffice to assume that ‖ϕ‖cb ≤ 1. Let S ⊆M2(I(A)) be defined
as

S =
{(

a e
f∗ λ

)
: a ∈ A, e, f,∈ E, λ ∈ C

}
and Φ : S →M2(I(A)) by

Φ
( (

a e
f∗ λ

) )
=

(
a ϕ(e)

ϕ(f)∗ λ

)
.

Arguing as in [20] or [28] one sees that Φ is completely positive and hence
can be extended to a completely positive map on all of M2(I(A)) which we

still denote by Φ. Using the fact that Φ fixes A⊕C=
{(

a 0
0 λ

)
:a ∈ A, λ∈C

}
and again arguing as in [28], we see that there exists ϕi : I(A) → I(A), i =
1, 2, 3, 4 such that

Φ
( (

x1 x2

x3 x4

) )
=

(
ϕ1(x1) ϕ2(x2)
ϕ3(x3) ϕ4(x4)

)
.

Clearly, ϕ1 and ϕ4 must be completely positive and ϕ2 extends ϕ.
Since ϕ1(a) = a for all a in A, by M. Hamana’s rigidity result ϕ1(x) = x

for all x in I(A). Thus, Φ fixes the C∗-subalgebra, I(A) ⊕ C and so by
[6] (see also [20]) Φ must be a bimodule map over this algebra. Thus,(

0 ϕ2(x)
0 0

)
= Φ

((
0 x
0 0

))
= Φ

((
x 0
0 0

)(
0 1
0 0

))
=

(
x 0
0 0

)(
0 ϕ2(1)
0 0

)
and we have that ϕ2(x) = x · ϕ2(1). Finally, ‖ϕ‖cb = ‖ϕ2‖cb = ‖ϕ2(1)‖ .

The proof for right A-module maps is similar. For the bimodule case let

S =
{(

a e
f∗ b

)
: a, b ∈ A, e, f ∈ E

}
and deduce that ϕ2 is an I(A)-bimodule

map. If E contains an invertible element e, then y = e−1ϕ(e) and so y is
unique. �

In particular, the above results show that every completely bounded left
(resp., right or bi-) A-module map of A into I(A) admits a unique extension
to a completely bounded left (resp., right or bi-) A-module map of I(A) into
itself and this extension has the same completely bounded norm.

Corollary 2.2 (Rigidity). Let A be a unital C∗-algebra and I(A) be its in-
jective envelope C∗-algebra. Let E be a subspace of I(A) with A ⊆ E and
AE ⊆ E (respectively, EA ⊆ E) and let ϕ : E → I(A) be a completely
bounded left (resp., right) A-module map. If ϕ(a) = a for all a in A, then
ϕ(e) = e for all e in E.

Proof. There exists y in I(A) with ϕ(e) = e · y for all e in E. Since ϕ(1) =
1, y = 1 and hence, ϕ(e) = e for all e in E. �
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3. Injective bimodule extensions of C*-algebras A and the
injective envelope I(A).

Let A and B be unital C∗-algebras. Recall the definition of operator A-
B-bimodules. These are operator spaces E which are A-B-bimodules and
such that the trilinear module pairing A × E × B → E, (a, e, b) → aeb is
completely contractive in the sense of E. Christensen and A. Sinclair [7].
This is equivalent to requiring that for matrices (ai,j), (ei,j) and (bi,j) of the
appropriate sizes, the induced matricial module product is contractive, i.e.,∥∥∥∥∥∥

∑
k,m

ai,kek,mbm,j

∥∥∥∥∥∥ ≤ ‖(ai,j)‖‖(ei,j)‖‖(bi,j)‖ .

These are the objects of the category AOB, [3], [21] and the morphisms
between two operator A-B-bimodules in this category are the completely
bounded A-B-bimodules maps. When we want to restrict the morphisms to
be completely contractive A-B-bimodule maps we will denote the category
by AO1

B.
We assume that all module actions are unital, i.e., 1 · e · 1 = e. We set

AO = AOC and call these left operator A-modules, and OA = COA and call
these right operator A-modules.

Definition 1. An operator A-B-bimodule I is A-B-injective, if whenever
E ⊆ F are operator A-B-bimodules, then every completely bounded A-
B-bimodule map from E into I has a completely bounded A-B-bimodule
extension to F. Note that we do not require that the cb-norm of the extension
is the same as the cb-norm of the original map. When this is the case we
will call I a tight A-B-injective A-B-bimodule.

Some comments on terminology are helpful. Our definition of A-B-
injective is the usual definition of injectivity in the category AOB, while
what we are calling tight A-B-injective is the corresponding definition of
injectivity in the category AO1

B.
IfA andB are both C∗-subalgebras ofB(H), then by the bimodule version

of G. Wittstock’s extension theorem [29, Thm. 4.1] (see also [28]) B(H) is
a tight A-B-injective. Thus, if M ⊆ B(H) is the range of a completely
bounded projection ϕ : B(H) → M, which is also an A-B-bimodule map,
then M is A-B-injective, but it is not evidently tight A-B-injective. A C∗-
subalgebra I ⊆ B(H) is generally called “injective” if it is the range of a
completely positive projection. This term is so widespread we continue to
use it here. Note that such a map is also automatically an I-bimodule map.
Thus, such an I is a tight A-B-injective for any C∗-subalgebras A and B of
I.
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In particular, M. Hamana’s injective envelope I(A) is a tight A-A-injective
A-A-bimodule, a tight A-C-injective left A-module and a tight C-A-injective
right A-module.

On the other hand there are many C-C-injectives which are not tight, i.e.,
not injective in the usual sense. For example, for any subspace E of B(H) of
finite codimension, it is easy to show that there exists a completely bounded
projection from B(H) onto E and hence E is C-C-injective.

T. Huruya [17] has given an example of a unital C∗-subalgebra of an
injective C∗-algebra of finite codimension that is not injective. By the above
argument, this algebra is the range of a completely bounded projection and
hence is C-C-injective. Thus there exist C∗-algebras that are C-C-injective,
but are not injective in the usual sense.

In our terminology, M. Hamana’s rigidity result implies that if A ⊆ E ⊆
I(A) and E is a tight C-C-injective, then E = I(A). We prove this fact in
the remarks following the theorem.

Theorem 3.1. Let A be a unital C∗-algebra and let A ⊆ E ⊆ I(A). Then
the following are equivalent:

a) E is A-C-injective,
b) E is C-A-injective,
c) E is A-A-injective,
d) E = I(A).

Proof. By the Hahn-Banach extension theorem for completely bounded A-
B-bimodule maps [29, Thm. 4.1] (see also [28], [20]), it follows that I(A)
is A-C-injective, C-A-injective and A-A-injective. Thus, d) implies a), b)
and c). It will suffice to prove that a) implies d), the other implications are
similar.

If E is A-C-injective then the identity map from E to E extends to a
completely bounded left A-module projection from I(A) to E. Letting I(A)
play the role of E in the rigidity theorem yields the result. �

The module actions are necessary in the above theorem. Since there
always exists a completely bounded projection from any operator space onto
a subspace of finite codimension, if A ⊆ E ⊆ I(A) with E a subspace of
finite codimension then E is C-C-injective but E 6= I(A).

On the other hand, if we required E to be tight, then there would exist
a completely contractive projection ϕ onto E. Since 1 belongs to E we
would have ϕ(1) = 1 and, consequently, this projection would be completely
positive. Hence E would be an operator system. Thus, E = I(A) by
M. Hamana’s rigidity theorem and we would be adding nothing new.

We now are in a position to clarify the relationship between these new
notions of injectivity and injectivity in the usual sense for C*-algebras.
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Theorem 3.2. Let A be a unital C*-algebra. Then the following are equiv-
alent:

a) A is an injective C*-algebra (in the usual sense),
b) A is a tight A-C-injective module,
c) A is a A-C-injective module,
d) A is a tight C-A-injective module,
e) A is a C-A-injective module,
f) A is a tight A-A-injective module,
g) A is a A-A-injective module.

Proof. We prove the equivalence of a), b) and c), the remaining arguments
are similar. We have that a) implies b) by Wittstock’s Hahn-Banach exten-
sion theorem for module maps. Clearly, b) implies c). We now prove that
c) implies a). Since A is a A-C-injective module, the identity map on A
extends to a completely bounded left A-module map from I(A) into A. But
by the Rigidity Theorem, this extended map must be the identity map on
I(A) and hence I(A) = A. Thus, A is injective. �

Definition 2. Let M be an operator A-B-bimodule. Call I a minimal A-
B-injective extension of M , if M ⊆ I and M ⊆ E ⊆ I with E A−B-injective
implies E = I.

By Theorem 3.1, I(A) is a minimal A-C-injective extension of A and also
a minimal C-A and A-A injective extension of A.

We call a map ϕ a completely bounded isomorphism if both ϕ and ϕ−1

are completely bounded.

Theorem 3.3. Let A be a unital C∗-algebra and let I be a minimal A-C-
injective extension of A, then there exists a completely bounded left A-module
isomorphism ϕ : I(A) → I with ϕ(a) = a for all a in A. If we require that I
is also a tight A-C-injective then ϕ may be taken to be a complete isometry.
Analogous statements hold for right modules and bimodules.

Proof. Since I and I(A) are A-C-injective, there exist completely bounded
left A-module maps ϕ : I(A) → I and ψ : I → I(A) which fix A. By the
rigidity of I(A), ψ ◦ϕ is the identity on I(A) and hence ϕ◦ψ is the identity
restricted to E = range (ϕ). This makes E an A-C-injective module and
hence E = I and ψ = ϕ−1. �

If we required I to be tight and only minimal among all tight injectives,
then as in the remark following Theorem 3.1, our result would reduce to
M. Hamana’s theory.

We now turn to some applications to projections. In [5] it was shown
that if M ⊆ B(H) is a von Neumann algebra and there exists a bounded
M -bimodule projection, ϕ : B(H) → M, then M is injective. Such a map
ϕ is easily shown to be automatically completely bounded.
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In [21] the same result was shown to hold for C∗-algebras. The above
results on injective envelopes allow us to extend these results a bit. Perhaps,
more importantly, the new proof is much simpler than the proof in [21].

Theorem 3.4. Let A ⊆ B(H) be a unital C∗-algebra. If there exists a
completely bounded left (or right) A-module projection of B(H) onto A, then
A is injective.

Proof. Since B(H) is A-A-injective the identity map on A extends to a
completely bounded A-bimodule map from I(A) to B(H). Composing with
the projection onto A gives a completely bounded left A-module map from
I(A) to A which is the identity on A. By rigidity (Corollary 2.2) I(A) = A
and hence A is injective. �

The following example gives an indication of the obstacles that arise in
attempting to generalize Theorem 2.1, Corollary 2.2 and Theorem 3.4 to
the case of non-involutive operator algebras in B(H). Consider the operator
algebra A ⊂M2(C) defined by

A =
{
X ∈M2(C) : X = S−1 · diag(a, b) · S , a, b ∈ C

}
, S =

(
1 1
0 1

)
.

If ω : M2(C) → C⊕C ⊂M2(C) is the canonical conditional expectation on
M2(C) preserving the diagonal and mapping off-diagonal elements to zero,
then the map φ : M2(C) → A defined by the rule φ(X) = S−1 ·ω(SXS−1) ·S
is a completely bounded A-bimodule projection. However, the smallest C∗-
subalgebra of M2(C) generated by A is M2(C) itself, and since M2(C) is
injective we obtain I(A + A∗) = M2(C). Consequently, Theorem 2.1 and
Corollary 2.2 cannot be extended to this situation, and Theorem 3.4 is not
true for the described operator algebra A.

In [8] and [24] it was proven that if M ⊆ B(H) is a von Neumann algebra
and if there exists a completely bounded projection of B(H) onto M then
M is injective, cf. [25]. The direct analogue of this result is false for C∗-
algebras. T. Huruya [17] gave an example of a non-injective C∗-subalgebra
of codimension 1 of an injective C∗-algebra. It is easily shown that any time
Huruya’s algebra is represented as a C∗-subalgebra of B(H), then there
will exist a completely bounded projection of B(H) onto this non-injective
algebra. Thus, to generalize the results of [8] and [24], we will need an
additional condition.

Definition 3. An operator A-B-bimodule R is relatively A-B-injective if
whenever E ⊆ F are operator A-B-bimodules such that there exists a com-
pletely bounded projection of F onto E, then every completely bounded
A-B-bimodule map of E into R has a completely bounded A-B-bimodule
extension to F. It is important to note that we do not require that the
projection of F onto E is an A-B-bimodule map.
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The concept of relative injectivity was introduced in [21] with slightly
different notation, relative A-B-injective was denoted (A-B,C-C)-injective.
A C∗-algebra A is A-A-injective if and only if A is injective in the usual sense.
In contrast, [21] showed that every von Neumann algebra M is relatively
M -M -injective, M -C-injective and C-M -injective.

Theorem 3.5. Let A ⊆ B(H) be a unital C∗-subalgebra. If there exists
a completely bounded projection of B(H) onto A and A is relatively A-C-
injective (or C-A-injective), then A is injective.

Proof. Since A is A-C-injective, the identity map from A to A has a com-
pletely bounded left A-module extension to B(H). This map is clearly a
projection. Hence A is injective by Theorem 3.4. �

Because von Neumann algebras are relatively injective [21], Theorem 3.5
implies the result of [8] and [24].

Corollary 3.6. Let M ⊆ B(H) be a von Neumann algebra. If there exists
a completely bounded projection of B(H) onto M, then M is injective.

Relative injectivity was shown in [21] to be equivalent to the vanishing of
certain completely bounded “Ext” groups, which in turn implied the vanish-
ing of completely bounded Hochschild cohomology. Thus, relative injectivity
captures both the vanishing of cohomology and these projection results. It
is still unknown which C∗-algebras A are relatively A-C-injective. By The-
orem 3.5, T. Huruya’s C∗-algebra A, cannot be relatively A-C-injective.

4. Local multiplier algebras, injective envelopes and regular
completions.

We close this paper with some applications to multiplier algebras. Our main
point is that by invoking Theorem 2.1, we will see immediately that mul-
tipliers are “naturally” represented as multiplication by elements in I(A).
This concrete representation of multipliers can be used to simplify some
arguments. Thus, Theorem 2.1 provides an alternative starting point for
developing the theory of multipliers.

In particular, we show that I(A) contains the local multiplier algebra of
A, Mloc(A), intrinsically as a C∗-subalgebra. Recall that a closed 2-sided
ideal J of A is called essential if J ∩ K 6= {0} for every nontrivial 2-sided
ideal K. All ideals in this section are norm-closed.

The left multiplier algebra LM(J) of J is just the set of right A-module
maps ψ : J → J. Such a map is automatically (completely) bounded and
‖ψ‖ = ‖ψ‖cb . The right multiplier algebra RM(J) is defined similarly. The
multiplier algebra M(J) consists of pairs of linear maps ϕ,ψ : J → J satis-
fying ϕ(j1)j2 = j1ψ(j2). This identity implies that ψ ∈ LM(J), ϕ ∈ RM(J)
and ‖ϕ‖ = ‖ψ‖ = ‖ϕ‖cb = ‖ψ‖cb .
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The local multiplier algebra Mloc(A) is defined by taking a direct limit of
M(J) over all essential ideals J of A ordered by reverse inclusion. See [1]
for details.

Lemma 4.1. Let A be a unital C∗-algebra and let J be a 2-sided essential
ideal of A and let ϕ : J → I(A) be a completely bounded left (resp., right)
A-module map. Then there exists a unique element x in I(A) such that ϕ
is right (resp., left) multiplication by x. Moreover, ‖x‖ = ‖ϕ‖ = ‖ϕ‖cb .

Proof. By Theorem 2.1 such an x exists, it remains to show that x is unique.
To this end consider, F = {y ∈ I(A) : Jy = 0} which is clearly a right A-
submodule of I(A). It will suffice to show that F = {0}. Let {eα} be a
contractive approximate identity for J. For a ∈ A, y ∈ F, we have,

‖a− y‖ ≥ sup
α
‖eα(a− y)‖ = sup

α
‖eαa‖ = ‖a‖

with the last equality using the fact that J is essential. The same calculation
for matrices shows that the quotient map q : I(A) → I(A)/F is a complete
isometry on A and a right A-module map. Now since I(A) is injective,
there exists a completely contractive right A-module map ϕ : I(A)/F →
I(A). Hence by rigidity ϕ ◦ q(b) = b for all b in I(A), and it follows that
F = {0}. �

The fact that F must be {0} is related to the fact that I(A) is in a certain
sense an “essential extension” of A.

Theorem 4.2. Let A be a unital C∗-algebra, let J be a 2-sided essential
ideal in A and let (ϕ,ψ) be in M(J). Then there exists a unique element x
in I(A) such that ϕ(j) = jx, ψ(j) = xj for all j in J.

Proof. By Lemma 4.1, there exist unique elements x1, x2 in J such that
ϕ(j1) = j1x1, ψ(j2) = x2j2 for all j1, j2 in J. But j1x1j2 = ϕ(j1)j2 =
j1ψ(j2) = j1x2j2 and so j1(x1 − x2)j2 = 0 for all j1. Applying Lemma 4.1
we conclude that (x1 − x2)j2 = 0 for all j2 and so x1 = x2. �

Corollary 4.3. The inclusion of A into I(A) extends in a unique way to
a ∗-monomorphism of Mloc(A) into I(A). The image of Mloc(A) under this
map is the norm closure of the set

{x ∈ I(A) : xJ ⊆ J and Jx ⊆ J for some essential ideal J}.

Proof. For each (ϕ,ψ) in M(J) there exists a unique x in I(A) implementing
(ϕ,ψ). By this uniqueness the map (ϕ,ψ) → x must be a ∗-monomorphism
on M(J). Furthermore, let Ji be essential ideals, and let (ϕi, ψi) in M(Ji)
be implemented by xi. If ϕ1 = ϕ2 and ψ1 = ψ2 on J1∩J2 then, since J1∩J2

is essential, we must have x1 = x2.
This shows that the inclusions of M(Ji) into I(A) are coherent and allows

us to extend these ∗-monomorphism to the direct limit, Mloc(A).
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Now assume that π : Mloc(A) → I(A) is any ∗-monomorphism with
π(a) = a for all a in A. Then for (ϕ,ψ) in M(J)

π((ϕ,ψ))j = π((ϕ,ψ)j) = π(ψ(j)) = ψ(j),

and jπ((ϕ,ψ)) = ϕ(j) from which it follows that π((ϕ,ψ)) is the unique
element implementing (ϕ,ψ).

Finally, since {x ∈ I(A) : xJ ⊆ J and Jx ⊆ J} is exactly the image of
M(J) we have the last claim. �

Remark. The above results allow one to define a local left (resp., right)
multiplier algebra of A easily, which we have not seen in the literature.
Indeed, if LMloc(A) = {x ∈ I(A) : xJ ⊆ J for some essential ideal J}−−,
then this set is easily seen to be completely isometrically isomorphic to the
direct limit of LM(J). It is interesting to note that if J1 and J2 are essential
ideals and ϕ ∈ LM(J1) then ϕ(J1 ∩ J2) ⊆ J1 ∩ J2 and by Lemma 4.1,
‖ϕ‖ = ‖ϕ |J1∩J2‖ . We define the local right multiplier algebra RMloc(A) of
A, analogously.

To define the local quasi-multiplier space QMloc(A) of A we have to recall
that the injective envelope I(A) of A is a monotone complete C∗-algebra
and, hence, an AW ∗-algebra. On the other hand norm-closed two-sided
ideals J of C∗-algebras are automatically hereditary, and so we can apply
[10, Cor. 1.4]: For every norm-closed two-sided ideal J ⊆ A and every
quasi-multiplier x ∈ QM(J) there exists an element x ∈ I(A) such that
j1xj2 = j1xj2 for any j1, j2 ∈ J and ‖x‖ equals the norm of x estimated
in the bidual von Neumann algebra A∗∗. For essential ideals J the element
x has to be unique, in fact it can be found as a quasi-strict limit of nets
of J . Since inclusion relations of essential ideals and their corresponding
quasi-multiplier spaces are respected inside I(A) we can define QMloc(A) =
{x ∈ I(A) : JxJ ⊆ J for some essential ideal J}−−, to be the local quasi-
multiplier space of A.

Note that in any situation where Mloc(A) 6≡ LMloc(A) then necessarily
Mloc(A) 6≡I(A). (In general, the conditions Mloc(A) 6≡LMloc(A), Mloc(A) 6≡
QMloc(A) and LMloc(A) 6≡ QMloc(A) are equivalent by general multiplier
theory.) If A is any simple, unital, non-injective C∗-algebra like a non-
injective Type II1 or Type III von Neumann factor then A = Mloc(A) =
LMloc(A) 6= I(A). However, in some cases we obtain the coincidence of the
C∗-algebras Mloc(A) = I(A).

Proposition 4.4. Let A be a unital C∗-algebra, K ⊆ A ⊆ B(H) where
K denotes the ideal of compact operators, then Mloc(A) = I(A) = B(H),
∗-isomorphically.

Proof. Since K is necessarily an essential ideal of A and M(K) = B(H) we
have B(H) ⊆ Mloc(A). By Corollary 4.3 we have a ∗-monomorphism π of
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Mloc(A) into I(A). Hence, A ⊆ B(H) ⊆ Mloc(A) ⊆ I(A), as C∗-algebras.
Since B(H) is A-A-injective, by Theorem 3.1, we have B(H) = I(A) and
the result follows. �

The fact that I(A) = B(H) is due to M. Hamana [13] with a different
proof.

Theorem 4.5. Let A be a commutative unital C∗-algebra, then Mloc(A) =
I(A), ∗-isomorphically.

Proof. By [1, Thm. 1] Mloc(A) is a commutative AW ∗-algebra. However,
commutative AW ∗-algebras are injective by [26, Th. 25.5.1] since bounded
linear maps between C*-algebras are positive whenever their norm equals
their evaluation at the identity of the C*-algebra. Consequently, the ∗-
monomorphism of Mloc(A) into I(A) must be onto. �

In the theory of local multiplier C∗-algebras the problem of whether
Mloc(A) coincides with Mloc(Mloc(A)) for any C∗-algebra A is one of the
main open questions, cf. [1, 27]. Set Mk+1

loc (A) = Mloc(Mk
loc(A)), which

is called the (k + 1)-order local multiplier algebra of A. We show that any
higher order local multiplier C∗-algebra of a given C∗-algebra A is contained
in its injective envelope I(A) and, what is more, that the injective envelopes
I(A) and I(Mk

loc(A)) coincide for any C∗-algebra A. The latter is of special
interest since general C∗-subalgebras A of injective C∗-algebras B might not
admit an embedding of their injective envelopes I(A) as a C∗-subalgebra of
B that extends the given embedding of A into B, see [14, Rem. 3.9] for an
example.

Theorem 4.6. Let A be a unital C∗-algebra and Mloc(A) be its local mul-
tiplier C∗-algebra. Then the injective envelope I(A) of A is the injective
envelope I(Mloc(A)) of Mloc(A) and consequently, Mk

loc(A) is contained in
I(A) for all k.

Proof. Since Mloc(A) is ∗-isomorphically embedded into I(A) extending the
canonical ∗-monomorphism of A into I(A) by Theorem 2.1, the C∗-algebra
I(A) serves as an injective extension of the C∗-algebra Mloc(A), cf. [13].
However, the identity map on Mloc(A) admits a unique extension to a com-
pletely positive map of I(A) into itself with the same completely bounded
norm one since A ⊆ Mloc(A) ⊆ I(A) by construction and I(A) is the in-
jective envelope of A. So I(A) has to be the injective envelope of Mloc(A),
too. �

Problem. Characterize the C∗-algebras A for which the local multiplier
C∗-algebra Mloc(A) of A coincides with the injective envelope I(A) of A or
at least with the regular monotone completion A of A in I(A).

This question is surely difficult to answer: If A is an AW ∗-algebra then the
local multiplier algebra Mloc(A) of A coincides with A by [22]. However,
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A coincides with its regular monotone completion A if and only if A is
monotone complete. So we arrive at a long standing open problem of C∗-
theory dating back to the work of I. Kaplansky in 1951 ([18]): Are all
AW ∗-algebras monotone complete, or do there exist counterexamples?

Remark. If A is a non-unital C∗-algebra and B denotes its unitization, then
A is a 2-sided essential ideal in B. Hence, by Theorem 4.2, M(A) ⊆ I(B).
However, in [4], it is observed that I(A) = I(B), and so the hypothesis
that A is unital can be removed from Theorem 4.2. Similarly, every 2-sided
essential ideal in A is an essential ideal in B, so that Corollary 4.3 applies
for non-unital A as well. Similar arguments show that the unital hypothesis
can be dropped in Proposition 4.4, Theorem 4.5 and Theorem 4.6.
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