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The aim of this paper is the study of the genus 3 curves

Cn : Y 4 = X4 − (4n − 2)X2 + 1,

from the Arakelov viewpoint. The Jacobian of the curves
Cn splits as a product of elliptic curves, and this fact gives
enough arithmetical datum to determine the stable model and
the canonical sheaf of the curves. We use this information to
look for explicit expressions of the modular height and the
self-intersection of the dualizing sheaf of the curves Cn.

1. Introduction.

The study of a curve from the arithmetical or the Arakelov viewpoints is a
hard task, since it involves a very good knowledge of its geometry (differen-
tial forms, periods), its arithmetic (locus of bad reduction, stable models)
and its analysis (Green function). Classically, two families of curves have
been extensively studied: Fermat curves and modular curves. The study
of these curves is feasible because they have a large automorphism group.
On the other hand, the curves in these families have variable genus. If one
wants to study the behaviour of some arithmetical or Arakelov invariants
on the moduli space of curves of a given genus, these families are not useful.

The Arakelov invariants of elliptic curves are completely determined
([Fa84]). Some concrete examples of Arakelov invariants for curves of
genus 2 were provided by Bost, Mestre and Moret-Bailly in [Bo-M-M90].
We present here the study of a family of curves of genus 3.

Let n ∈ N, n ≥ 2 be a natural number such that n ≡ 2 (mod 3) and n 6≡
0, 1 (mod 25), and consider the projective curve Cn given by the equation

Y 4 = X4 − (4n− 2)X2Z2 + Z4.

We have studied the geometry of the curves Cn in [Gu01]. They are non-
singular curves of genus 3. They have a large group of automorphisms,
which gives the chance of performing a great deal of calculations on them.
In this article we study the curves Cn from the arithmetical and Arakelov
viewpoints. We find the stable models of the arithmetic surfaces given by
them. Combining both the geometric and the arithmetic information com-
piled about the curves Cn, we initiate the study of their Arakelov invariants:
Their modular height and the self-intersection of their canonical sheaf.
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The conditions n 6≡ 0, 1 (mod 25), n ≡ 2 (mod 3) are assumed only for
technical reasons, to simplify the exposition. They are necessary essentially
for the results about the reduction of the curves Cn at primes over 2, and
to avoid some particular cases of supersingularity.

2. Automorphisms. Splitting of the Jacobian.

The following results are proved in [Gu01]:

Proposition 2.1. The automorphisms of Cn (n > 2) are the restrictions of
the following projectivities of P2(C):

ϕ0k =

 1 0 0
0 ik 0
0 0 1

 , ϕ1k =

 1 0 0
0 ik 0
0 0 −1

 ,

ϕ2k =

 0 0 1
0 ik 0
1 0 0

 , ϕ3k =

 0 0 1
0 ik 0
−1 0 0

 ,

for k = 0, 1, 2, 3. The automorphisms α = ϕ01, β = ϕ12, γ = ϕ20 form
a system of generators for Aut(Cn), with relations α4 = β2 = γ2 = Id,
αβ = βα, αγ = γα, βγ = γβα2. The group Aut(Cn) is isomorphic to a
semidirect product Z/4Z n V4, where V4 denotes the Klein group.

Remark. The curve C2 has a larger group of automorphisms, because it is
isomorphic to the Fermat curve of fourth degree. For our purposes, we only
need to know that the above matrices also give automorphisms of C2.

The automorphisms βα2, β and α2 provide three elliptic quotients of Cn.
We denote the subgroups that they generate by G1 = 〈βα2〉, G2 = 〈β〉,
G3 = 〈α2〉.

Notation 2.2. We will use the following notation for the rest of the paper:

a =
√
n+

√
n− 1, µ = i 4

√
4n(n− 1),

m = 2n− 1, ζ =
1 + i√

2
,

K0 = Q(a, ζµ),

E1 = E2 = E : Y 2Z = X3 −XZ2,

E3 = E(n) : Y 2Z = X(X − Z)(X − nZ).
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Proposition 2.3. The degree 2 maps

ψ1 : Cn −→ E
(x, y, z) −→ (i(y2 − ζ2µ2x2), (i− 1)(z2 −mx2), (y − ζµx)2),

ψ2 : Cn −→ E
(x, y, z) −→ (i(y2 − ζ2µ2z2), (i− 1)(x2 −mz2), (y − ζµz)2),

ψn : Cn −→ E(n)

(x, y, z) −→ (2(a2+1)(z−ax)(az−x), (a4−1)y2, 4a(z − ax)2)

are the quotient maps Cn −→ Cn/G1, Cn −→ Cn/G2, Cn −→ Cn/G3,
respectively. They induce an isogeny of degree 8

Ψ : J(Cn) −→ E × E × E(n),(1)

defined over the field K0.

This isogeny will be the key of our calculations, because it relates the
type of reduction of the curve Cn with that of the elliptic curves E,E(n),
which is easy to determine.

An automorphism ϕ of Cn which commutes with Gi induces an automor-
phism ϕEi of the elliptic curve Ei. Let us compute these induced automor-
phisms.

Proposition 2.4. The automorphisms of Cn induce the following automor-
phisms of E through the quotient map ψ2:

ϕE
00 = ϕE

12 = IdE ,

ϕE
01 = ϕE

13 = [−i]E + (1, 0, 1),

ϕE
02 = ϕE

10 = [−1]E + (0, 0, 1),

ϕE
03 = ϕE

11 = [i]E + (−1, 0, 1).

Proof. It is enough to consider the affine part Z = 1. Put x = X/Z,
y = Y/Z, so that

(u, v) := ψ2(x, y) =
(
i
y + ζµ

y − ζµ
, (i− 1)

x2 −m

(y − ζµ)2

)
.

After some algebraic manipulation we obtain that

ϕE
01(u, v) =

(
u− 1
u+ 1

,− 2iv
(u+ 1)2

)
.

We will now identify this map. Let us consider the associated map f(Q) =
ϕE

01(Q)+P1, where P1 = ϕE
01(OE) = (1, 0) (OE denotes the point at infinity

of E). We may use the addition formulas for E to calculate the equations
which define f . We find that:

f(u, v) = (−u, iv).
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Thus, the map f is multiplication by −i on E, and hence it follows that
ϕE

01 = [−i]E + P1. The rest of the cases are solved in a similar way. Note
that they can be grouped in pairs of the form ϕ,ϕ ◦ β. �

The same kind of calculations yields:

Proposition 2.5. The automorphisms of Cn induce the following automor-
phisms of E(n) through the quotient map ψ3:

ϕ
E(n)

00 = ϕ
E(n)

02 = IdE(n)
, ϕ

E(n)

01 = ϕ
E(n)

03 = [−1]E(n)
,

ϕ
E(n)

11 = ϕ
E(n)

13 = IdE(n)
+ Pn, ϕ

E(n)

10 = ϕ
E(n)

12 = [−1]E(n)
+ Pn,

ϕ
E(n)

21 = ϕ
E(n)

23 = IdE(n)
+ P0, ϕ

E(n)

20 = ϕ
E(n)

22 = [−1]E(n)
+ P0,

ϕ
E(n)

31 = ϕ
E(n)

33 = IdE(n)
+ P1, ϕ

E(n)

30 = ϕ
E(n)

32 = [−1]E(n)
+ P1,

where Pt = (t, 0, 1).

3. Reduction of the curves Cn.

We now begin the arithmetical study of the curves Cn. For the definitions
and basic results concerning reduction of curves, we refer to [Ds81].

For n 6≡ 0, 1 (mod 25), let us denote by Xn the arithmetic surface

Proj (Z[X,Y, Z]/(Y 4 −X4 + (4n− 2)X2Z2 − Z4)).

This surface is a model over Z of the curve Cn. Hence, the generic fibre of
Xn is smooth, but Xn has singularities in some special fibres.

Proposition 3.1. The arithmetic surface Xn has good reduction outside the
primes dividing n(n− 1).

Proof. The special fibre of Xn in a prime p is given by the reduction mod p
of the equation Y 4 = X4 − (4n − 2)X2Z2 + Z4. This reduction is singular
only at the double roots of the polynomial X4 − (4n − 2)X2Z2 + Z4. The
discriminant of this polynomial is 212n2(n− 1)2. �

We must centre our attention on the primes dividing n(n− 1). It is well-
known that there exists a stable model of Cn over the ring of integers of a
certain number fieldKn. We will determine this field and the stable model of
Cn , taking into account the isogeny Ψ. We introduce some more notations:

Notation 3.2. Let α = 3
√

18− 6
√

3, and let αn be a root of the equation

t3(t3 − 24)3 − 28 (n2 − n+ 1)3

n2(n− 1)2
(t3 − 27) = 0.

We put Kn = K0(α, αn), and we denote by On the ring of integers of Kn,
and write Sn = Spec(On).
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We enumerate the reduction properties of the elliptic curves E,E(n) in
the following two propositions. Note that the algebraic numbers α, αn allow
to define the Deuring normal form of the curves (cf. [Si85]). The techni-
cal condition n 6≡ 0, 1(mod 25) is necessary to assure the potentially good
reduction at p = 2 of the curve E(n).

Proposition 3.3.
a) The elliptic curve E : Y 2 = X3 −X has good reduction outside p = 2,

where it has potentially good reduction.
b) The curve E has good reduction everywhere over the field Q(α). Its

Deuring normal form Y 2 + αXY + Y = X3 has good reduction at the
primes dividing 2.

c) The curve E is supersingular for a prime p if and only if p = 2 or
p ≡ 3 (mod 4).

Proposition 3.4.
a) The j-invariant of the curve E(n) is

jn = 28 (n2 − n+ 1)3

n2(n− 1)2
,

and hence the curve has good reduction outside the primes dividing
n(n− 1).

b) If p|n(n− 1) is an odd prime, E(n) has multiplicative reduction at p.
c) The curve E(n) has potentially good reduction at p = 2. Over the field

Q(αn), the curve E(n) has good reduction at the primes dividing 2. Its
Deuring normal form Y 2 + αnXY + Y = X3 has good reduction at
these primes.

d) The curve E(n) is supersingular at p = 2. It is supersingular at p = 3
if and only if n ≡ 2 (mod 3). If E(n) is supersingular at a prime p > 3
then p ≡ 3 (mod 4).

The assertions concerning the supersingularity of E and En follow from
the characterization of supersingular elliptic curves, and from the fact that
En(Fp) has an evident subgroup of order 4 whenever p > 2.

Theorem 3.5. Let Jn = Pic0
Xn/Kn

be the Jacobian of Xn/Kn
= Cn, and let

N be its Néron model over On .
a) The curve Cn has a stable model X st

n and a semistable minimal regular
model X reg

n over On.
b) At the primes p in On which divide 2, N has abelian reduction.
c) At the odd primes p in On which divide n(n− 1), N has semi-abelian

reduction, and its toric part has dimension 1.
d) At any prime p in On we have canonical isomorphisms over the residual

field kp:
Pic0

X st
n /kp

' Pic0
X reg

n /kp
' N 0

p .
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Proof. The elliptic curves E,E(n) have semi-stable reduction over Kn, so
that the isogeny Ψ guarantees that Jn also has semi-stable reduction over
Kn, by the Néron-Ogg-Safarevic criterion ([Se-Ta68]). But this is equiva-
lent to the existence of a stable model X st

n for Cn over Kn (cf. [De-Mu69]).
Blowing up the singular points of X st

n we obtain a semistable minimal regular
model.

We can extend the isogeny Ψ to the Néron models of Jn, E,E(n), and again
the criterion of Néron-Ogg-Safarevic translates Propositions 3.3 and 3.4 into
Parts b) and c).

Finally, the second isomorphism in Part d) is well-known (cf. [BLR90]),
while the first isomorphism is given by (the reduction of) the map from
X reg

n onto X st
n which blows down the rational components with self-inter-

section -2 in the special fibre. �

4. Height of the curves Cn.

We are already in position to calculate the modular height of the curves Cn.
For the definition of the modular height and the remaining basic concepts
of Arakelov geometry, we refer to [MB85] or [La88].

The modular height of abelian varieties has a good behaviour with respect
to isogenies: Raynaud proved the following result:

Proposition 4.1 ([Ra85], Cor. 2.1.4). Let AK , BK be two abelian varieties
over a number field K, and let A,B be their Néron models over OK . If there
exists an isogeny φ : AK −→ BK of degree pe, with p a prime, then:

h(A) = h(B) + k log p,

for some k ∈ Z, |k| ≤ e/2.

Being clear that the height of a product of abelian schemes is the sum of
the heights of the factors, we will have a good approximation to the height
of the curves Cn once we have the height of the elliptic curves E,E(n). The
computation of the height of an elliptic curve amounts to the computation
of its period lattice and of its reduction, following Tate’s algorithm. We
obtain:

Proposition 4.2. The height of the elliptic curve E(n) is given by

h(E(n)) =
1
6

log n(n− 1)− 1
6
v2(n(n− 1)) log 2− 1

12
log(|∆(τn)|(Im τn)6),

where
τn = iK(

√
1− 1/n)/K(1/

√
n)

is the fundamental period of E(n), K() denotes the complete elliptic integral
of the first kind, v2 is the 2-adic valuation and ∆ is the discriminant modular
form.
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Remark. For n = 2 this formula gives h(E) = log
Γ(3/4)

√
2

Γ(1/4)
√
π

, as in [De85].

The modular height of a curve is that of the Néron model of its Jacobian.
Combining Propositions 4.1 and 4.2 we arrive at:

Theorem 4.3. The height of the curve Cn is given by

h(Cn) = 2 log
Γ(3/4)

√
2

Γ(1/4)
√
π

+
1
6

log
n(n− 1)

2v2(n(n−1))

− 1
12

log(|∆(τn)|(Im τn)6) + k log 2,

for a certain k ∈ {0,±1} (which depends on n).

We can draw a graphic of the height h(Cn) as a function of n, where its
logarithmic behaviour when n approaches the singular curves of the family
(n = 1, n→∞) will become evident:
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Figure 1.

5. The stable model of the curves Cn over odd primes.

Let p|n(n − 1) be an odd prime, and let p be a prime divisor of p in On .
We will now determine the fibre over p of X st

n .

Lemma 5.1. The irreducible components of X st
n/kp

are smooth.

Proof. If we reduce the equation of Cn mod p

Y 4 = X4 − (4n− 2)X2Z2 + Z4 = (X2 + Z2)2 − 4nX2Z2

= (X2 − Z2)2 − 4(n− 1)X2Z2,
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we have that the fibre at p has equation (Y 2−X2−Z2)(Y 2 +X2 +Z2) = 0
if p divides n, and (Y 2−X2 +Z2)(Y 2 +X2−Z2) = 0 if p divides n− 1. In
both cases, the fibre is reduced and its components are smooth and rational.
Thus, we can obtain a semi-stable minimal regular model for Cn blowing-
up, normalizing and blowing down exceptional components. None of these
operations introduces singular components. The stable model is obtained
from the minimal regular model contracting the rational components with
self-intersection -2, but again this does not introduce singularities ([Li69]).

�

Lemma 5.2. X st
n/kp

is not irreducible.

Proof. The irreducibility of X st
n/kp

would imply that it is a nonsingular curve
of genus 3, and then Pic0

X st
n /kp

would be an abelian variety of dimension 3,
contradicting Theorem 3.5. �

These results drastically reduce the number of possible configurations for
X st

n/kp
. The dimension of the toric part of Pic0

X st
n /kp

being 1 (Theorem 3.5),
the geometric configuration of the fibre must form exactly one cycle (cf.
[BLR90], pp. 245-249).

Suppose that X st
n/kp

has a component of genus 2. Then, the other compo-
nents should be rational, and they should form a cycle. But this is impos-
sible, since the rational components must intersect the other components
at least at three points. Hence, the components of X st

n/kp
must be rational

or elliptic. It remains only one possibility: X st
n/kp

must have two elliptic
components, intersecting at two points:

X1

X2

Figure 2.

Theorem 5.3. The special fibre of X st
n at an odd prime p in On dividing

n(n−1) has two elliptic components X1,p, X2,p, intersecting at two different
points.

6. Automorphisms of X st
n .

The automorphisms of Cn can be extended to automorphisms of the stable
model X st

n (cf. [Ra90]), which we will denote by the same letters. The
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quotients E0
i := X st

n /Gi exist and are semi-stable curves (cf. [Ra90]). The
generic fibre of E0

i is the elliptic curve Ei = E for i = 1, 2, and the elliptic
curve E3 = E(n) for i = 3.

An automorphism ϕ of X st
n which commutes with Gi induces an automor-

phism ϕE
0
i of E0

i , leaving the smooth part invariant, and hence determines
an automorphism ϕEi of the Néron model Ei of the elliptic curve Ei. We will
denote by ϕEi/kp the reduction of this automorphism mod a prime p, i.e.,
the automorphism induced by ϕ in the special fibre of Ei. We remark that
at good reduction primes the special fibres of Ei and E0

i are the same, and
we have a canonical isomorphism between them.

When Ei has good reduction at p, we can read the maps ϕEi/kp from the
maps ϕEi calculated in Propositions 2.4 and 2.5, thanks to the universal
property of the Néron model. We also have to control the reduction of the
points appearing on those propositions, i.e., we have to control the super-
singular character of Ei at p, which we know from Propositions 3.3 and 3.4.
We obtain:

Theorem 6.1. Let p be a prime in On dividing 2.

a) The automorphisms of Cn induce the following automorphisms in the
special fibre E/kp

of E at p:

ϕ
E/kp

00 = ϕ
E/kp

10 = IdE/kp
, ϕ

E/kp

02 = ϕ
E/kp

12 = [−1]E/kp
,

ϕ
E/kp

01 = ϕ
E/kp

11 = [−i]E/kp
, ϕ

E/kp

03 = ϕ
E/kp

13 = [i]E/kp
.

b) The automorphisms of Cn induce the following automorphisms in the
special fibre E(n)/kp

of En at p:

ϕ
E(n)/kp

00 = ϕ
E(n)/kp

02 = ϕ
E(n)/kp

11 = ϕ
E(n)/kp

13 =

ϕ
E(n)/kp

21 = ϕ
E(n)/kp

23 = ϕ
E(n)/kp

31 = ϕ
E(n)/kp

33 = IdE(n)/kp
,

ϕ
E(n)/kp

01 = ϕ
E(n)/kp

03 = ϕ
E(n)/kp

10 = ϕ
E(n)/kp

12 =

ϕ
E(n)/kp

20 = ϕ
E(n)/kp

22 = ϕ
E(n)/kp

30 = ϕ
E(n)/kp

32 = [−1]E(n)/kp
.

Note that this implies that the points in E/kp
fixed by the induced au-

tomorphisms must be 2-torsion points. The same kind of reasoning proves
that, at the odd primes, the points in the special fibre of E/kp

fixed by the
induced automorphisms must be 4 torsion points, a fact that will be used
in Proposition 9.2.
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7. The stable model of the curves Cn over p = 2.

We now determine the fibre of X st
n over a prime p of On dividing 2. In

analogy with Lemmas 5.1 and 5.2, we have:

Lemma 7.1.
a) Pic0

X st
n /kp

is an abelian variety of dimension 3.
b) The geometric configuration of X st

n/kp
contains no cycle.

c) The irreducible components of X st
n/kp

are smooth.

Proof. The first assertion follows from the isogeny Ψ. Parts b) and c) are
consequence of a) by [BLR90], Cor. 9.12. �

The study of the special fibre of X st
n/kp

is not so easy in this case, since
the dimension of the Jacobian does not provide further information. We are
now obliged to use the results obtained in previous section.

Proposition 7.2. X st
n/kp

is not irreducible.

Proof. The reduction of the quotient maps ψi : X st
n/kp

−→ E0
i yields an

isogeny of degree 8

Ψp : Pic0
X st

n/kp

−→ E/kp
× E/kp

× E(n)/kp
.

As Pic0
X st

n/kp

is an abelian variety, we can consider the dual isogeny Φp of

Ψp. The Hasse-Witt invariant of the elliptic curves E,E(n) is 0, since its j-
invariant is 0. Hence, their product admits no separable isogenies of degree a
power of 2. Thus, the composition Ψp ◦Φp = [2] must be purely inseparable,
which implies that also Ψp is purely inseparable.

Suppose that X st
n/kp

is irreducible. It should be smooth, since its Jacobian
has dimension 3. As the maps ψ have degree 2, they must be separable or
purely inseparable. In the last case, X st

n/kp
would be isomorphic to the elliptic

curve E/kp
, which is not possible. Hence, the three maps ψ1, ψ2, ψ3 should

be separable. But the isogeny Ψp that they induce would be also separable
(this can be seen in terms of differential forms), and we have seen that this
is not the case. �

The reduction of the maps ψi being exhaustive, we must have non-rational
irreducible components X1, X2, X(n) such that ψi|Xi : Xi −→ Ei/kp

is a
degree 2 map. A priori, we do not know whether these components are
really different or they coincide. In any case, we know that X st

n/kp
cannot

have more than three non-rational components, since it has genus 3.
Let Xi be one of the non-rational components of X st

n/kp
. If ψi(Xi) is not

a point, then ψi|Xi must be purely inseparable (otherwise the isogeny Ψp
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would not be purely inseparable), i.e., it must be a degree 2 Frobenius map.
In particular, Xi must have genus 1.

Let us consider the reduction of the automorphism ϕ01 over X st
n/kp

, and
its action on E1/kp

and E(n)/kp
:

ϕ
E1/kp

01 = [−i]E1/kp
, ϕ

E(n)/kp

01 = [−1]E(n)/kp
.

As ψ1|X1 and ψ3|Xn are bijective maps, we see that ϕ01(X1)=X1, ϕ01(X(n))
= X(n). Moreover,

ψ01|X1 = ψ−1
1/kp

◦ ϕ
E1/kp

01 ψ1/kp
= ψ−1

1/kp
◦ [−i]E1/kp

ψ1/kp
,

and hence ψ01|X1 = [−1]X1 . We can see in the same way that ψ01|X(n) =
IdX(n)

. This fact ensures that X1 6= X(n). We can argue similarly to prove
that X2 6= X(n) and X1 6= X2. At this moment we have seen that the
special fibre X st

n/kp
has exactly three elliptic components, and the rest of

the components must be rational. We know that ψ2 = ψ1 ◦ γ, so that
X2 = γ(X1), and this forces γ(X(n)) = X(n). Moreover, X1 ∩ X(n) 6= ∅ if
and only if X2 ∩ X(n) 6= ∅. Gathering all these restrictions on the special
fibre X st

n/kp
, only two possibilities remain:

pa = 0

X1 X2 Xn X1 X2

Xn

Figure 3.

Let us denote by Oi the neutral point of the group law on the elliptic
component Xi.

Lemma 7.3. The components X1, X(n) can intersect only at their neutral
point. The same is true for the components X2, X(n).

Proof. Let P ∈ X1 ∩ X(n). We know that ϕ12|X(n) = IdX(n)
, so that

ϕ12(P ) = P . On the other hand, ϕ12|X1 = [−1]X1 implies ϕ12(P ) = −P ,
where we denote by −P the opposite of P with respect to the group law on
X1. The component X1 is isomorphic to the elliptic curve E/kp

, which is
supersingular, so that there are no 2-torsion points on X1, that is, we must
have P = O1. Using the automorphism ϕ01 we see that we must also have
P = O(n). The second assertion is proved using the automorphism γ. �
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The lemma excludes the second option in Figure 3. We have finally
reached:

Theorem 7.4. The special fibre of the stable model of Cn at a prime p in
On dividing 2 consists of three elliptic components X1,p, X2,p, X3,p, which
intersect a rational component X0,p at three different points. The map ψi :
X st

n/kp
−→ E/kp

restricted to the component Xi,p is the Frobenius map, and
contracts the other components.

8. A lower bound for Arakelov self-intersection.

We now begin the study of the self-intersection of the Arakelov dualizing
sheaf of the arithmetic surfaces given by the curves Cn. For the definitions,
we refer again to [MB85] or [La88].

In this section we use a result of Moriwaki to precise a lower bound for
the self-intersection of the canonical sheaf of the curves Cn .

Proposition 8.1 ([Mo96]). Let X −→ S = Spec(OK) a stable arithmetic
surface of genus g ≥ 2. Let p1, . . . , pt be the primes in OK where the fibres
of X are reducible. We have that

(ωX/S , ωX/S)Ar ≥
1

6(g − 1)

t∑
i=1

logNK/Q(pi).

We apply this result to the arithmetic surface given by the curve Cn to
obtain:

Proposition 8.2. For the stable model X st
n −→ Sn of the curve Cn over

the ring of integers of the field Kn, we have:(
ωX st

n /Sn
, ωX st

n /Sn

)
Ar
≥ 1

12
log

∏
p∈Sn,p|n(n−1)

NKn/Q(p).

The normalized Arakelov self-intersection of a curve CK defined over a
number field K is

e(CK) :=
1

[L : K]
(ωCst , ωCst)Ar,

where L/K is an extension over which CK has a stable model Cst. The curves
Cn provide examples of curves with normalized Arakelov self-intersection as
large as desired:

Theorem 8.3. For any H > 0, there exist infinitely many curves CQ de-
fined over Q such that e(CQ) > H.

Proof. We know from Sections 5 and 7 that the primes where the stable
model of the curve Cn has reducible fibres are those dividing n(n − 1).



A FAMILY OF ARITHMETIC SURFACES OF GENUS 3 83

Hence, the curves Cn satisfy

e(Cn) ≥ 1
12[Kn : Q]

log
∏

p|n(n−1)

p.

The degree of the extension Kn/Q is always less than or equal to 1152, while
we can take infinitely many values of n which make the product

∏
p|n(n−1) p

as large as desired. �

9. Canonical divisors.

We will ultimately give an explicit formula for the self-intersection of the
Arakelov dualizing sheaf of the arithmetic surfaces given by the curves Cn.
The purpose of this section is the determination of two canonical divisors on
the minimal model of these curves. We shall need to make a base extension
to determine such divisors.

Let us consider the following points on the (affine part of the) curve
Cn (Q):

P1 =
(√

2n− 2u
√
n(n− 1)− 1,

4√12−
√

3−1
2 ζµ

)
,

P2 =
(
−
√

2n− 2u
√
n(n− 1)− 1,

4√12−
√

3−1
2 ζµ

)
,

P3 =
(√

2n+ 2u
√
n(n− 1)− 1,

4√12−
√

3−1
2 ζµ

)
,

P4 =
(
−
√

2n+ 2u
√
n(n− 1)− 1,

4√12−
√

3−1
2 ζµ

)
,

where u=
√
−6 + 4 4

√
12− 4

√
3+2 4

√
108. The images of these points through

the map ψ2 are two different nontrivial 3-torsion points R1 = ψ2(P1) =
ψ2(P2), R2 = −R1 = ψ2(P3) = ψ2(P4) of the elliptic curve E.

In the proof of Lemma 10.2, we shall need the following result:

Lemma 9.1. The pair of points P1, P2 is conjugate over Q to the pair of
points P3, P4.

Proof. It is enough to see that the pairs are conjugate over the larger field
L = Q(bζµ), where b =

4√12−
√

3−1
2 . This, in turn, reduces to proving that

u2n(n − 1) is not a square in L. Since Q(b) = Q(b4) = Q( 4
√

12) ⊂ L =
Q( 4
√

12, 4
√
−4n(n− 1)), we have ζµ ∈ L, and (ζµ)4 = −4n(n−1) is a square

in L. Hence, we must check that −u2 = b4− 1 6∈ L∗2. Let F := Q(
√
b4 − 1);

we want to see that [FL : L] = 2, or equivalently, that [FL : F ] = 4, so
that it suffices to prove that the polynomial X4 − (ζµ)4 = X4 + 4n(n − 1)
is irreducible over F . This can only happen if −4n(n− 1) is a square or -4
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times a fourth power in F . The first possibility is excluded, since F ⊂ R.
So, it remains to prove that H := Q( 4

√
n(n− 1)) may not be embedded in

F . Using PARI ([BBBCO99]), we see that the only quartic subfield of F
is M = Q( 4

√
12). If H = M the discriminants of the polynomials X4 − 12

and X4 − n(n − 1) should agree up to a square, i.e., 3n(n − 1) should be
a rational square, which is not possible since we are assuming that n ≡ 2
(mod 3). �

Let Ln be a finite extension of the field Kn(P1, P3) satisfying the following
condition: The prime ideals in Kn(P1, P3) which divide n(n − 1) become
principal in Ln (the convenience of this condition will be clear later, just
before Theorem 9.4). We will denote by Tn the spectrum of the ring of
integers O′

n of Ln, and by `p the residual field of Ln at a prime p in O′
n .

Since the stable model is stable under base extensions, the stable model Vn of
Cn over Tn is the base change of X st

n to O′
n . In particular, the configuration

of the special fibres of Vn is exactly the same of the special fibres of X st
n (so

that we are going to use the same notation for them).

Proposition 9.2. Let U be the smooth part of Vn, and let U1 be the com-
plement of the bad fibres of Vn.

a) The points P1, P2, P3, P4 extend to sections M1,M2,M3,M4 on Vn con-
tained in U .

b) Let D0
1 = M1 +M2 +M3 +M4. We have a canonical isomorphism:

ωVn/Tn
|U1 ' OVn/Tn

(D0
1)|U1.

Proof. a) The non-smooth points in Vn are the singular points of the fi-
bres at primes of bad reduction. At an odd prime of bad reduction, any
automorphism ϕ2 leaves the singular points of the fibre invariant, so that
the corresponding induced automorphism on E leaves invariants the images
of these singular points through ψ2. Hence, these points must be 4-torsion
points (cf. remark at the end of Section 6). In the fibres over even primes,
a similar argument shows that the singular points must be the neutral el-
ements of the elliptic components. The reductions of the sections Mi are
3-torsion points on the special fibre, which can only be trivial at places of
characteristic 3, (where E is supersingular), but these are primes of good
reduction, since n ≡ 2 (mod 3). Thus, the sections Mi do not pass through
the non-smooth points of Vn .

b) On U1 we have an isomorphism ωVn/Tn
|U1 ' ΩVn/Tn

|U1, where ΩVn/Tn

denotes the sheaf of relative differential forms. On the generic fibre Cn we
have

ΩCn ' OCn(P1 + P2 + P3 + P4),
since the genus of Cn is 3, every plane embedding of Cn is canonical, and
the points Pi are collinear. This isomorphism extends to an isomorphism
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ΩVn/Tn
|U1 ' OVn/Tn

(D0
1)|U1, since the surface Vn|U1 is described by a global

nonsingular plane quartic, and the line through the points Pi is globally
defined over Z, since it is of the form y = λ, with λ and algebraic integer. �

In order to extend the above isomorphism to the whole surface Vn , we
must add some vertical components of the bad fibres to the divisor D0

1. To
control these extra components, we have to determine the intersection of D0

1

with the bad fibres.

Lemma 9.3.
a) Let p an odd prime in O′

n dividing n(n− 1). The divisor D0
1 intersects

each of the two components of Vn,p at two points (which may coincide).
b) Let p a prime in O′

n dividing 2. The divisor D0
1 intersects X2,p at two

points with multiplicity 2, and does not cut any other component of the
fibre.

Proof. a) From ϕ12(P1) = P2, we deduce that ϕ12(M1) = M2. Moreover,
ϕ12 permutes X1,p and X2,p, because ψ1 = ψ2 ◦ ϕ12. Thus, M1,M2 must
intersect Vn,p at different components. The same is true for M3,M4.

b) The reduced map ψ2,p|X2,p is a Frobenius map of degree 2, so that is
totally ramified. The images of the reduction of the sections Mi are two
different 3-torsion points in the special fibre of E, and thus the Mi must
pass through two points on X2,p. �

From now on, we will work on the minimal regular model V ′n of the curves
Cn. It may be obtained blowing up the singularities of the stable model.
Let us introduce some notation to describe the bad fibres of V ′n.

At a prime p in O′
n dividing n(n − 1), we write Vn,p = X1,p + X2,p,

and denote by W1,p,W2,p the intersection points of these two components;
these points may be singular points on the surface Vn; we call s1,p, s2,p

respectively the number of blow-ups necessary to desingularize these points.
The fibre of V ′n consists of the two elliptic components X1,p, X2,p, linked by
rational components A1,p, . . . , As1,p,p (lying above W1,p), B1,p, . . . , Bs2,p,p

(lying above W2,p).
At a prime p in O′

n dividing 2, we write Vn,p = X0,p +X1,p +X2,p +X3,p,
where X0,p is a rational component, and X2,p is the elliptic component
that dominates the special fibre of E through the map ψ2. Again, the
intersection points Y1,p, Y2,p, Y3,p of the three elliptic components with the
rational component may be singular points on Vn; we will denote by rp, sp, tp
the number of blow-ups needed to desingularize these points. Since the
automorphism γ permutes X1,p and X2,p, we know that rp = sp. The fibre
of V ′n consists of the three elliptic components, linked to X0,p by rational
components A1,p, . . . , Arp,p (lying above Y1,p), B1,p, . . . , Brp,p (lying above
Y2,p), and C1,p, . . . , Csp,p (lying above Y3,p). All these rational components
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are numbered starting from the corresponding elliptic component and ending
in X2,p.

We shall determine a canonical divisor on V ′n, that is, a divisor D = D0
1 +∑

pDp such that ωV ′
n/Tn

' OV ′
n
(D). We write Dp =

∑
i ai,pXi,p +Ep, with

the ai,p integer coefficients, and Ep a sum of rational components coming
from blow-ups. The advantage of working on a regular model is that we
may use the adjunction formula for every component X of a fibre V ′n,p:

2gX − 2 = ωV ′
n/Tn

|X +X2 = (D0
1, X) + (Dp, X) +X2,

to obtain a linear system of equations on the coefficients of Dp. By Propo-
sition 9.2, we only have to deal with the primes of bad reduction.

Let p be an odd prime in O′
n of bad reduction. We write Dp = a1,pX1,p +

a2,pX2,p +
∑

i αiAi,p +
∑

j βjBj,p. The adjunction formula applied to every
component of V ′n,p yields a (degenerate) linear system of equations in the
coefficients of D; solving this system we see that Dp must be an integral
multiple of the whole fibre V ′n,p.

In a prime p dividing 2, we write Dp =
∑3

k=0 ak,pXk,p +
∑

i αiAi,p +∑
j βjBj,p +

∑
k γkCk,p. The solutions of the linear system provided by the

adjunction formula are

αi = a1,p + i, βj = a2,p − 3j, γk = a3,p + j,
a1,p = a0 − rp − 1, a2,p = a0 + 3(rp + 1), a3,p = a0 − sp − 1.

We may take a0,p = rp + sp + 1, and hence, up to integral multiples of the
fibre:

Dp = (rp + sp + 1)X0,p + spX1 + (sp + 4(rp + 1))X2,p + rpX3 + Ep,

where Ep =
∑rp

i=1(sp + i)Ai,p +
∑sp

i=1(rp + i)Ci,p +
∑rp

j=1(sp + 4(rp + 1) −
3j)Bj,p. From now on, we shall denote by F2 the sum of all the Dp for p
dividing 2:

F2 :=
∑
p|2

(
(rp + sp + 1)X0,p + spX1 + (sp + 4(rp + 1))X2,p + rpX3 + Ep

)
.

We have thus seen that, for certain divisor V on Vn coming from an ideal
I in O′

n dividing n(n− 1),

ωVn/Tn
' OVn(M1 +M2 +M3 +M4 + F2 + V ).

In order to avoid the determination of the divisor V coming from the
base, we have imposed the condition defining the field Ln at the beginning
of the section. Then, the divisor V becomes a principal ideal, and we can
ignore it 1 .

1Anyway, the computations in Section 10 could be carried on without additional effort
if we define Ln = K(P1, P3) and take into account the (indeterminate) divisor V ; we have
chosen our definition of Ln to simplify the expressions to be obtained later on.
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Theorem 9.4. The divisor D1 = M1 +M2 +M3 +M4 + F2 is a canonical
divisor on V ′n:

ωV ′
n/Tn

' OV ′
n
(D1).(2)

We note that for any automorphism σ of Cn, σ(D1) is also a canonical
divisor on V ′n. Let us take D2 = ϕ01(D1). Putting Qi = ϕ01(Pi), Ni =
ϕ01(Mi), we have that D2 = N1 + N2 + N3 + N4 + F2, since ϕ01 leaves
the components of the fibres at even primes invariant, as we have seen in
Section 7. Since Qi 6= Pj , the divisors D1 and D2 are disjoint on the
generic fibre, so that we can use them to compute the self-intersection of the
canonical sheaf.

Let us write R1 = ψ2(P1) = ψ2(P2), R2 = ψ2(P3) = ψ2(P4), T1 =
ψ2(Q1) = ψ2(Q2), T2 = ψ2(Q3) = ψ2(Q4). We know that ϕ01 induces
the automorphism ϕE

01 = [−i]E + (1, 0) on E through ψ2. Thus Tk =
[−i]ERk + (1, 0), and 3(Tj − Rk) = (1, 0) has exact order 2; in particu-
lar Tj 6= Rk. Let us denote by Rj,p, Tk,p the reductions of the points Rj , Tk

modulo a prime p. It is clear that if these reductions do not coincide, the cor-
responding sections Mj , Nk do not intersect on the fibre at p. If p is an odd
prime, the elliptic curve E has good reduction at p and everything reduces
properly, so that Rj,p 6= Tk,p. If p|2, the reduction of ϕE

01 is [−i]E/`p
, and we

have T1,p = −T2,p = [−i]E/`p
R1 = [i]E/`p

R2, so that again Rj,p 6= Tk,p. We
have seen:

Proposition 9.5. The divisors D0
1 = D1 − F2 and D0

2 = D2 − F2 are
disjoint.

In the following section we will need the following computation:

Lemma 9.6. (F2, F2) = −
∑

p|2(10rp + sp + 11) log ]`p.

Proof. We have F2 =
∑

pDp, and (Dp, Dp) = −(10rp + sp + 11) log ]`p
follows from the equalities (where the factor log ]`p is skipped):

Dp = (rp + sp + 1)X0,p + spX1 + (sp + 4(rp + 1))X2,p + rpX3 + Ep,

Ep =
rp∑
i=1

(sp + i)Ai,p +
sp∑
i=1

(rp + i)Ci,p

+
rp∑

j=1

(sp + 4(rp + 1)− 3j)Bj,p,

( rp∑
i=1

(s+ i)Ai,p

)2

= −(rp + sp + 1)2 − s2p + rp + 1,

( sp∑
i=1

(r + i)Ci,p

)2

= −(rp + sp + 1)2 − r2p + sp + 1,
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j=1

(sp + 4(rp + 1)− 3j)Bj,p

2

= −17r2p − 10rpsp − 25rp − 2s2p − 10sp − 8,

(Ep, Ep) =

( rp∑
i=1

(s+ i)Ai,p

)2

+

 rp∑
j=1

(sp + 4(rp + 1)− 3j)Bj,p

2

+

( sp∑
i=1

(r + i)Ci,p

)2

= −20r2p − 14rpsp − 28rp − 5s2p − 13sp − 8,

(X0,p, Ep) = 3(rp + sp) + 4, (X0,p, X0,p) = −3,

(X1,p, (rp + sp + 1)X0,p + Ep) = sp + 1, (X1,p, X1,p) = −1,

(X2,p, (rp + sp + 1)X0,p + Ep) = sp + 4rp + 1, (X2,p, X2,p) = −1,

(X3,p, (rp + sp + 1)X0,p + Ep) = rp + 1, (X3,p, X3,p) = −1.

�

10. A formula for Arakelov self-intersection.

We will now give an explicit expression for the Arakelov self-intersection of
the canonical sheaf of the arithmetic surfaces Vn. Since this self-intersection
is unaltered after a blow-up, we can compute it with the canonical divisors
on V ′n which we have found in previous section.

First of all, we must extend the isomorphism (2) to an Arakelov isomor-
phism. The curvature of ωV ′

n/Tn
and OV ′

n
(Dj) being the same, it will be

enough to add some vertical Arakelov components to the divisors D1, D2.
Let us write:

ωV ′
n/Tn

' OV ′
n

(
Dj +

∑
σ:Ln→C

rj,σCn,σ

)
.

We have taken D2 = ϕ01(D1), and ϕ01 is defined over Kn, so that r1,σ = r2,σ

for every immersion σ : Ln → C, and the divisors D1, D2 are Arakelov
equivalent. Moreover, this equality yields:

(ωV ′
n/Tn

, ωV ′
n/Tn

)Ar = (D1, D2)Ar + 8
∑

σ

r1,σ.

We can determine this sum using the arithmetic adjunction formula (cf.
[Sz85]), which in our case gives: (ωV ′

n/Tn
,OV ′

n
(Mj))Ar = −(Mj ,Mj)Ar.

Combining this relation with the first equality we obtain∑
σ

r1,σ = −(Mj ,Mj)Ar − (Mj , D1)Ar,
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and summing up for all Mj ’s:

4
∑

σ

r1,σ = −
4∑

j=1

(Mj ,Mj)Ar − (D1, D1)Ar + (F2, D1)Ar.

The self-intersection of the Mj ’s can be eliminated using the equality (D0
1,

D0
1)Ar =

∑4
j=1(Mj ,Mj)Ar + 2

∑
j<k(Mj ,Mk)Ar:

4
∑

σ

r1,σ = −2(D1, D1)Ar + 3(D1, F2)Ar − (F2, F2)Ar + 2
∑
j<k

(Mj ,Mk)Ar.

If we now take into account that (D1, D1)Ar = (D1, D2)Ar since the divi-
sors D1, D2 are Arakelov equivalent, we obtain that:

(ωV ′
n/Tn

, ωV ′
n/Tn

)Ar = −3(D1, D2)Ar + 4
∑
j<k

(Mj ,Mk)Ar

+ 6(D1, F2)Ar − 2(F2, F2)Ar.

We will now give more concrete expressions for the terms in the right
of the previous equality. We must introduce some notations. For every
σ : Ln → C, we denote by P σ

j (resp. Qσ
k) the points given by the sections

Mj (resp. Nk) on the fibre Cn,σ of Vn at σ.

Lemma 10.1. Let G be the Green function of the Riemann surface given
by the curve Cn. We have:

(D1, D2)Ar =
∑

σ

4∑
j,k=1

logG(P σ
j , Q

σ
k) + 2(D0

1, F2)Ar + (F2, F2)Ar.

Proof. We have:

(D1, D2)Ar = (D0
1, D

0
2)Ar + (D0

1, F2)Ar + (D0
2, F2)Ar + (F2, F2)Ar.

By Proposition 9.5, the first term equals
∑

σ

∑4
j,k=1 logG(P σ

j , Q
σ
k). The

two intermediate terms are equal since D0
2 = ϕ01(D0

1), and F2 is invariant
through ϕ01. �

Lemma 10.2.∑
j<k

(Mj ,Mk)Ar =
∑

σ

∑
j<k

logG(P σ
j , P

σ
k )

+ 2
∑
p|2

(M1,M2)p + 2
∑
p|3

(M1,M3 +M4)p.

Proof. We calculate the finite part of this intersection. If p|2, then

(M1,M3)p = (M1,M4)p = (M2,M3)p = (M2,M4)p = 0,

because the images of these pairs of points through the map ψ2 are different.
On the other hand, the pair of points M1,M2 are conjugated to the pair
M3,M4 over Q by Lemma 9.1, and thus

∑
p|2(M1,M2)p =

∑
p|2(M3,M4)p.
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We now look at an odd prime p dividing n(n − 1). We know from Lem-
ma 9.3 that two of the sections M1,M2,M3,M4 intersect the component
X1,p of the fibre Vn,p, and the other two intersect the component X2,p.
Moreover, M1 and M2 must intersect different components, since M2 =
ϕ12(M1), X2,p = ϕ12(X1,p). The same assertion is true for M3,M4. The Mj

are contained in the smooth part of Vn , so that we must have:

(M1,M2)p = (M3,M4)p = 0.

Now, (M1,M3 + M4)p = (M2,M3 + M4)p, again because M2 = ϕ12(M1),
M4 = ϕ12(M3). Note that ψ2(P1) = R1 is a 3-torsion point distinct from
ψ2(P3) = ψ2(P4) = R2 = 2R1. Hence, if these sections do intersect at p, the
points R1,p, R2,p must specialize both to 0. This can only happen at those
primes with residue characteristic 3. �

Putting all the above equalities together, and taking into account Lem-
ma 9.6 we obtain:

Theorem 10.3. The self-intersection of the Arakelov dualizing sheaf of the
arithmetic surface V ′n can be expressed as:

(ωV ′
n/Tn

, ωV ′
n/Tn

)Ar = 4
∑

σ

∑
j<k

logG(P σ
j , P

σ
k )

− 3
∑

σ

4∑
j,k=1

logG(P σ
j , Q

σ
k)

+ 8
∑
p|2

(M1,M2)p + 8
∑
p|3

(M1,M3 +M4)p

−
∑
p|2

(10rp + sp + 11) log ]`p.
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(1990), 69-105, MR 92g:14018a, Zbl 0731.14017.

[Ca90] P. Cartier et al., eds, The Grothendieck Festschrift, Vol. III, Progress in
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Barcelona - Catalunya
Spain
E-mail address: guardia@mat.upc.es

http://www.ams.org/mathscinet-getitem?mr=87c:11026
http://www.emis.de/cgi-bin/MATH-item?0591.14026
http://www.ams.org/mathscinet-getitem?mr=41:6850
http://www.emis.de/cgi-bin/MATH-item?0181.48803
http://www.emis.de/cgi-bin/MATH-item?0505.14008
http://www.ams.org/mathscinet-getitem?mr=86e:14009
http://www.emis.de/cgi-bin/MATH-item?0559.14005
http://www.ams.org/mathscinet-getitem?mr=2002f:11075
http://www.ams.org/mathscinet-getitem?mr=89m:11059
http://www.emis.de/cgi-bin/MATH-item?0667.14001
http://www.ams.org/mathscinet-getitem?mr=43:1986
http://www.emis.de/cgi-bin/MATH-item?0181.48903
http://www.ams.org/mathscinet-getitem?mr=1801935
http://www.ams.org/mathscinet-getitem?mr=97b:14025
http://www.emis.de/cgi-bin/MATH-item?0845.14015
http://www.ams.org/mathscinet-getitem?mr=1801923
http://www.ams.org/mathscinet-getitem?mr=92m:14025
http://www.emis.de/cgi-bin/MATH-item?0722.14013
http://www.ams.org/mathscinet-getitem?mr=38:4488
http://www.emis.de/cgi-bin/MATH-item?0217.05201
http://www.ams.org/mathscinet-getitem?mr=87g:11070
http://www.emis.de/cgi-bin/MATH-item?0585.14026
http://www.ams.org/mathscinet-getitem?mr=1801917
mailto:guardia@mat.upc.es

