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We show that every finitely generated nilalgebra having ni-
lalgebras of matrices is a homomorphic image of nilalgebras
constructed by the Golod method (Golod, 1965 and 1969).
By applying some elements of module theory to these results,
we construct over any field non-residually finite nilalgebras
and Golod groups with non-residually finite quotients. This
solves Šunkov’s problem (Kourovka Notebook, 1995, Prob-
lem 12.102). Also, we reduce Kaplansky’s problem on the
existence of a f.g. infinite p-group G such that the augmenta-
tion ideal ωK[G] over a nondenumerable field K is a nilideal
(Kaplansky, 1957, Problem 9) to the study of the just-infinite
quotients of Golod groups.

1. Introduction.

This paper deals with finitely generated (f.g.) infinite dimensional nilal-
gebras and their associated groups. Using Golod’s algebras Anan’in and
Puczy lowski constructed over fields of characteristic zero f.g. non-nilpotent
nilalgebras which are not residually finite [2, 15]. On the other hand, Rowen
has proved their existence over every field [16]. Here we shall construct
such examples over every field. This will enable us to solve in the negative
Šunkov’s problem [11, Problem 12.102] by constructing Golod groups with
non-residually finite quotients. To this end we shall first start construct-
ing Golod algebras as extensions of some nilalgebras. This is a completely
different view from the classical one where Golod algebras are seen as ho-
momorphic images. On the other hand the proofs of Theorems 2 and 3 are
careful analysis of the Golod method. However, a great deal of informa-
tion is extracted. For example, we prove that every f.g. nilalgebra over a
nondenumerable field is a homomorphic image of a Golod algebra. As a con-
sequence, Kaplansky’s problem on the existence of a f.g. infinite p-group G
such that the augmentation ideal ωK[G] over a nondenumerable field K is a
nilideal [10, Problem 9] is reduced to the study of the just-infinite quotients
of Golod groups. In the denumerable case we obtain some results, although
because of the Köthe conjecture [12] the situation is quite complicated and
we are far from understanding it.
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Let K be any field and let F (1) be the free associative algebra of polynomi-
als without constant terms in the non-commuting indeterminates X1, . . . , Xd

(d ≥ 2) over K. In this work an algebra means an associative algebra unless
otherwise stated.

Lemma 1 ([6, 7]). Let I be an ideal of F (1) generated by a family of ho-
mogeneous polynomials f1, f2, . . . of non-decreasing degrees greater than or
equal to 2. Let ri be the number of polynomials of each degree i ≥ 2 in the

sequence f1, f2, . . . . If the coefficients of the series
(

1−dt+
+∞∑
i=2

rit
i

)−1

are

positive, then the algebra F (1)/I is of infinite dimension. In particular this
is true if for a fixed real ε, 0 < ε < 1/2, ri ≤ ε2(d− 2ε)i−2, for every i ≥ 2.

A Golod algebra is a f.g. non-nilpotent nilalgebra which satisfies Lemma 1
and which is constructed by the Golod method as in [6, 7].

An algebra A over a field k is absolutely nil if for every extension field
K ⊃ k, A

⊗
K is a nilalgebra [1, 1c, p. 51].

We shall use the following characterization of absolutely nilalgebras:

Lemma 2 ([1, 3c, p. 52]). The algebra A is absolutely nil if for every finite
set g1, . . . , gn of elements of A, there exists an integer m such that for every
partition m = µ1 + · · ·+ µn, µi ≥ 0, φµ1...µn(g1, . . . , gn) =

∑
gi1 · · · gim = 0,

where
∑

ranges over all the products which contain gj, µj times for every
j.

The smallest such integer m is called the degree of absolute nillity of
g1, . . . , gn. It is obvious that φµ1...µn(g1, . . . , gn) is a homogeneous polyno-
mial of degree m in the subalgebra generated by g1, . . . , gn. φµ1...µn(g1, . . . ,
gn) is called a φµ1,µn(g1, . . . , gn) homogeneous polynomial. When there is
no ambiguity, we speak about the φµ1,µn homogeneous polynomials (parts,
components) where µ1, . . . , µn range over all the partitions of m.

It is well-known that every f.g. nilalgebra over a nondenumerable field
and every locally nilpotent algebra are absolutely nil [1]. It is observed [1,
p. 56] and is proved below (see Remark 2) that Golod algebras are examples
of non-locally nilpotent absolutely nilalgebras.

2. Residually finite case.

Theorem 1. Let A = F (1)/I be a nilalgebra with an absolutely nil ideal J/I

such that J is a homogeneous ideal of F (1). Then A is a homomorphic image
of a residually finite nilalgebra B = F (1)/T such that T is a homogeneous
ideal.
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Proof. Let g ∈ F (1) and n be an integer such that gn ∈ J . Then gn =∑
i

Mi, where Mj are homogeneous polynomials of J . Since J/I is an ab-

solutely nilalgebra, there exists an integer m = m(Mi1 , . . . ,Mik) such that
all the homogeneous polynomials in the Mj , φµ1,µk

=
∑

Mj1 · · ·Mjm ∈ I.

But every element Mj is homogeneous in F (1), so all the polynomials φµ1,µk

are homogeneous in F (1). From the fact that (gn)m =
∑

µ1+···+µk=m

φµ1,µk

we see that (gn)m is a sum of homogeneous elements of I. Let T be the
ideal of F (1) generated by all the homogeneous polynomials φµ1,µk

, so con-
structed. It is obvious that T ⊂ I is a homogeneous ideal and that F (1)/T
is a residually finite nilalgebra.

In view of this theorem we ask the following natural question:

Question 1. Let A be an algebra as in the previous theorem. Is A abso-
lutely nil?

Although this question seems to be difficult, one can observe that if J/I
is an ideal of A of finite codimension then A is absolutely nil. This gives
the following characterization of f.g. non-absolutely nilalgebras. Examples
of this sort are the nilalgebras generated by 3 elements constructed recently
by Smoktunowicz [18].

Corollary 1. Let A be a f.g. non-absolutely nilalgebra. Then for every n ≥
1, An is a f.g. nilalgebra which is not absolutely nil.

Theorem 2. Let A = F (1)/I be a nilalgebra over a denumerable field such
that I is a homogeneous ideal. Then A is a homomorphic image of a resid-
ually finite nilalgebra B = F (1)/J which satisfies Lemma 1.

Proof. We will construct by induction a family of homogeneous polynomials
f1, f2, . . . which generate the ideal J .

We suppose that the base field K is denumerable. In this case F (1) is
denumerable. Let us enumerate its elements as {y1, y2, . . . }. Choose an
integer n greater than or equal to the index of nilpotency of (y1 + I). Then
yn
1 is in I and since I is homogeneous, each of its homogeneous components

f1, . . . , ft (with degfj < degfj+1) is in I. Given any number k, there is no
more than one fi with degree k. So we have the set {f1, . . . , ft} satisfying
Lemma 1. In particular , there exit homogeneous polynomials f1, . . . , ft

with increasing degrees in I satisfying Lemma 1 such that yn
1 is in the ideal

generated by {f1, . . . , ft} ⊆ I.
Suppose by induction, we have a Golod set {f1, . . . , fs} ⊆ I such that

degfi < degfi+1 and for each i = 1, . . . , k there is an integer ni with yni
i in

the ideal generated by {f1, . . . , fs}. For yk+1 choose an integer m greater
than both the index of nilpotency of (yk+1 + I) and degfs. Since A is
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nil and since I is a homogeneous ideal, we can write (yk+1)m in terms of
its homogeneous components all of which are in I, and all of which have
degree larger than degfs. Label these components fs+1, . . . , fr. Then the set
{f1, . . . , fs, fs+1, . . . , fr} ⊆ I of homogeneous polynomials satisfies Lemma 1
such that for each i = 1, . . . , k+1, there is an integer ni with yni

i in the ideal
generated by {f1, . . . , fr}. Now, by the induction we have an infinite set of
homogeneous polynomials f1, f2, . . . in I satisfying Lemma 1, and which
generates the ideal J , such that F (1)/J is a nilalgebra.

Theorem 3. Let A = F (1)/I be an absolutely nilalgebra. Then A is a
homomorphic image of a Golod algebra B = F (1)/J .

Proof. The proof is by induction on the degrees of general polynomials. Let
g1 = c1X1 + · · · + cdXd be a general polynomial of degree 1 in F (1) and
choose an integer l greater than or equal to the degree of absolute nillity
of X1 + I, . . . ,Xd + I. Since A is absolutely nil, by Lemma 2, for every
partition l = µ1 + · · · + µd, µi ≥ 0, the φµ1,µd

(X1, . . . , Xd) polynomials are
in I. These polynomials are just the coefficients (homogeneous polynomials
in X1, . . . , Xd) of gl

1 when seen as a polynomial in the commuting unknowns
c1, . . . , cd. Let us denote these φµ1,µd

(X1, . . . , Xd) polynomials as f1, . . . , fl1 .
Now, since the number ri of polynomials of each degree i (in this case i = l)
in {f1, . . . , fl1} does not exceed (l + d − 1)d−1, for l big enough, ri ≤ (l +
d− 1)d−1 ≤ ε2(d− 2ε)i−2. Thus, the set {f1, . . . , fl1} satisfies Lemma 1.

Suppose that we have constructed in I a system of homogeneous polyno-
mials f1, . . . , flk satisfying Lemma 1 and that for every polynomial y ∈ F (1)

of a degree not exceeding k there exists an integer l′ = l′(y) such that the
homogeneous parts of yl′ are in the ideal generated by f1, . . . , flk . Let

gk+1 = c
(1)
1 X1 + · · ·+ c

(1)
d Xd + c

(2)
1 X2

1 + c
(2)
2 X1X2 + · · ·+

c
(2)
d2 X2

d + · · ·+ c
(k+1)

dk+1 Xk+1
d

be a general polynomial of F (1) of degree k + 1. Let n be an integer greater
than max (deg f1, . . . , deg flk , m(X1, . . . , X1Xd, . . . , X

k+1
d )), where, m(X1,

. . . , Xk+1
d ) is the degree of absolute nillity of X1, . . . , X1Xd, . . . , X

k+1
d . By

Lemma 2, for every partition n = µ1 + · · ·+ µq, µi ≥ 0, q = d + · · ·+ dk+1

the φµ1,µq(X1, . . . , X
k+1
d ) polynomials are in I. As in the case of g1, by the

choice of the integer n, the coefficients of gn
k+1, seen as a polynomial in the

commuting unknowns c
(1)
1 , . . . , c

(k+1)

dk+1 , are the φµ1,µq(X1, . . . , X
k+1
d ) ∈ I. Let

us denote them by flk+1, . . . , flk+1
and construct a new family of homoge-

neous polynomials f1, . . . , flk , flk+1, . . . , flk+1
satisfying Lemma 1. Indeed,

the number ri of polynomials of degree i > max(degf1, . . . , degflk) does not
exceed (n + q − 1)q−1. For n big enough, we have ri ≤ (n + q − 1)q−1 ≤
ε2(d − 2ε)i−2. For i ≤ max(degf1, . . . , degflk) this property is satisfied in
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the system f1, . . . , flk . So we have constructed a family of polynomials
f1, . . . , flk+1

satisfying Lemma 1 and for every polynomial z ∈ F (1) of a
degree not exceeding k + 1 there exists an integer n′ = n′(z) such that the
homogeneous parts of zn′

are in the ideal generated by f1, . . . , fnk+1
. The

union of all these families so constructed gives an infinite system of homo-
geneous polynomials f1, f2, . . . which generate the ideal J . We have proved
the theorem.

Remarks.
1. If A is such that specific elements generate a nilpotent (soluble, finite

dimensional,. . . ) subalgebra, then one can construct B with the same
properties as A.

2. From the proof of Theorem 3, we see that the Golod algebras are
absolutely nil. Therefore, Golod algebras have nilalgebras of matrices.
This solves P.M. Cohn’s question [4, p. 387 and Exercise 6o, p. 395].

Having in mind that a f.g. nilalgebra over a nondenumerable field is ab-
solutely nil [1], we obtain:

Corollary 2. Every f.g. nilalgebra over a nondenumerable field is a homo-
morphic image of a Golod algebra.

Let A be a Golod algebra generated by X1, . . . , Xd (d ≥ 2). The group
generated by 1 + X1, . . . , 1 + Xd is called the Golod group of A and the Lie
algebra generated by X1, . . . , Xd is the Golod-Lie algebra.

Corollary 3. For any integer d ≥ 2, every d-generator group arising from
an absolutely nilalgebra is a homomorphic image of a d-generator Golod
group. In particular, so is every finite p-group, for every prime integer p.

In [10, Problem 9], Kaplansky asked whether the augmentation ideal
ωK[G] of a f.g. infinite p-group G could be a nilideal. A particular case is
Passman’s question on the use of Golod groups to solve this problem [13,
p. 121 and Problem 18, p. 133], [14, p. 415]. The following result confirms
Passman’s observation and reduces Kaplansky’s problem to the study of the
quotients of Golod groups:

Corollary 4. Let K be a nondenumerable field of characteristic p > 0.
Then, there exists a f.g. infinite p-group G such that the augmentation ideal
ωK[G] is nil if and only if there exists a just-infinite homomorphic image
G of a Golod p-group such that ωK[G] is nil.

Proof. Let G be as in the corollary. Since it is f.g and infinite., it has a
just-infinite homomorphic image G. Hence, the augmentation ideal ωK[G]
is a quotient of ω K[G] and so it is a nilalgebra over a nondenumerable field
K. By Corollary 2, G and G are quotients of a Golod group. The converse
is obvious.
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On the other hand we point out that since non-absolutely nilalgebras
cannot be quotients of Golod algebras, their associated groups have non-nil
augmentation ideals. The only examples of this type are the nilalgebras
generated by 3 elements constructed by Smoktunowicz [18]. The following
result is analogous to the results obtained in the case of the 2-generated
Grigorchuk groups [5], the 3-generated Gupta-Sidki groups [17] and the
free Burnside groups [9]:

Corollary 5. Let K be a nondenumerable field of characteristic p > 0.
Let G be a f.g. p-group associated to a non-absolutely nilalgebra. Then the
augmentation ideal ωK[G] is not nil. Moreover ωK[G] has a just-infinite
primitive homomorphic image.

Question 2. Could the group algebra in the preceeding Corollary contain
a free associative algebra with two non-commuting indeterminates ?

Corollary 6. For any integer d ≥ 2, every d-generator Lie algebra aris-
ing from an absolutely nilalgebra is a homomorphic image of a d-generator
Golod-Lie algebra.

3. Non-residually finite case.

We turn now to non-residually finite quotients of nilalgebras and their as-
sociated groups. We point out that a f.g. just-infinite nilalgebra or a f.g.
just-infinite Jacobson radical ring is residually finite [9] and that some in-
finite dimensional quotients of Golod algebras are also Golod algebras (the
same result holds for Golod groups and Golod-Lie algebras) [8, 19]. A subset
E of a ring A is T -nilpotent if for every sequence g1, g2, . . . of elements of E,
there exists an integer k with g1g2 · · · gk = 0. It is obvious that T -nilpotency
implies local nilpotency. In our investigations, a key role is played by the
following generalization of Nakayama’s lemma:

Lemma 3 ([20, §43.5, p. 386]). Let A be an algebra. Then, AM 6= M for
every left A-module M , if and only if A is T -nilpotent.

The existence of f.g. non-residually finite, infinite dimensional nilalgebras
over every field was first proved in [16]. A simple observation yields a
stronger result. Indeed, let d ≥ 2 be an integer and suppose that for any
d-generator nilalgebra A, any left A-module M satisfies ∩AiM = 〈0〉. So,
AM 6= M and by Lemma 3, A is T -nilpotent. Thus every d-generator
nilalgebra is nilpotent. This contradicts the Golod construction [6, 7] and
proves:

Proposition. For every integer d ≥ 2 and over any field, there exists a
non-residually finite, non-nilpotent d-generator nilalgebra.

Theorem 4. Over any field, any f.g. non-nilpotent nilalgebra with involu-
tion is a homomorphic image of a f.g. non-residually finite nilalgebra.
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Proof. Let A be a f.g. non-nilpotent nilalgebra with involution. Since A is
not locally finite, by Lemma 3 there exists a nondegenerate left A-module
M such that AM = M . It is well-known that every left A-module can be
considered as a right module over the opposite algebra Ao of A. But the fact
that A has an involution yields A ∼= Ao and turns M to a nondegenerate
(A, A)-bimodule such that AM = MA = M . Let m be a nondegenerate
element of M and consider the submodule N = 〈m〉. Since A has an invo-
lution and N is nondegenerate, we have AN = NA = N . Denote by A the
trivial extension of A by N ,

A = {(a, n), a ∈ A, n ∈ N}.
With the usual addition and the following multiplication:

(a, n)(a′, n′) = (aa′, an′ + na′), a, a′ ∈ A, n, n′ ∈ N,

A is a non-nilpotent nilalgebra such that A/I = A, where I is the ideal
〈(0, n), n ∈ N〉. From the fact that AN = NA = N , it follows that I is in
A

k for every integer k; thus A is not residually finite. Since A is f.g. and
N = 〈m〉, A is f.g. Therefore, we proved the theorem.

Corollary 7. Over every field, there exists a Golod algebra with non-re-
sidually finite quotients.

Proof. Apply Theorems 1 and 2 or 3 to the non-residually finite nilalgebras
of Theorem 4.

The following corollary solves in the negative Šunkov’s problem [11, Prob-
lem 12.102]:

Corollary 8. For every prime p (respectively p = 0), there exists Golod p-
groups (respectively torsion free groups) with non-residually finite quotients.

Proof. Let A be a non-residually finite homomorphic image of a Golod al-
gebra B and denote by Y1, . . . , Yd its generators which are images of fixed
generators of B. Since A is f.g., and N = 〈m〉 is a nondegenerate module
satisfying AN = NA = N (see the proof of Theorem 4), 1 + (0, m) ∈ G
where, G = 〈1 + Y1, . . . , 1 + Yd〉. Thus the Golod group of B has G as a
non-residually finite quotient.

We conclude with the following question which is related to Bergman’s
[3, Question 63]:

Question 3. Anan’in and Puczy lowski constructed over fields of charac-
teristic zero, f.g. non-residually finite, non-nilpotent nilalgebras with non-
radical tensor square [2, 15]. Could we construct such examples in charac-
teristic p > 0?



100 LAKHDAR HAMMOUDI

References

[1] S.A. Amitsur, Nil radicals. Historical notes and some new results, Colloq. Math. Soc.
J. Bolyai, 6, Rings, Modules and Radicals, Bolyai J. Mat. Társulat, Budapest, 1973,
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