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For a compact Lie group G, three examples of G-spaces
which can serve as the target of a moment map are discussed.
Abstracting the work of Alekseev, Meinrenken, and Malkin,
we cast these theories into a unified framework.

Let G be a compact, connected Lie group, and M a manifold on which
G acts. There are several natural G-spaces which can be considered as the
target of a moment map originating from G. The first is the dual g∗ to the
Lie algebra of G; we say that M is a Hamiltonian G-space if M has a G-
invariant symplectic form ω and there exists an equivariant map Φ: M → g∗

such that

ι(ξM )ω = d 〈Φ, ξ〉(1)

for all ξ ∈ g. Φ is called the moment map [5], [4].
In [3], Alekseev, Meinrenken, and Malkin define a Hamiltonian theory in

which the moment map has the group itself as target. Given an invariant
inner product B on g, M is called q-Hamiltonian if there is an invariant
two-form ω and an equivariant map Φ: M → G (again called a moment
map) such that

dω = 1
12Φ∗B(θ, [θ, θ]),(2a)

and for all ξ ∈ g,

ι(ξM )ω = 1
2Φ∗B(θ + θ, ξ);(2b)

ker ωx =
{
ξM (x) | ξ ∈ ker

(
AdΦ(x) +1

)}
.(2c)

Here θ and θ are the left- and right-invariant Maurer-Cartan forms on
G. This theory is more complicated, especially when G is nonabelian. For
(2a) requires that ω may not be closed and (2b) requires that ω may not be
nondegenerate.

If G is given the structure of a Poisson-Lie group, one can also consider
the class of Poisson-Lie G-spaces [11], [10]. These have a symplectic form
ω and equivariant map Φ: M → G∗ such that

ι(ξM )ω = Φ∗
〈
θG∗ , ξ

〉
(3)

for all ξ. Here θG∗ , the right-invariant Maurer-Cartan form on G∗, takes
values in g∗, and hence pairs with g. The complications here are that the
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individual maps g : M → M do not preserve the full structure of M , i.e., the
Poisson structure, as they do in the two cases above. Rather, the action map
itself G ×M → M is a Poisson map. However, in [1], Alekseev introduces
another target: The canonical noncompact symmetric space Y within GC
transverse to G. Let i : Y → GC be the inclusion. The differential equations
a moment map Φ: M → Y must satisfy are

dω = 1
2Φ∗i∗ Im B

(
θGC , [θGC , θGC ]

)
;(4a)

and for all ξ,

ι(ξM )ω = 1
2
√
−1

Φ∗i∗B(θGC + θGC , ξ);(4b)

ker ωx = 0.(4c)

They are similar to (2a)-(2c). The spaces G∗ and Y are equivariantly dif-
feomorphic, and Alekseev uses Y to construct a correspondence between
ordinary Hamiltonian G-spaces and Poisson-Lie G-spaces. Both G∗ and Y
are equivariantly diffeomorphic to a slightly more natural space, GC/G.

Thus we have three moment map theories, or at least three natural G-
spaces which serve as targets for moment maps: g∗ for the classical Hamil-
tonian theory; G for the q-Hamiltonian theory, and GC/G representing the
Poisson or Y -valued theory. In this note we bring these theories into a uni-
fied framework. Abstracting from [3], we show that given a symmetric pair
(H,G), with a special pairing on the Lie algebra of H, we may construct
an equivariantly-closed three-form on P = H/G and a moment map the-
ory. The three most obvious P which arise this way are G o g∗/G = g∗,
(G × G)/G = G, and GC/G ∼= Y , and the moment map theories we will
construct coincide with those which have already arisen in the literature.
Furthermore, if (H,G) is one of these special symmetric pairs with H con-
nected and G simply connected, H/G must decompose into a product of
smaller such symmetric spaces each one of which is isomorphic to k∗, K, or
KC/K for a subgroup K of G.

These results were announced in [8]. Shortly thereafter, similar results
were related to the author by Yvette Kosmann-Schwarzbach [2]. The au-
thor’s preprint eventually developed into [9]. He would like to thank his
advisors, Victor Guillemin and Shlomo Sternberg, as well as Eckhard Mein-
renken and Chris Woodward for many useful discussions. The reviewer also
deserves thanks for thoughtful and detailed feedback.

1. Definitions.

1.1. Moment space and moment map. There is a basic notion of a
differential equation a moment map should obey, regardless of the target, as
well as certain conditions of minimal degeneracy. Here we generalize these
requirements.
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Definition 1. A (possibly degenerate) moment space for G is a pair (P, χ̃),
where P is a G-manifold and χ̃ is an equivariantly closed three-form on P .

The form χ̃ may be called the moment form. Since

Ω3
G(P ) = Ω3(P )G ⊕ (Ω1(P )⊗ g∗)G,

we can write χ̃ as χ + τ , where χ ∈ Ω3(P )G is the invariant piece and
τ : g → Ω1(P ) is the equivariant piece. For any G-manifold Q, the vector
field generated by ξ ∈ g will be denoted ξQ. The condition that dGχ̃ = 0
can be written as three equations:

dχ = 0,(5a)

and for all ξ ∈ g,

ι(ξP )χ = dτ(ξ);(5b)

ι(ξP )τ(ξ) = 0.(5c)

Example 1. Let φ : g → g∗∗ ⊂ C∞(g∗) be the map φ(ξ)(`) = 〈ξ, `〉. Then
an equivariantly closed three-form on g∗ is τg∗ = dGφ, which has no invariant
part. Written as a map g → Ω1(g∗), it takes the form

τg∗(ξ)`(λ) = 〈λ, ξ〉 ,(6)

for each ξ ∈ g, ` ∈ g∗, and λ ∈ T`g
∗ = g∗.

Example 2. As explained in the introduction, the second example of a
moment space is G itself. Let g have an invariant, positive-definite inner
product B. Then the form

χ̃G(ξ) = χG + τG(ξ) def= 1
12B(θG, [θG, θG]) + 1

2B(ξ, θG + θG)(7)

is equivariantly closed. This is a consequence of the Cartan structure equa-
tions

dθ = −1
2 [θ, θ](8a)

dθ = 1
2 [θ, θ].(8b)

Example 3. There are two perspectives on the last example of moment
space. The first connects with the Poisson-Lie G-spaces of Lu and Weinstein.
Let T be a maximal torus for G, t its Lie algebra, and a =

√
−1t ⊂ gC. a is

the Lie algebra of a subgroup A ⊂ GC. Let n be the sum of a set of positive
root spaces. Then there is the Iwasawa decomposition of gC:

gC = g⊕ a⊕ n;
GC = GAN.

Then the imaginary part of BC restricts to a nondegenerate pairing between
g and a⊕n, and thus a⊕n ∼= g∗. Call the group AN by G∗; then GC = G∗G.
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The groups G and G∗ are both Poisson-Lie groups, and G∗ the dual Poisson-
Lie group to G. Left multiplication of G on GC descends to an action of G
on G∗, called the left dressing action.

We do not seek an equivariantly closed three-form on G∗, the main dif-
ficulty arising from the fact that the dressing action does not preserve the
Poisson structure of G∗. However, one may also consider the space GC/G
as a subspace of GC. Set

Y =
{
h ∈ GC

∣∣h = h−1
}

.

Y is invariant under the adjoint action of G and equivariantly diffeomorphic
to G∗, and TeY = p. Let θY , θY ∈ Ω1(Y, p) be the restrictions of the
Maurer-Cartan forms from GC to Y . Then the form

χ̃Y (ξ) = χY + τY (ξ) def= 1
12 Im BC(θY , [θY , θY ]) + 1

2
√
−1

BC(ξ, θY + θY )(9)

is real and equivariantly closed.

The equivariantly closed three-form allows us to define a moment map.

Definition 2. Let M be a G-manifold and P a moment space for G. M is
called a P -Hamiltonian G-space if there exists an invariant two-form ω ∈
Ω2(M)G and an equivariant map Φ: M → P such that

dGω = −Φ∗χ̃.(10)

The P -Hamiltonian G-space M will further be called nondegenerate if in
addition

ker ωx =
{

ξM (x)
∣∣∣ξ ∈ ker τΦ(x) : g → T ∗Φ(x)P

}
(11)

for all x ∈ M .

We may write (10) in terms of its components

dω = −Φ∗χ;(12a)

ι(ξM )ω = Φ∗τ(ξ),(12b)

for all ξ ∈ g. For p ∈ P , τp is defined to be the linear map g → T ∗p P
which takes ξ ∈ g to the evaluation of the one-form τ(ξ) at the point p. In
light of (12b), we have that for p ∈ P , the fundamental vector fields of all
Lie algebra vectors in the kernel of τp must annihilate ω. Thus (11) is a
condition of minimal degeneracy.

Example 4. To revisit Example 1, the condition (12b) applied to χ̃g∗ = τg∗

is precisely (1). Equations (12a) and (11) state that ω must be closed and
nondegenerate, respectively.

Example 5. The conditions on G-valued moment maps are also clearly
generalized by Definition 2 (in fact, one could say this example motivates
the abstract theory). Alekseev-Meinrenken-Malkin show that the moduli
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space of flat G-connections on a Riemann surface with r > 0 boundary
components (divided by the action of the restricted gauge group) has the
structure of a Hamiltonian Gr+2-space with Gr+2-valued moment map.

Example 6. A G-space M with Poisson action is called a Poisson-Lie G-
space if there is a G-invariant symplectic form ω and an equivariant map Φ
such that for all ξ ∈ g,

ι(ξM )ω = 2Φ∗ Im(ξ, θG∗).(13)

Choosing instead to work with Y -valued moment maps, we may apply
Definition 2 to χ̃Y and we get (4a)-(4c). Alekseev exhibits equivariant dif-
feomorphisms G∗ ∼= Y , and shows that the corresponding moment map
theories are isomorphic.

For any moment space P , the most immediate candidates for P -Hamil-
tonian G-spaces are the orbits O of G. These have a natural inclusion map
i : O → P . Indeed, χ̃ induces a two-form on each orbit O. If p ∈ O, TpO is
spanned by {ξP (p) |ξ ∈ g}, and we define

ωO (ξP (p), ηP (p)) = τ(ξ)p (ηP (p)) .(14)

By (5c), this form is well-defined and alternating, and we immediately see
that it satisfies (12b). In fact, ωO is characterized by the property that
ι(ξM )ωO = i∗τ(ξ) for all ξ ∈ g. We claim ωO is G-invariant, and this is a
consequence of the equivariance of τ . For, given ξ, η ∈ g and g ∈ G,

g∗ωO|p (ξP (p), ηP (p)) = ωO|g p (g∗ · ξP (p), g∗ · ηP (p))

= ωO|g p ((Adg ξ)P (gp), g∗ · ηP (p))

= τ(Adg ξ)gp (g∗ · ηP (p))

= τ(ξ)p

(
(g−1)∗ · g∗ · ηP (p)

)
= ωO|p (ξP (p), ηP (p)) .

Therefore, by the relation

0 = LξOωO = dι(ξO) + ι(ξO)dωO,

we must have that

ι(ξO)dωO = −dι(ξO)ωO
= −di∗τ(ξ)

= i∗dτ(ξ)

= −i∗ι(ξO)χ,

which verifies the moment condition (12a). We have proved the following:

Proposition 1. Let P be a moment space for G. Consider a G-orbit O ⊆ P
with two-form ωO given by (14) and moment map given by inclusion. Then
(O, ωO, i : O → P ) is a P -Hamiltonian G-space.



108 MATTHEW LEINGANG

We incorporate the minimal degeneracy along orbits into our definition.

Definition 3. A moment space P is called nondegenerate if all orbits O ⊆
P are nondegenerate P -Hamiltonian G-spaces with two-form given by (14)
and moment map inclusion. This means that for all p ∈ P ,

ker τp ∩ gp = {0} ,(15a)

and for all ξ ∈ g,

τ(ξ)p

(
ηp(p)

)
= 0 ∀η ∈ g =⇒ τ(ξ)p ≡ 0.(15b)

Lemma 1. Let M be a nondegenerate P -Hamiltonian G-space with two-
form ω and moment map Φ: M → P . Let x ∈ M . Then:

(a) The map ξ 7→ ξM (x), restricted to ker τx → ker ωx, is an isomorphism.
(b) We have ker dΦ|x ∩ ker ω|x = {0}.

Proof. The first claim is obvious given (15a). For the second, let v ∈
ker dΦ|x ∩ ker ω|x. Then v = ξM (x) for some ξ ∈ ker τΦ(x). However, since

0 = dΦ(v) = dΦ(ξM (x)) = ξP (Φ(x)),

(the last equality is by the equivariance of Φ), we must have that ξ ∈ gΦ(p).
Hence again by (15b), we have ξ = 0. �

Proposition 2. Let M1 and M2 be nondegenerate P -Hamiltonian G-spaces
and F : M1 → M2 an equivariant map such that F ∗ω2 = ω1 and F ∗Φ2 = Φ1.
Then F is an immersion.

Proof. Since F ∗ω2 = ω1, we have that ker dF |x = ker ω1|x. Also, since
F ∗Φ2 = Φ1, we have

ker ω1|x ∼= ker ω2|F (x)
∼= ker τΦ1(x).

Thus ker dF |x ∩ ker ω1|x = {0}, and therefore dF |x is injective. �

From this we can prove the “P -Hamiltonian Kostant Theorem.”

Theorem 1. Let M a transitive nondegenerate P -Hamiltonian G-space.
Then the moment map Φ: M → P is a covering map onto an orbit.

Proof. For x0 ∈ M , let O be the orbit of Φ(x0) ∈ P . Then since M is
transitive, the image of Φ consists of O alone. That Φ is a submersion onto
its image is clear since TpO = gP (p) and ξP (p) = dΦ(ξM (x)) if p = Φ(x).
Finally, we have that Φ∗ωO = ω by (12b) and (14), and applying the previous
proposition, Φ is an immersion as well. �

Definition 4. Let M be a P -Hamiltonian G-space. Suppose that o ∈ M
is a G-fixed point. We define the reduced space of M at o to be Mo =
Φ−1(o)/G.
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Mo has a special two-form on it arising from that on M . To see this, put
Z = Φ−1(o), and let i : Z → M , π : Z → Mo be the inclusion and projection.
Denote the P -Hamiltonian two-form on M is by ω. It is G-invariant, and
therefore so it is restriction to Z. Furthermore, for ξ ∈ g,

ι(ξZ)i∗ω = i∗ι(ξM )ω

= i∗Φ∗τ(ξ)
= 0,

since Φ ◦ i is the constant map o. Thus i∗ω is G-basic; there exists ωo ∈
Ω2(Mo) such that π∗ωo = i∗ω. Notice also that since

π∗dωo = dπ∗ωo = di∗ω = i∗dω = i∗Φ∗χ = 0,

we must have that dωo = 0.

Theorem 2. Let M be a nondegenerate P -Hamiltonian G-space. Suppose
that dim P = dim G. Then ωo is a symplectic form if and only o is a regular
value of the moment map Φ.

Proof. Let z ∈ Z. The map τo is injective by (15a) and therefore an iso-
morphism since dim P = dim G. Thus ω|z is nondegenerate. Therefore, we
have a commutative diagram

g
τo−−−→ T ∗o Py Φ∗

y
TzM

ω−−−→ T ∗z M

where the horizontal maps are both isomorphisms. It follows from the basic
(ker T ∗)0 = im T theorem of linear algebra that

(ker dΦ|z)
ω = gM (z).

Now TzZ ⊆ ker dΦ|z, by the definition of Z as the inverse image of o. Thus
we have

Tz(G · z) = gM (z) = (ker dΦ|z)
ω ⊆ (TzZ)i∗ω.

The left-hand side of the above is the kernel of π∗ : TzZ → Tπ(z)Mo, and
the right-hand side is the kernel of i∗ωo at z. The two are equal (and ωo is
therefore nondegenerate) if and only equality holds in the last step. This is
true if and only if TzZ = ker dΦ|z, i.e., if z is regular. �

2. Manin structure.

A symmetric pair over G consists of a Lie group H ⊃ G and an involution σ
of H such that Hσ = G. Let h be the Lie algebra of H and s the derivative
of σ at the identity. Then (h, s) is a symmetric Lie algebra, and hσ = g. h
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has a canonical decomposition h = g⊕ p, where p is the −1 eigenspace of s.
We have the commutation relations

[g, g] ⊂ g; [g, p] ⊂ p; [p, p] ⊂ g.(16)

Let P = H/G where, and o = eG. Then P is a symmetric space and p is
canonically identified with ToP . See [6].

We will often take the involution to be understood and refer to the sym-
metric pair as (H,G). There are three important example of symmetric
pairs over G.

Example 7. On H0 = Gng∗, the involution σ0 is the map (g, `) 7→ (g,−`).
The corresponding symmetric Lie algebra is h0 = g n g∗ with Lie bracket
and involution

[(ξ, λ), (η, µ)] =
(
[ξ, η] , ad∗ξ µ− ad∗η λ

)
;

s0(ξ, λ) = (ξ,−λ).

Example 8. On H+ = G × G, G is embedded as the diagonal. This sub-
group is fixed by the involution σ+(g1, g2) = (g2, g1). The corresponding
symmetric Lie algebra is h+ = g× g with involution

σ+(ξ1, ξ2) = (ξ2, ξ1)

fixing the diagonal subalgebra.

Example 9. Let G be simply connected as well, so that there is a complex,
simply connected group GC with G as its real form. There are the conjuga-
tion automorphisms of GC and h− = gC = g⊗ C singling out the real forms
as their fixed point sets.

s−(ξ +
√
−1η) = ξ −

√
−1η.

In order to consider the quotient spaces H/G as moment spaces for G,
we need to pair elements of g with elements of p. The following structure
makes this possible:

Definition 5. Let (h, s) be a symmetric Lie algebra. h will be called a
Manin symmetric Lie algebra if it admits a nondegenerate symmetric bilin-
ear form q with respect to which s is skew-symmetric: I.e., for all ζ1, ζ2 ∈ h:

q(sζ1, ζ2) = −q(ζ1, sζ2).(17)

The pairing q will be called a Manin form or Manin pairing. It is also
assumed to be invariant with respect to the adjoint action of h on itself: For
all ζ1, ζ2, ζ3 ∈ h,

q(adζ1 ζ2, ζ3) = q(ζ2, adζ1 ζ3), or

q([ζ1, ζ2], ζ3) = q(ζ1, [ζ2, ζ3]).
(18)

Let (H,G) be a symmetric pair. H will be called a Manin symmetric
pair if the associated symmetric Lie algebra h admits a Manin form which is
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invariant with respect to the adjoint action of H on h. That is, in addition
to (17) and (18), we must have, for all ζ1, ζ2 ∈ h and h ∈ H,

q(Adh ζ1, ζ2) = q(ζ1,Adh−1 ζ2).(19)

Proposition 3. Let G be a compact, connected Lie group and g its Lie
algebra.

(a) h0 = g o g∗ has a Manin pairing given by

q0 ((ξ1, λ1), (ξ2, λ2)) = 〈ξ1, λ2〉+ 〈ξ2, λ1〉 .(20)

(H0 = Gog∗, G) is a Manin symmetric pair. The resulting symmetric
space is isomorphic to g∗.

(b) Let g have an invariant inner product B. h+ = g × g has a Manin
pairing given by

q+ ((ξ1, η1), (ξ2, η2)) = 1
2 (B(ξ1, ξ2)−B(η1, η2)) .(21)

Since G is connected, (H+ = G×G, ∆(G)) is a Manin symmetric pair.
The resulting symmetric space is isomorphic to G.

(c) Again assume g has an inner product B. Then B extends to a C-
bilinear inner product on h− = g⊗C. h− has a a Manin pairing given
by

q−(ζ1, ζ2) = Im B(ζ1, ζ2).(22)

Proof. Clear. �

3. Construction of the moment form.

The purpose of this section is to show that given a Manin symmetric pair,
we can construct a moment space. This space will in fact be the space of
right cosets.

For this section (H,G) will be a Manin symmetric pair with involution σ
and a Manin pairing q. The corresponding involution of h will be denoted
s.

3.1. The equivariant form. Let θ be the left-invariant Maurer-Cartan
form on H taking values in h. Using s, we can decompose θ into its “g-part”
and its “p-part,” defining:

γ =
1 + s

2
θ; π =

1− s

2
θ,

so γ ∈ Ω1(H, g) and π ∈ Ω1(H, p). Let j : H → P = H/G be the quotient
map.

Proposition 4. Define for ξ ∈ g a one-form

β(ξ)h = q(ξ,Adh π) ∈ Ω1(H).(23)

Then:
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(a) β(ξ) is basic with respect to the right action of G on H, so there is a
unique one-form τ(ξ) ∈ Ω1(P ) such that j∗τ(ξ) = β(ξ).

(b) The map ξ 7→ β(ξ) is equivariant with respect to the left action of G
on H, so τ is an equivariant three-form on P .

(c) We have, for all ξ ∈ g,

ι(ξP )τ(ξ) = 0,

where ξP is the vector field on P generated by the left action of G in
the direction ξ.

Proof. For h ∈ H, let Rh and Lh denote left and right multiplication by h
as diffeomorphisms of H. Since R∗

gθ = Adg−1 θ and σ(g) = g, it follows that
R∗

gπ = Adg−1 π. Then(
R∗

gβ(ξ)
)
h

= q
(
ξ,R∗

g Adh π
)

= q
(
ξ,Adhg Adg−1 π

)
= q (ξ, Adh π) = β(ξ)h,

so β(ξ) is right-invariant. Moreover, if ηR(h) = (Lh)∗η is the fundamental
vector field associated to the right action corresponding to η, then θ(ηR) = η.
Hence π(θR) = 0 and

β(ξ)h(ηR) = 0.

Thus β(ξ) is also right-horizontal, hence right-basic. This proves the first
claim of the proposition.

For the second, note that θ and hence π are left H-invariant, so(
L∗g−1β(ξ)

)
h

= q(ξ, Adg−1 π)

= q(Adg ξ,Adh π) = β(Adg ξ)h.

Finally, to prove the third claim, we will show that for ξ ∈ g,

ι(ξL)β(ξ) = 0,(24)

where ξL is the fundamental vector field on H associated to the left action.
Indeed,

β(ξh)(ξL) = q

(
ξ,Adh

Adh−1 −Adσ(h−1)

2
ξ

)
= 1

2q(ξ, ξ)− 1
2

(
Adh−1 ξ, Adσ(h−1) ξ

)
= 0.

(25)

�

Remark. It is only in (25) that we used the full AdH -invariance of the
pairing q. In fact, the first two claims of Proposition 4 can be proven with
only a pairing between g and p which is AdG-invariant (note AdG preserves
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the decomposition h = g⊕ p). There is a unique extension of such a pairing
to an s-skew pairing of the full Lie algebra, and to force the associated
one-form to obey (24) is to require that

q(Adh ξ, η) = q(ξ, Adh−1 η),

for all ξ, η ∈ g, and for all h of the form σ(k)k−1. Such h lie in a submanifold
V =

{
h ∈ H

∣∣σ(h) = h−1
}
, which is transverse to G at the identity of H. In

fact TeV = p.

3.2. The invariant form. Here we will extend τ ∈ Ω3
G(H/G) to an equiv-

ariantly closed three-form.

Proposition 5. Define Ξ ∈ Ω3(H) by

Ξ = 1
3q(π, [π, π]).(26)

Then:
(a) Ξ is right G-basic and left G-invariant. Hence there exists a unique

χ ∈ Ω3(P )G such that Ξ = j∗χ.
(b)

dχ = 0.(27)

(c) For ξ ∈ g,

ι(ξP )χ = dτ(ξ).(28)

Proof. Writing θ = γ + π as the decomposition of θ relative to that of h, we
have

dγ = −1
2 ([γ, γ] + [π, π]) ;

dπ = −[γ, π].

This is an immediate consequence of the bracket identities for a symmetric
Lie algebra (16) and the Cartan structure equation (8a). The proposition
reduces to a formal calculation.

(a) This is proved similarly to the analogous claim in Proposition 4.
(b) By the Jacobi identity[

π, [π, π]
]

=
[
θ, [θ, θ]

]
=

[
γ, [γ, γ]

]
= 0.

Thus,

d Ξ = 1
3dq(π, [π, π])

= q(dπ, [π, π])

= −q([γ, π], [π, π])

= −q
(
γ,

[
π, [π, π]

])
= 0.

So (27) is proved.
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(c) Let ξ ∈ g. Then

ι(ξL)Ξ = 1
3 ι(ξL)q(π, [π, π])

= q(π(ξL), [π, π])

= q(Adh−1 ξ, [π, π]).

On the other hand,

dβ(ξ) = dq(ξ, Adh π)

= q(ξ,Adh adθ π)− q(ξ, Adh[π, γ])

= q(ξ, Adh[γ + π, π])− q(ξ, Adh[π, γ])

= q(ξ, Adh[π, π]).

Thus (28) is true as well.
�

As an immediate consequence, we have:

Theorem 3. If (H,G, σ, q) is a Manin symmetric pair, the equivariant
three-form χ̃ = χ + τ is equivariantly closed, thus giving H/G the struc-
ture of a moment space for G. �

3.3. Nondegeneracy. Along with the equivariant condition (Definition 1),
which we have just satisfied for an arbitrary Manin symmetric pair, there is
the nondegeneracy (actually, minimal degeneracy) condition of Definition 3.
Here we will use the nondegeneracy of the pairing to satisfy nondegeneracy
of τ .

Proposition 6. Let (H,G) be a Manin symmetric pair, and O an orbit of
G in P = H/G. Then P with two-form given by (14) and moment map
i : O → P satisfies

ker ωp =
{
ξP (p)

∣∣ξ ∈ ker τp : g → T ∗p P
}

.(29)

Hence O is a nondegenerate P -Hamiltonian G-space.

Thus:

Theorem 4. Let (H,G, σ, q) be a Manin symmetric pair. Then P = H/G
is a nondegenerate moment space for G.

Proof. What we are attempting to prove is

ι(ξP )ωp = 0 ⇐⇒

{
ξP (p) = 0 or
ξ ∈ ker τp.

(30)

Suppose that ξ ∈ ker τp, where p = hG. This means that

0 = q

(
Adh−1 ξ,

1− s

2
Adh−1 η

)
= −1

2q
(
Adh−1 ξ, Adσ(h−1) η

)
(31)
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for all η ∈ g. Since the q-orthogonal space to g within h is g itself, we have
that

Adσ(h)h−1ξ ∈ g.(32)

Write k = σ(h)h−1 and note that σ(k) = k−1. Then by (32) we must have
that

Adk−1 ξ = σ(Adk ξ) = Adk ξ

and therefore ξ = Ad2
k ξ or

ξ ∈ ker(1−Ad2
k).

Now we have a direct sum decomposition

ker(1−Ad2
k) = ker(1−Adk)⊕ ker(1 + Adk).(33)

If ξ is in the first summand, we have Adh−1 ξ = Adσ(h−1) ξ ∈ g and therefore
ξP (p) = 0. On the other hand, if ξ is in the second summand we have

Adh−1 ξ = −Adσ(h−1) ξ ∈ p

and thus β(ξ)h = 0. Therefore (30) is true. �

Proof of Theorem 4. The first summand in the right-hand side of (33) in-
tersected with g is ker τp, and the second summand intersected with g is gp.
Hence ker τp ∩ gp = {0}. Since q is nondegenerate, g and p∗ are isomorphic
as vector spaces. Hence all nondegeneracy conditions are satisfied. �

4. Recovery of the original moment spaces.

Propositions 3, 4, and 5 give equivariantly closed three-forms on each of the
symmetric spaces g∗, G, and GC/G. In this section we will how the forms
we have constructed here coincide with those developed independently.

Consider first H0 = Gng∗. The map j0 : Gng∗ → g∗, given by projection
onto the g∗ factor, is right G-invariant. Thus it gives a left G-equivariant
diffeomorphism between H0/G and g∗.

Proposition 7. We have j∗0τg∗ = β0, where β0 is the form given by applying
Proposition 5 to the Manin form q0 on h0 = g n g∗.

Proof. Let ξ ∈ g and h = (g, `) ∈ G n g∗. Then a tangent vector to h ∈ H0

can be written as L(g,`)∗(η, λ) for some (η, λ) ∈ g n g∗. We have

(j∗0τg∗(ξ))(g,`)

(
L(g,`)∗(η, λ)

)
= τg∗(ξ)`

((
j0 ◦ L(g,`)

)
∗ (η, λ)

)
= τg∗(ξ)`(Ad∗g λ) =

〈
ξ, Ad∗g λ

〉
.
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On the other hand,

β0(ξ)(g,`)

(
L(g,`)∗(η, λ)

)
= q0

(
ξ,Ad(g,`) π

(
L(g,`)∗(η, λ)

))
= q0

(
ξ,Ad(g,`)(0, λ)

)
= q0

(
(ξ, 0), (0,Ad∗g λ)

)
=

〈
ξ,Ad∗g λ

〉
.

�

Let H+ = G × G and define the map j+ : H+ → G, (g1, g2) 7→ g1g
−1
2 .

Embed G into H+ as the diagonal; it acts on H+ on the left and the right.
j+ is then seen to be right G-invariant and thus a left G-equivariant diffeo-
morphism between H+/G and G.

Proposition 8. The map j+ pulls back the Alekseev-Meinrenken-Malkin
moment form (7) to Ξ+ + β+, the form constructed on H+ from the Manin
pairing q+.

Proof. We may write θH+ = θ1
G + θ2

G, etc. Then for each (g1, g2) ∈ H+,

j∗+θG

∣∣
(g1,g2)

= Adg2(θ
1
G − θ2

G);

j∗+θG

∣∣
(g1,g2)

= Adg1(θ
1
G − θ2

G).

Therefore

j∗+χ+ = j∗+
1
12B(θG, [θG, θG]) = 1

12B(θ1
G − θ2

G, [θ1
G − θ2

G, θ1
G − θ2

G]).

Now π =
(

θ1
G−θ2

G
2 ,

θ1
G−θ2

G
2

)
, so

Ξ+ = 1
3q+(π, [π, π])

= 1
24q+

(
(θ1

G − θ2
G, θ1

G − θ2
G), [(θ1

G − θ2
G, θ1

G − θ2
G), (θ1

G − θ2
G, θ1

G − θ2
G)]

)
= 1

24q+

(
(θ1

G − θ2
G, θ1

G − θ2
G),

(
[θ1

G − θ2
G, θ1

G − θ2
G], [θ1

G − θ2
G, θ1

G − θ2
G]

))
= 1

12B(θ1
G − θ2

G, [θ1
G − θ2

G, θ1
G − θ2

G]).

Similarly,

J∗+τ(ξ) = 1
2B(ξ, j∗+θG + θG)

= 1
2B

(
ξ, (Adg2 +Adg1)(θ

1
G − θ2

G)
)
,

while

β+(ξ) = q+

(
(ξ, ξ),Ad(g1,g2)

(
θ1
G − θ2

G

2
,
θ1
G − θ2

G

2

))
= q+

(
(ξ, ξ),

(
Adg1

θ1
G − θ2

G

2
,Adg2

θ1
G − θ2

G

2

))
= 1

2B(ξ, (Adg1 +Adg2)(θ
1
G − θ2

G)).

�
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Let j− : GC → GC be the map h 7→ hh
−. Then j− takes values in Y , is

right G-invariant, and descends to a left G-equivariant diffeomorphism of
GC/G with Y .

The factor of 2 appearing in (13) is not in its original definition; it is
introduced in [3] to make the theorem connecting Y to G∗ more clear. Up
to that same factor of 2, we can connect our moment form on GC/G to that
on Y .

Proposition 9. The map j− pulls back the moment form χ̃Y to Ξ− + β−,
the equivariantly closed three-form on GC arising from applying Propositions
5 and 6 to 2q−.

Proof. Let θGC be the left Maurer-Cartan form, and θ̃GC its complex conju-
gate. Then for all h ∈ GC,

j∗−θY

∣∣
h

= Adh(θGC − θ̃GC) = 2 Adh π;

j∗−θY

∣∣
h

= Adh(θGC − θ̃GC) = 2 Adh π.

So

j∗−χY = 1
2 Im BC

(
j∗−θY , [j∗−θY , j∗−θY ]

)
= 2

3 Im BC(π, [π, π]) = Ξ−.

Likewise, we compute

j∗−τY (ξ) = 1
2
√
−1

BC(ξ, j∗−θY + j∗−θY )

= 1
2
√
−1

BC

(
ξ, (Adh +Adh)(θGC − θ̃GC)

)
.

Note that Adh +Adh is real and θGC − θ̃GC is imaginary, so the above is in
fact real. One the other hand

β−(ξ)h = q(ξ, Adh π) = 2 Im BC(ξ,Adh π)

=
1√
−1

(
BC

(
ξ, 1

2 Adh(θGC − θ̃GC)
)
−BC

(
ξ, 1

2 Adh(θGC − θ̃GC)
))

=
1

2
√
−1

BC

(
ξ, (Adh +Adh)(θGC − θ̃GC)

)
.

�

5. Decompositions.

We have shown how Manin symmetric pairs can give rise to moment spaces.
We now show to extent to which the known examples of Manin symmetric
pairs are the only ones.

If G = G1 × G2 is a direct product of Lie groups, and P1 and P2 are
moment spaces for G1 and G2, respectively, then P1×P2 with the equivariant
form χ̃1 + χ̃2 is a moment space for G. Thus we have a way of “building up”
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moment spaces. It is natural to try to go the other way—i.e., to decompose.
We start this process at the linear level, and integrate from there.

5.1. Structure of Manin symmetric pairs. We say that a symmetric
pair (H,G) is Riemannian if G acts by isometries on H. We say that a
symmetric Lie algebra (h, s) is orthogonal if g = hs is compactly embedded
in h and effective if g ∩ h = 0. These last two conditions are satisfied
whenever (h, s) is the symmetric Lie algebra associated to a Riemannian
symmetric pair (H,G).

Theorem 5. let (h, s) be an effective, orthogonal symmetric Lie algebra
with Manin pairing q. Then there exists a unique canonical decomposition

h = h0 ⊕ h+ ⊕ h−; (direct sum of ideals)(34a)

g = g0 ⊕ g+ ⊕ g−; (direct sum of ideals)(34b)

p = p0 ⊕ p+ ⊕ p−; (direct sum of subspaces)(34c)

such that, with the induced symmetric and Manin pairings given by restric-
tion, we have

h0 = g0 ⊕ p0
∼= g0 n g∗0;

h+ = g+ ⊕ p+
∼= g+ × g+;

h− = g− ⊕ p− ∼= g− ⊗ C.

These isomorphisms are in fact isometries with respect to q.

We will prove this in a series of lemmas. To begin, assume that g is simple.
Let κ be the negative of the Killing form on h. Then κ is positive-definite
on g, adh-invariant, and

κ(sζ1, ζ2) = κ(ζ1, ζ2),

or,

κ(sζ1, ζ2) = κ(ζ1, sζ2),

for all ζ1, ζ2 ∈ h. Define J : h → h by

q(Jζ1, ζ2) = κ(ζ1, ζ2).

Lemma 2. (a) The map J commutes with the adjoint action of h on itself.
That is, for all ζ ∈ h,

J ◦ adζ = adζ ◦J ;

or, for all ζ1 and ζ2,

J [ζ1, ζ2] = [Jζ1, ζ2].

(b) The map J anticommutes with s: J ◦ s = −s ◦ J . So J takes g into p
and vice versa.

(c) The map J is self-adjoint with respect to q.



SYMMETRIC SPACE VALUED MOMENT MAPS 119

(d) The restriction J |g is a vector space isomorphism g ∼= p.

Proof. The first two parts are straightforward. The third is a simple conse-
quence of the symmetry of κ and of q. The last follows from the fact that κ
is positive definite on g. �

It follows that J2 is an endomorphism of g as a g-module. By Lemma 2,
Part (c), J2 is self-adjoint. Therefore, g has an orthonormal basis of eigen-
vectors with real eigenvalues. Since each eigenspace is an ideal of J2, it
follows by simplicity that g = gλ is a single eigenspace. Thus for all ξ, η ∈ g,

[Jξ, Jη] = J2[ξ, η] = λ[ξ, η].(35)

If λ = 0, then p is an abelian ideal of h dual by q to g, and hence h ∼= gng∗.
Otherwise, the endomorphism 1√

|λ|
J enjoys all the properties of Lemma 2,

so we may assume that |λ| = 1. If λ = 1, the map

T+ : h −→ g× g;

(ξ, Jη) 7−→ 1
2(ξ + η, ξ − η)

is an isomorphism of (h, s, q) onto (h+, s+, q+). On the other hand if λ = −1
the map

T− : h −→ g⊗ C;

(ξ, Jη) 7−→ ξ +
√
−1η

is an isomorphism onto (h−, s−, q−). This concludes the proof of Theorem 5
in the case that g is simple.

Now if h is effective, then g is at least semisimple. Therefore we have a
decomposition

g =
⊕
λ∈Σ

gλ

where Σ is the set of eigenvalues of J2. The eigenspaces gλ are ideals of g.
For each λ, let pλ = Jgλ.
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Lemma 3. For each pair of eigenvalues (λ, µ), the following commutation
relations hold:

(a)

[gλ, gµ] ⊆

{
0 if λ 6= µ;
gλ if λ = µ.

(b)

[gλ, pµ] ⊆

{
0 if λ 6= µ;
pλ if λ = µ.

(c)

[pλ, pµ] ⊆

{
0 if λ 6= µ;
gλ if λ = µ.

Proof.

(a) Let ξ ∈ gλ and η ∈ gµ. Then since J2 is a g-module homomorphism,
we have that [ξ, η] ∈ gλ ∩ gµ.

(b) Given ξ and η as above, notice

[ξ, Jη] = J [ξ, η] ∈ J [gλ, gµ].

(c) Finally,

[Jξ, Jη] = J2[ξ, η] ∈ [gλ, gµ].

�

This shows that each hλ = gλ⊕ pλ is an ideal of h. Each hλ is isomorphic
to one of the three canonical types, and we can collect them by type. This
proves Theorem 5.

Theorem 6. Let (H,G) be a Manin symmetric pair, with G semisimple
and H connected and simply connected. Then the moment space P = H/G
has a decomposition

P = P0 × P+ × P−

and G has a decomposition

G = G0 ×G+ ×G−

such that P0 is a moment space for G0 isomorphic to g∗0, P+ is a moment
space for G+ isomorphic to G+, and P− is a moment space for G− isomor-
phic to (G−)C/G−.
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Proof. It follows from the homotopy exact sequence for the fibration G →
H → H/G that if H is simply connected and G is connected, then H/G is
simply connected.

Since G is semisimple, h is an effective, orthogonal, Manin symmetric
Lie algebra. Therefore, we can decompose h as in Theorem 5 into h =
h0⊕h+⊕h−. Let H0×H+×H− be the corresponding decomposition of H.
Likewise g decomposes and we can write G = G0 ×G+ ×G−. Then

P = H/G =
H0 ×H+ ×H−
G0 ×G+ ×G−

= H0/G0 ×H+/G+ ×H−/G−.

�

5.2. Relaxing H-invariance. This shows that we have exhausted all pos-
sibilities of creating moment spaces from Manin symmetric pairs, once we
allow suitable assumptions about semisimplicity and connectedness. In fact,
we can relax one of the conditions of a Manin form, weakening a hypothesis
in Theorem 5, and thus arriving at a stronger Theorem 6.

Let (H,G) be any symmetric pair such that H/G is a moment space. Let
χ̃ = χ + τ be the equivariantly closed three-form. Then τ pulls back to a
linear map β : g → Ω1(H)Gop

, where we use the op-superscript to denote
the right action of G on H. Evaluating β at the identity of H gives a map
b : g → h∗. Notice that for g ∈ G, ξ ∈ g, and ζ ∈ h,

b(Adg, ξ, ζ) = β(Adg ξ)e(ζ).

By left-equivariance of β, we have

= β(ξ)g−1(Lg−1∗ζ).

Because β is right-invariant, this is

= β(ξ)e(Rg∗Lg−1∗ζ)

= b(ξ,Adg−1 ζ).

Furthermore, again by right-invariance,

b(ξ, η) = β(ξ)e(η)

= 〈β(ξ), ηR〉e
= 0.

Since h is symmetric and has a canonical decomposition, we can uniquely
extend b to an inner product q on h with respect to which g and p are dual
isotropic subspaces and s is skew-symmetric. This form is not necessarily
completely h-invariant, however, only g-invariant. Nevertheless, this suffices.

Theorem 7. Let (h, s, q) be an effective orthogonal symmetric Lie algebra,
with g semisimple and q a Manin pairing assumed to be only g-invariant.
Then there is a canonical decomposition of h as in Theorem 5.
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Then we can immediately, using techniques similar to Theorem 6, prove:

Theorem 8. let (H,G) be a Riemannian symmetric pair, with G connected
and H simply connected. Suppose that H/G is a moment space for G. Then
there is a decomposition of H, H, and H/G as in Theorem 6.

Proof of Theorem 7. Assume that g is simple, and complexify h, g, s, and
q. Then J : g → p can still by constructed by q(Jξ, η) = κ(ξ, η). Define for
ξ, η ∈ g,

{ξ, η} def= [Jξ, Jη].

Then clearly

[ξ1, {ξ2, ξ3}] = {[ξ1, ξ2], ξ3}+ {ξ2, [ξ1, ξ3]} .

Hence {·, ·} is a homomorphism of g-modules. For simple Lie algebras,
however, all such homomorphisms are scalar multiples of the Lie bracket
(see below). Thus there exists a complex number λ such that {ξ, η} = λ[ξ, η]
for all ξ and η. But since J is real, λ must be real, too, and we are in the
same situation as in Theorem 5. �

It remains to prove that

Homg

(∧2
g, g

)
= C[·, ·].

Since g is simple, it is enough to show that
(∧2 g

)
ad

= g, where for any
g module M , Mad denotes the ad-primary component of M . Though κ we
may identify g∗ ∼= g; thus the algebra

∧
g (on which g acts preserving the

grading) has a differential d which is also a g-module homomorphism. Then
as shown by Kostant [7, Theorems D and E], (

∧
g)ad = Aad⊗ (

∧
g)g, where

A is the exterior subalgebra generated by the image of d1g →
∧2 g. By

restricting to the degree two subspace, we see that
(∧2 g

)
ad

is the image

of d1. But since H1(g, C) = 0, d1 is injective, and so the image of d1 is
isomorphic to g.
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