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Let G = exp g be a connected, simply connected, solv-
able exponential Lie group. Let l ∈ g∗ and let p be an
appropriate Pukanszky polarization for l in g. For every
p = (p1, . . . , pm) ∈ [1, ∞]m we define a representation πl,p,p by
induction on an Lp-space, where the norm ‖·‖p of this space is
in fact obtained by successive Lpj -norms, with distinct pj’s in
different directions. These representations are topologically
irreducible and their restrictions to the subspaces generated
by the vectors of the form πl,p,p(f)ξ with f ∈ L1(G), πl,p,p(f)
of finite rank and ξ ∈ Hl,p,p are algebraically irreducible. All
the simple L1(G)-modules are of that form, up to equivalence.
We show that these representations may in fact be character-
ized (up to equivalence) by the G-orbits of couples (l, ν), where
l ∈ g∗ and ν is a real linear form on g(l)/g(l) ∩ n satisfying a
certain growth condition and where g(l) is the stabilizer of l
in g.

1. Introduction.

The aim of the present paper is to give an explicit description of the alge-
braically irreducible representations of L1(G), where G is a connected, simply
connected, exponential, solvable Lie group. These representations have first
been studied by D. Poguntke in 1983 ([Po2]). The method of Poguntke
which has been adapted and used in ([LuMo2]), is an important ingredient
in the present paper, as we shall see later with more details. But first we
have to recall the following definitions: We say that (T,V) is a representa-
tion of L1(G), if V is a vector space, L(V) the space of all linear operators
on V and

T : L1(G) → L(V)
an algebra homomorphism. Moreover (T,V) is said to be algebraically ir-
reducible if V has no nontrivial invariant subspaces for the action of L1(G)
under T . In that case we also say that V is a simple L1(G)-module. If V
is a topological vector space, we require moreover the action of L1(G) on V
to be strongly continuous. In that case we say that (T,V) is a topologically
irreducible representation of L1(G), if V has no nontrivial closed invariant
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subspaces. As in the general theory, we can always assume for any represen-
tation (T,V) of L1(G) that V is a Banach space and that the representation
(T,V) is bounded (see [BoDu]).

Assume that (T,V) is a topologically irreducible representation on a Ba-
nach space and that there exists f ∈ L1(G) such that T (f) is a nonzero
operator of finite rank. Consider

V0 = span {T (f)ξ | f ∈ L1(G), T (f) of finite rank, ξ ∈ V}.
Then V0 6= {0} and the restriction of T to V0, (T |V0 ,V0), is a simple
L1(G)-module ([Wa]). We shall see that in our situation all the simple
L1(G)-modules are obtained in that way (up to equivalence) and we shall
give a precise description of the representations (T,V) to consider.

The previous definitions and results may of course be given for an arbi-
trary Banach algebra A instead of L1(G). Moreover the representations of
L1(G) may be considered as the integrated forms of bounded representations
of the group G. In fact, recall that (T,V) is said to be a representation of the
group G if T is a group homomorphism of G into the general linear group of
V. This representation is said to be bounded if supx∈G ‖T (x)‖ < ∞, where
‖T (x)‖ is the operator norm of T (x). For such a representation of G, we get
a representation of L1(G) by T (f) =

∫
G f(x)T (x)dx,∀f ∈ L1(G).

A representation π of G, resp. L1(G) on a Hilbert space Hπ is said to be
unitary, if π(x−1) = π(x)∗, resp. π(f∗) = π(f)∗ for all x ∈ G, resp. f ∈
L1(G). Recall that the unitary topologically irreducible representations π
of a solvable exponential Lie group G = exp g may be described as induced
representations. There exist l ∈ g∗ and a Pukanszky polarization p ⊂ g at
l such that π = ind G

Pχl (up to unitary equivalence), where P = exp p and
χl(exp X) = e−i〈l,X〉 for all X ∈ p ([LeLu]). The set of equivalence classes
of topologically irreducible unitary representations of G is noted by Ĝ.

If G is a connected, simply connected nilpotent Lie group, then all the
simple L1(G)-modules are equivalent to a module of the form (π|H0

π
,H0

π),
where π ∈ Ĝ and

H0
π = span {π(f)ξ | f ∈ L1(G), π(f) of finite rank, ξ ∈ Hπ}.

The same remains true for L1(G, ω), where G is a connected, simply con-
nected, nilpotent Lie group and ω is a polynomial weight on G ([MiMo]).
In this paper these results are generalized in the following way: If G is a con-
nected, simply connected, solvable exponential Lie group, we define repre-
sentations πl,p,p by induction on Lp-spaces, where p = (p1, . . . , pm) ∈ [1,∞]m

is a multi-index. The norm ‖ · ‖p of such an Lp-space is obtained by suc-
cessive Lpj -norms with distinct pj ’s in different directions. To do this, we
have to introduce a precise decomposition of the Lie algebra g of the group
G. These representations are topologically irreducible and admit nontrivial
operators of finite rank. Hence, if we write Hl,p,p for the space of such a



SIMPLE L1(G)-MODULES 135

representation and

H0
l,p,p = span {πl,p,p(f)ξ | f ∈ L1(G), πl,p,p(f) of finite rank, ξ ∈ Hl,p,p},

then
(
πl,p,p|H0

l,p,p
,H0

l,p,p

)
=

(
π0

l,p,p,H
0
l,p,p

)
is a simple L1(G)-module. We

show that all the simple L1(G)-modules (T,V) are of this type (up to equiv-
alence). To do this we rely on the work of Poguntke ([Po1], [Po2]). In his
paper ([Po2]) Poguntke gives a first description of simple L1(G)-modules.
Let’s notice first that a representation (T,V) of L1(G) defines unique repre-
sentations of G, of N (by restriction) and of L1(N ), where N = exp n and n
is the nilradical of g. We shall write kerL1(N ) T for the corresponding kernel
in L1(N ). This kernel is of the form ker(G · τ), where τ ∈ N̂ is the represen-
tation induced from a character χq defined by a linear form q ∈ n∗. Let l ∈ g∗

such that l|n = q. The method of Poguntke ([Po2]) which has been adapted
and used for the description of topologically irreducible representations in
([LuMo2]) consists in constructing an algebra of the type L1(Rn, ω), where
ω is an exponential weight in general, uniquely determined by the given sim-
ple module (T,V) and where Rn ≡ G(l)/G(l) ∩N , with G(l) = exp g(l) and
g(l) is the stabilizer of l in g. Then one shows that the simple L1(G)-module
(T,V) with given kerL1(N ) T is completely characterized by a continuous
character on L1(Rn, ω). Conversely every such character on L1(Rn, ω) leads
to a unique simple L1(G)-module (up to equivalence) with given kerL1(N ) T .
In order to show that every simple L1(G)-module is equivalent to a module
of the form

(
πl,p,p|H0

l,p,p
,H0

l,p,p

)
, it is then enough to show that every (con-

tinuous) character on L1(Rn, ω) is associated to such a representation. To do
this we have to give an estimation of the weight ω using a method developed
by Poguntke in ([Po2]). The equivalence classes of simple L1(G)-modules
are then completely characterized by the G-orbits of the couple (l, ν), where
l ∈ g∗ and ν is a real linear form on g(l)/g(l)∩ n satisfying a certain growth
condition.

2. Construction of special irreducible representations.

2.1. . For the rest of this paper G = exp g will be a connected, simply
connected, solvable exponential Lie group with Lie algebra g. The nil-radical
of g will be denoted by n and N = expn will be the corresponding subgroup
of G. Take l ∈ g∗ and write q = l|n ∈ n∗. We define the following stabilizers:

g(l) = {X ∈ g | 〈l, [X, g]〉 ≡ 0},
g(q) = {X ∈ g | 〈q, [X, n]〉 = 〈l, [X, n]〉 ≡ 0},
n(q) = {X ∈ n | 〈q, [X, n]〉 = 〈l, [X, n]〉 ≡ 0} = g(q) ∩ n.
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Then we decompose the Lie algebra as follows:

g(l) + n = u⊕ n with u ⊂ g(l) ⊂ g(q),

g(q) + n = w⊕ (g(l) + n) = w⊕ u⊕ n with w ⊂ g(q),

g = v⊕ (g(q) + n) = v⊕w⊕ u⊕ n.

2.2. . Now we choose Y ⊂ w ⊂ g(q) a maximal l-isotropic subspace of w,
i.e., a maximal subspace of w such that 〈l, [Y,Y]〉 ≡ 0. Then there exist a
subspace X in w and bases {X1, . . . , Xc} of X, resp. {Y1, . . . , Yc} of Y such
that w = X⊕Y with

〈l, [Xi, Xj ]〉 = 0, 〈l, [Yi, Yj ]〉 = 0, 〈l, [Xi, Yj ]〉 = δij ,

i.e., X is a dual space of Y with respect to l. This is possible because {Z ∈
w | 〈l, [Z,w]〉 ≡ 0} = {0}. As a matter of fact, w⊕ n(q) modulo ker(q|n(q))
is a Heisenberg algebra. We write U = exp u, V = exp v, W = exp w,
X = exp X, Y = exp Y.

2.3. Polarizations. First let us choose p0 a g(q)-invariant polarization of q
in n (for example a Vergne polarization). Then p = Y⊕p0⊕u is a Pukanszky
polarization of l in g. Moreover p0 = p ∩ n. For the rest of this paper we
shall stick to these polarizations. We write P0 = exp p0, P = exp p.

2.4. Jordan-Hölder decomposition. Let

n = n0 ⊃ n1 ⊃ · · · ⊃ nk ⊃ nk+1 = {0}
be a Jordan-Hölder sequence for the action of g(q) + n on n. Let

Y = {i | p0 + ni 6= p0 + ni+1, i = 0, . . . , k}
= {ij | 1 ≤ j ≤ m, 0 ≤ i1 ≤ · · · ≤ im ≤ k}.

We write pj = p0 + nij , for j = 1, . . . m, and pm+1 = p0. Obviously p1 = n.
For each j ∈ {1, . . . ,m} we choose a subspace vj ⊂ nij ⊂ pj such that
vj ⊕ pj+1 = pj . Then

∑m
j=1

⊕
vj ⊕ p0 = n and

Φ :
m∑

j=1

⊕

vj −→ N/P0

V1 + · · ·+ Vm ≡ (V1, . . . , Vm) 7−→ exp (V1) . . . exp (Vm) · P0

is a diffeomorphism.

2.5. Special representations. Let’s write

ñ =
m∑

j=1

⊕

vj , Vj = exp vj and Ñ =
m∏

j=1

Vj =
m∏

j=1

exp vj .

Consider the following decomposition of G : G = V · X · Ñ · P. Take p =
(p1, . . . , pm) ∈ [1,∞]m. The representation space Lp(G/P, χl) is then defined
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to be the completion, for the norm ‖ · ‖p given below, of the space of all
functions ξ : V · X · Ñ · P → C continuous with compact support mod P,
such that ξ(x · p) = χl(p)ξ(x),∀x ∈ G,∀p ∈ P, and

‖ξ‖p =
( ∫

V

∫
X

(( ∫
V1

(
. . .

( ∫
Vm

|ξ(vxv1 . . . vm)|pmdvm

) 1
pm

. . .

)p1

dv1

) 1
p1

)2

dxdv

) 1
2

< ∞,

the different measures being the Lebesgue measures on v,X, v1, . . . , vm. If

pj = ∞, then
(∫
Vj
| . . . |pjdvj

) 1
pj is replaced by the corresponding sup-norm.

Let Lp(G/P, χl) = Hl,p,p be the space we get by completion. On this space
we want to define a representation by isometric operators given essentially
by left translation. This representation will be of the form

(πl,p,p(s)ξ)(y) = ∆
− 1

p (s)ξ(s−1y), ∀s, y ∈ G,

where the modular function ∆
− 1

p has to be defined in order to get isometric
operators on Hl,p,p. It is easy to check that

∆
1
p (v · x · n · p) = e

Pm
j=1

1
pj

tr adpj/pj+1
(logp)

= e
Pm

j=1
1

pj
trλj(logp)

,

if we use the notation λj(·) = adpj/pj+1
(·). For p = 2 = (2, . . . , 2) we have

∆
1
2 (s) = e

1
2
tr adn/p0 (logs) = e

1
2
tr adg/p(logs),

as n/p0 = (u ⊕ Y ⊕ n)/p and as tr adg/(u⊕Y⊕n) = 0. The representation
πl = πl,p,2 is the usual induced unitary representation indGP(χl, 2). Notice
that

πl,p,p(s) = ∆
1
2
− 1

p (s)πl(s)
on the dense subspace of all continuous functions of Lp(G/P, χl) with com-
pact support in G/P, or, more generally, on the generalized Schwartz space
ES(G/P, χl) (see (2.7.) for the precise definition of this space).

2.6. Remarks.

a) As G(l) ⊂ P and as ∆
1
p ≡ 1 on N ∩ G(l), ∆

1
p may be considered as a

character on G(l)/G(l) ∩N ≡ G/H given by

∆
1
p (ṡ) = e

Pm
j=1

1
pj

tr adpj/pj+1
(logs)

for all ṡ ∈ G(l)/G(l) ∩N .
b) There is a relation between the Haar measures on G, P and the measure

on G/P ≡ V ·X ·Ñ = V ·X ·
∏m

j=1 Vj : If the Lie algebra g is decomposed
by

g = v⊕ X⊕Y⊕ u⊕ (ñ⊕ p0),
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we get a Haar measure on G by∫
G

f(g)dg =
∫

v

∫
X

∫
Y

∫
u

∫
v1

· · ·
∫

vm

∫
P0

f
(
expV · expX · expY · expU

· expV1 . . . expVm · p0
)
dp0dVm . . . dV1dUdY dXdV,

where we use the Haar measure on P0 and the Lebesgue measures on
v,X,Y, u, vj . The Haar measure on P is given by∫

P
f(p)dp =

∫
Y

∫
u

∫
P0

f
(
expY · expU · p0

)
dp0dUdY.

We check that∫
G

f(g)dg =
∫
G/P

∫
P

f(gp)∆−1(gp)dpdġ.

2.7. The ES-spaces. Let the polarizations be chosen as in (2.3.). Let
B1 = {A1, . . . , Aj} be a coexponential basis for p0 in n, which has for
instance been chosen in the subspaces vj . Let B2 = {B1, . . . , Bk} be a
coexponential basis for n + p in g. Then B = B1 ∪ B2 is a coexponential
basis for p in g. Given a function F on G/P × G/P, we define a function F̃
on (Rk × Rj)× (Rk × Rj) by

F̃
(
b1, . . . , bk, a1, . . . aj ; b′1, . . . , b

′
k, a

′
1, . . . a

′
j

)
= F

(
exp b1B1 . . . exp bkBk exp a1A1 . . . exp ajAj ;

exp b′1B1 . . . exp b′kBk exp a′1A1 . . . exp a′jAj

)
.

We proceed similarly for a function defined on G/P. This allows us to give
the following definition:

Definition 2.7.1. a) The space ES(G/P × G/P, χl) is the space of all
C∞-functions F : G × G → C such that:

(1) F (xs, x′s′) = χl(s)χl(s′)F (x, x′), ∀x, x′ ∈ G,∀s, s′ ∈ P.

(2) ‖F‖∂,α,α′,R,R′

= sup
a,a′∈Rj ,b,b′∈Rk

(
eα|b|eα′|b′||R(a)R′(a′)∂a∂b∂a′∂b′F̃ (b, a; b′, a′)|

)
< ∞

for all α, α′ ≥ 0, for all polynomials R and R′, for all derivation oper-
ators ∂, if |b| and |b′| denote the euclidean norm on Rk.

(3) The same conditions as in (2) are required for all partial Fourier trans-
forms of F̃ in b and b′.

b) The space ES(G/P, χl) is defined similarly (see [Lu]).

Remark. The previous spaces are independent of the choice of the coex-
ponential bases. They also contain real analytic functions which, therefore,
may be extended to functions with complex variables ([LeLu]).
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Let B3 = {C1, . . . , Ci} be a coexponential basis for n in g. We may choose
the elements of B3 in a nilpotent subalgebra Q of g such that g = Q + n.
Let B4 = {D1, . . . , Dg} be a Jordan-Hölder basis for n. For a function f

defined on G, we define f̃ on Ri × Rg as previously. We then define:

Definition 2.7.2. The space ES(G) is the space of all C∞-functions f :
G → C such that

‖f‖∂,α,R = sup
c∈Ri,d∈Rg

(
eα|c|

∣∣∣R(d)∂c∂df̃(c, d)
∣∣∣) < ∞

for every α ≥ 0, for every polynomial R, for all derivation operators ∂, if |c|
denotes the euclidean norm on Ri.

Remarks.

a) The space ES(G) is independent of the choice of the bases. It is dense
in L1(G) ([Lu]). Similarly for ES(G/P, χl) and Lp(G/P, χl).

b) The space ES(G/P × G/P, χl) is in the image of the map that sends
every f ∈ L1(G) to the kernel function of the operator πl(f) ([LeLu],
[Lu]). Similarly for πl,p,p(f) instead of πl thanks to the following

observation: For f ∈ ES(G) ⊂ L1(G), we have πl,p,p(f) = πl(∆
1
2
− 1

p · f)

and πl(f) = πl,p,p(∆
1
p
− 1

2 · f), where 1
2 −

1
p =

(
1
2 −

1
p1

, . . . , 1
2 −

1
pm

)
.

c) Put H0
l,p,p = span {πl,p,p(f)ξ | ξ ∈ Hl,p,p, f ∈ L1(G) such that πl,p,p(f)

of finite rank}. Hence ES(G/P, χl) ⊂ H0
l,p,p, by b).

As in ([Wa]) we can prove the following theorem, using c):

Theorem 2.7.3. The representation
(
πl,p,p,Hl,p,p

)
is topologically irreduc-

ible and the sub-representation
(
πl,p,p|H0

l,p,p
,H0

l,p,p

)
=

(
π0

l,p,p,H
0
l,p,p

)
is alge-

braically irreducible.

3. Analysis of an arbitrary simple L1(G)-module.

3.1. . In this chapter we shall use the methods of Poguntke ([Po1], [Po2])
which have been used and modified in ([LuMo2]) in order to study the topo-
logically irreducible representations. As a matter of fact most of the analysis
of ([LuMo2]) remains true in the situation of simple L1(G)-modules. There-
fore we shall give no proofs in this chapter and just recall the main results
of ([LuMo2]) and ([Po2]).

Proposition 3.2. Let (T,U) be an algebraically irreducible representation
of L1(G). Let’s write kerL1(N ) T for the kernel of the corresponding repre-
sentation of L1(N ). Then there exist τ ∈ N̂ and q ∈ n∗, p0 a polarization
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of q in n and P0 = exp p0, such that

τ = indNP0χq and kerL1(N ) T = ker(G · τ) =
⋂
g∈G

ker(gτ).

The kernel kerL1(N ) T is completely determined by the G-orbit G · τ .

3.3. Corresponding unitary representations. The aim of this section
is to introduce the largest subgroup H on which it is possible, in a certain
sense, to work with a unitary representation. Let l ∈ g∗ be such that
l|n = q. Using the same decompositions as in (2.1.), we define h = v⊕w⊕n,
H = exp h, r = l|h. Then p1 = Y⊕ p0 is a Pukanszky polarization of r in h.
Moreover, p1 = p∩ h. Let P1 = exp p1. As in (2.5.) we get a decomposition
of H by writing H = V · X · Ñ · P1. Imitating the definition of πl,p,p, we
similarly define representations γp of H and L1(H) on the representation

space Hγp
= Lp(H/P1, χr). Notice that the corresponding character ∆

1
p is

the same as for πl,p,p. For p = 2 = (2, . . . , 2) we simply write γ = γ2 = γ2.
For every extension l of r to g, the representation γp may be extended to a
representation γl,p of G in the following way:

(1) Hγl,p
= Hγp

(2) γl,p(h) = γp(h), ∀h ∈ H

(3)
(
γl,p(t)ξ

)
(x) = ∆

− 1
p (t)χl(t)ξ(t−1xt), ∀ξ ∈ Hγp ,∀t ∈ U ,∀x ∈ H

(4) γl,p(th) = γl,p(t)γl,p(h), ∀t ∈ U ,∀h ∈ H.

For p = 2 we simply write γl instead of γl,2. It is easy to check that γl,p

is a well-defined representation that is equivalent to πl,p,p. Hence γp may
also be viewed as the restriction of πl,p,p to the subgroup H. One may check
that different extensions r and r′ of q ∈ n∗ to h give the same representation
γp (up to equivalence), whereas different extensions l and l′ of r ∈ h∗ to g
lead to representations γl,p and γl′,p that differ by the unitary character χl−l′

on U . One defines of course the spaces ES(H), ES(H/P1, χr), ES(H/P1 ×
H/P1, χr) and one has the equivalent of (2.7.3.) for the representations γp.

Take λ ∈ ES(H/P1, χr) such that 〈λ, λ〉 = 1 and let pλ ∈ L1(H) be an
element such that the kernel of the operator γ(pλ) is the projector Pλ,λ, i.e.,
such that (

γ(pλ)ξ
)
(x) =

∫
H/P1

λ(x)λ(y)ξ(y)dẏ.

Put p = pλ mod ker γ. Then p is an idempotent element of L1(H)/ ker γ.
We have that

ker γ =
(
L1(H) ∗ ker(G · τ)

)−L1(H) = kerL1(H) T,
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where kerL1(H) T stands for the kernel of the corresponding representation
of L1(H) (obtained by T |H) and(

L1(G) ∗ ker γ
)−L1(G) ⊂ ker T.

In particular,
T (pλ) 6= 0 and W = T (pλ)U 6= {0}.

3.4. Some quotient algebras. Thanks to the decomposition g = u ⊕ h
with u ⊂ g(l), we put U = exp u and we may identify the sets U and
G(l)/G(l)∩N . As in ([Po2]) and ([LuMo2]) we introduce generalized con-
volution and involution formulas in L1(U , L1(H)/ ker γ). It is then easy to
check that the algebras L1(U , L1(H)/ ker γ) and L1(G)/(L1(G) ∗ker γ)−L1(G)

= L1(G)/(L1(G) ∗ kerL1(N ) T )−L1(G) are isomorphic and isometric (see [Po2]
and [LuMo2]). Notice that the latter algebra is completely determined by
the initial representation (T,U).

3.5. A special subalgebra. Take pλ as in (3.3.). For any f ∈ L1(G), let’s
define f̃ ∈ L1(U , L1(H)) by f̃(u)(h) = f(u · h) for almost all u ∈ U and
almost all h ∈ H. It is then easy to check that

(pλ ∗ f ∗ pλ)e(x) = px
λ ∗L1(H) f̃(x) ∗L1(H) pλ

for every f ∈ L1(G) and every x ∈ G, where px
λ is the function of L1(H)

obtained by the action of x on pλ:

px
λ(y) = ∆G(x)pλ(xyx−1), ∀y ∈ H.

We recall that π = πl,p,2 = indGPχl, that γ = indHP1χr and that the extension
γl is equivalent to π. One has the following formulas:

γ(px
λ) = Pγl(x)∗λ,γl(x)∗λ,

γ(px
λ ∗ g ∗ pλ) = 〈γ(g)λ, γl(x)∗λ〉Pγl(x)∗λ,λ,

for every g ∈ L1(H). By ([LeLu], [Lu]) there exists vλ,l(x) ∈ L1(H) such
that γ(vλ,l(x)) = Pγl(x)∗λ,λ and the map x → vλ,l(x) from G to L1(H) is
continuous. Hence, for every g ∈ L1(H)/ ker γ and every x ∈ G, there is a
constant c(x, g) = 〈γ(g)λ, γl(x)∗λ〉 such that

px
λ ∗ g ∗ pλ = c(x, g)vλ,l(x) mod ker γ.

Moreover
vλ,l(x) = px

λ ∗ vλ,l(x) ∗ pλ mod ker γ.

Let’s write

p = pλ mod ker γ, vl(x) = vλ,l(x) mod ker γ

in the quotient space L1(H)/ ker γ. Then the space

px ∗ (L1(H)/ ker γ) ∗ p = (px
λ ∗ L1(H) ∗ pλ)/ ker γ
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is one dimensional for every fixed x ∈ G and it has vl(x) as a basis.
On the other hand, it is easy to check that

γ(px
λ ∗ pλ) = 〈γl(x)λ, λ〉Pγl(x)∗λ,λ = 〈γl(x)λ, λ〉γ(vλ,l(x)),

i.e., that
px

λ ∗ pλ = 〈γl(x)λ, λ〉vλ,l(x) mod ker γ.

If we apply the representation γp instead of γ, the formulas are more com-
plicated. As kerL1(H) πl,p,p = kerL1(H) γl,p = ker γ (by (3.3.)),

γl,p(vλ,l(x)) =
1

〈γl(x)λ, λ〉
γl,p(px

λ ∗ pλ)

=
1

〈γl(x)λ, λ〉
γl,p(x−1)γl,p(pλ)γl,p(x)γl,p(pλ).

In order to compute the exact value of γl,p(vλ,l(x)), we have to introduce a
more precise decomposition of the Lie algebra g (see (5.)).

Definition of v(x). The previous definition of vl(x) is the one used in
([Po2]) and ([LuMo2]). It depends on the extension l of q we have chosen.
If l and l′ are two different extensions such that l|h = l′|h = r, then γl and γl′

differ only by the unitary character χl−l′ on U . Hence, if the corresponding
functions are named vλ,l and vλ,l′ , then

vλ,l′(x) = χl−l′(x)vλ,l(x) mod ker γ,∀x ∈ U .

Let l0 ∈ g∗ be a fixed extension of r. We have

vλ,l0(x) = χl−l0(x)vλ,l(x) mod ker γ

and we define v(x) to be vl0(x) = vλ,l0(x) mod ker γ.

Let’s put ω(x) = ‖v(x)‖L1(H)/ ker γ . By ([Po2], [LuMo2]) the function
ω is a symmetric weight function on G, which is constant on the classes
modulo H. Notice that ω is independent of the choice of the fixed linear
form l0 used to define v. Moreover, ω may be considered as a function on
G(l)/G(l) ∩N = G(l0)/G(l0) ∩N .

Recall that pλ acts on L1(G) and p = pλ mod ker γ acts on L1(G)/(L1(G)∗
ker γ)−L1(G) by convolution. Moreover f mod (L1(G)∗ker γ)−L1(G) 7→ f̃ mod
ker γ is an isometric isomorphism between L1(G)/(L1(G) ∗ ker γ)−L1(G) and
L1(U , L1(H)/ ker γ). As

(pλ ∗ f ∗ pλ)e(x) = px
λ ∗L1(H) f̃(x) ∗L1(H) pλ

for every f ∈ L1(G) and every x ∈ G, we may consider a similar action on
L1(U , L1(H)/ ker γ) by

(p ∗ f̃ ∗ p)(x) = px ∗L1(H)/ ker γ f̃(x) ∗L1(H)/ ker γ p ∈ px ∗ (L1(H)/ ker γ) ∗ p

= C · v(x)
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for every f̃ ∈ L1(U , L1(H)/ ker γ). As a matter of fact,

(p ∗ f̃ ∗ p)(x) = 〈γ(f̃(x))λ, γl(x)∗λ〉χl(x)χl0(x) · v(x) mod ker γ

= h(x) · v(x) mod ker γ,

if we define the function h : U→C by h(x) = 〈γ(f̃(x))λ, γl(x)∗λ〉χl(x)χl0(x).
Of course the same argument is valid for every function f ∈ L1(G) and every
x ∈ G, if we define f̃(x) ∈ L1(H)/ ker γ by f̃(x)(h) = f(xh)mod ker γ. As
shown in ([LuMo2]), the map Λ : p ∗ f̃ ∗ p = h · v 7→ h is an isometric
isomorphism from p ∗ L1(U , L1(H)/ ker γ) ∗ p onto L1(U , ω).

Remarks.
a) Notice that the function h given by

h(x) = 〈γ(f̃(x))λ, γl(x)∗λ〉χl(x)χl0(x) = 〈γ(f̃(x))λ, γl0(x)∗λ〉
is independent of the choice of l such that l|h = r is fixed.

b) For a given f in L1(G)/(L1(G)∗ker γ)−L1(G), the function h defined by
the previous formulas may be considered as a function on all of G(l).
It is then constant on the classes of G(l) modulo G(l) ∩ N . Hence we
may consider h as a function in L1(G(l)/G(l) ∩N , ω), where G(l) just
depends on l|n = q. In particular, h is independent of the choice of
the supplementary space u in g(l).

c) If we take another l0 ∈ g∗ having the same restriction to h and another
v(x) = vλ,l0(x) mod ker γ, then the h functions are all multiplied by
the same unitary character χ such that χ|H ≡ 1.

d) Let’s take λ, µ ∈ ES(H/P1, χr) such that 〈λ, λ〉 = 〈µ, µ〉 = 1. If
pλ, pµ ∈ L1(H) are such that γ(pλ) = Pλ,λ and γ(pµ) = Pµ,µ, then the
algebras

(pλ mod ker γ) ∗ L1(U , L1(H)/ ker γ) ∗ (pλ mod ker γ)

and

(pµ mod ker γ) ∗ L1(U , L1(H)/ ker γ) ∗ (pµ mod ker γ)

are ∗-isomorphic. The resulting weights are equivalent. In fact, take
sλ,µ ∈ L1(H) and s = sλ,µ mod ker γ such that γ(sλ,µ) = Pλ,µ. Then
the map

Φ : (pλmodker γ) ∗ f̃ ∗ (pλmodker γ)

7→ s∗ ∗ ((pλmodker γ) ∗ f̃ ∗ (pλmodker γ)) ∗ s

is the corresponding ∗-isomorphism. Moreover the different λ, µ ∈
ES(H/P1, χr) together with the corresponding ∗-isomorphism lead
to the same function h, for given functions f and f̃ . The algebra
L1(G(l)/G(l) ∩N , ω) is hence independent of the choice of λ.
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e) The algebra L1(U , ω) ≡ L1(G(l)/G(l) ∩ N , ω) is abelian (see [Po2],
[LuMo2]).

3.6. Relation with the simple L1(G)-module. Let’s recall that if (T,U)
is a simple L1(G)-module, there is a unique orbit G · τ ⊂ N̂ , τ ∈ N̂ , such
that kerL1(N ) T = ker(G · τ). Then we construct H ⊂ G and γ ∈ Ĥ as
explained previously. To characterize completely (T,U) with a given kerT ,
it is of course enough to study the algebraically irreducible representations
of

L1(G)/
(
L1(G) ∗ kerL1(N ) T

)−L1(G) = L1(G)/(L1(G) ∗ ker γ)−L1(G)

' L1(U , L1(H)/ ker γ),

as
(
L1(G) ∗ kerL1(N ) T

)−L1(G) ⊂ ker T . By ([Po2], Theorem 1) these are de-
termined by the simple (p ∗ L1(U , L1(H)/ ker γ) ∗ p)-modules. But B =
p ∗ L1(U , L1(H)/ ker γ) ∗ p ' L1(Rn, ω) is abelian and its simple mod-
ules coincide with the characters of L1(Rn, ω). Hence, if we put A =
L1(U , L1(H)/ ker γ) and if (S, U) is a simple A-module, this means that
the subspace V = S(p)U is one-dimensional. So there exists a character
χ on L1(Rn, ω) ' p ∗ L1(U , L1(H)/ ker γ) ∗ p such that for every v ∈ V
and f ∈ B we have S(f)v = χ(f)v. Hence the maximal modular left ideal
M of A consisting of all f in A for which S(f)v = 0, v ∈ V, is given by
M = {f ∈ A | χ(p ∗ A ∗ f ∗ p) ≡ 0}. The given simple L1(U , L1(H)/ ker γ)-
module is then isomorphic to (L,A/M) where L is the left multiplication
on A/M .

On the other hand, for a given (T,U), let q ∈ n∗ be as in (3.2.). We
want to show that (T,U) is equivalent to π0

l,p,p for some l, p, p such that
l|n = q. But kerL1(N ) T = ker(G · τ) = kerL1(N ) πl,p,p for every l ∈ g∗

such that l|n = q, for every multi-index p, τ being given by τ = indNP0χq.

Hence the algebraically irreducible representations
(
πl,p,p|H0

l,p,p
,H0

l,p,p

)
give

rise to the same algebra L1(U , L1(H)/ ker γ) as (T,U) does (if we make the
same choices for H,U , p, . . . ). To show that (T,U) is equivalent to such a(
πl,p,p|H0

l,p,p
,H0

l,p,p

)
with l|n = q it is therefore enough to show that the

corresponding characters on L1(Rn, ω) coincide for some p. To do this we
first have to study the weight ω.

Example 3.7. Let γl ≡ πl,p,2 ∈ Ĝ such that γl|H = γ and consider the
simple module (γl|H0

γ
,H0

γ). Let’s compute the character of L1(Rn, ω) ≡
p ∗ L1(U , L1(H)/ ker γ) ∗ p associated to γl|H0

γ
. Recall that this is done by

considering the action of p ∗ L1(U , L1(H)/ ker γ) ∗ p on γ(p)H0
γ = γ(pλ)H0

γ .
Take h ·v ∈ p∗L1(U , L1(H)/ ker γ)∗p corresponding to h ∈ L1(Rn, ω). Then
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one checks that

γl(h · v)(γ(pλ)ξ) =
∫
U

∫
H

h(t)v(t)(s)γl(t)γ(s)γ(pλ)ξdsdt = ĥ(l − l0)γ(pλ)ξ.

Hence the character of L1(Rn, ω) ≡ L1(U , ω) corresponding to γl ≡ πl,p,2 is
χl−l0 . Similarly, we may compute γl,p(h · v):

γl,p(h · v)(γp(pλ)ξ) =
∫
U

h(t)χl−l0(t)
1

〈γl(t)λ, λ〉
γp(pλ)γl,p(t)γp(pλ)ξdt,

by (3.5.). In order to conclude, we need to know γp(pλ). This computation
requires a more precise decomposition of the Lie algebra g and will be done
in (5.6.1.). We shall see that the character corresponding to γl,p ≡ πl,p,p is

χl,p = ∆
1
2
− 1

p · χl−l0 .

4. Characters of L1(Rn, ω).

4.1. . Let’s fix x = expX ∈ U ⊂ G(l) and let’s study the growth of
ω(exp tX) for t ∈ R and X fixed. Take λ, pλ, vλ, v as in (3.3.) and (3.5.).
Recall that

ω(exp tX) = ‖v(exp tX)‖L1(H)/ ker γ

where v(exp tX) = vλ,l0(exp tX) mod ker γ. Moreover let’s choose for λ
the Gaussian function. This is possible because different choices of λ give
equivalent weights. Put σ(g) = e

1
2

Pm
j=1 |tr λj(logg)| for g ∈ G(l), where λj(·) =

adpj/pj+1
(·). Using a method developed by Poguntke ([Po2]), one checks

that there are constants C and C ′ (depending on the choice of X but not
on t) such that

ω(exp tX) ≤ C ′ · (1 + |t|)C · e
|t|
2

Pm
j=1 |tr λj(X)| = C ′ · (1 + |t|)C · σ(exp tX).

Proposition 4.2. Let χ be a continuous character on L1(G(l)/G(l)∩N , ω)
≡ L1(U , ω) ≡ L1(Rn, ω). Then

|χ(expX)| ≤
m∏

i=1

e
1
2
|tr λi(X)| = σ(expX)

for all X ∈ u ≡ g(l)/g(l) ∩ n.

Proof. As χ is a continuous character on L1(U , ω), |χ(expX)| ≤ ω(expX),
X ∈ U . Let’s write χ(expX) = eρ(X) with ρ a complex linear form on
U ≡ Rn. Then |χ(expX)| = eReρ(X), ∀X ∈ U . Assume that there is
X0 ∈ U such that Reρ(X0) > 0 (otherwise, change X0 to −X0) and such
that

|χ(expX0)| = eReρ(X0) = e|Reρ(X0)| >

m∏
i=1

e
1
2
|tr λi(X0)|.
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Hence
m∏

i=1

e
|t|
2
|tr λi(X0)| < |χ(exp |t|X0)|

≤ ω(exp |t|X0) ≤ C ′(1 + |t|)C
m∏

i=1

e
|t|
2
|tr λi(X0)|

and
1 < e|t|(|Reρ(X0)|− 1

2

Pm
i=1 |tr λi(X0)|) ≤ C ′(1 + |t|)C

for all t ∈ R∗. As this is impossible, we have that

|χ(expX)| ≤
m∏

i=1

e
1
2
|tr λi(X)| = σ(expX),

for all X ∈ U . �

5. Characterization of all the simple modules.

We proceed now as written in (3.6.).

5.1. Identification of Hγp
= Lp(H/P1, χr) and Lp(K/P0, χr)⊗̂L2(X ).

a) We use the decompositions and notations introduced in (2.1.) to (2.5.)
and in (3.3.). Recall in particular that h = v⊕ n⊕w = v⊕ n⊕Y⊕X. Let’s
define k = v⊕ n. Hence h = k⊕Y⊕X. In order to get an isometry between
Hγp

= Lp(H/P1, χr) and Lp(K/P0, χr)⊗̂L2(X ), let’s define

ξ̃(k, x) = ξ(k · x), ∀k ∈ K,∀x ∈ X ,∀ξ ∈ Hγp
,

and

(Spξ)(k, x) = e
−

Pm
j=1

1
pj

tr adpj/pj+1
(logx)

ξ̃(k, x)

= e
−

Pm
j=1

1
pj

tr adpj/pj+1
(logx)

ξ(k · x).

Let’s write δ
− 1

p (x) = e
−

Pm
j=1

1
pj

tr adpj/pj+1
(logx)

, ∀x ∈ X . Then it is easy to

see that the map Sp : ξ 7→ δ
− 1

p · ξ̃ is an isometry between Lp(H/P1, χr) and
Lp(K/P0, χr)⊗̂L2(X ) if the norm on Lp(K/P0, χr)⊗̂L2(X ) is given by

‖f̃‖ =
(∫

X
‖f̃(·, x)‖2

pdx

) 1
2

=
( ∫

X

∫
V

(( ∫
V1

(
. . .

( ∫
Vm

|f̃(vv1 . . . vm, x)|pmdvm

) 1
pm

. . .

)p1

dv1

) 1
p1

)2

dvdx

) 1
2

.
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In particular, for ξ ∈ Hγp
,

(Spξ)(k · p0, x) = δ
− 1

p (x)ξ(k · p0 · x)

= δ
− 1

p (x)χr(x−1p0x)ξ(k · x) = χr(p0)(Spξ)(k, x),

because x ∈ X ⊂ G(q), p0 ∈ P0, P0 is G(q)-invariant and 〈r, [logx, logp0]〉 =
0.
b) Notice that L2(X ) may be identified with L2(X). In fact, if x, x′ ∈ X ⊂
G(q), then

x · x′ = q(x, x′) · exp (logx + logx′)
with q(x, x′) ∈ N (q) ⊂ P0 and χr(q(x, x′)) = 1. Hence

ξ(k · x · x′) = ξ(k · q(x, x′) · exp (logx + logx′)) = ξ̃(k, exp (logx + logx′))

and we may identify L2(X ) with L2(X) where X = exp X as before. More-
over

(Spξ)(k, x · x′) = e
−

Pm
j=1

1
pj

tr adpj/pj+1
(logx+logx′) · ξ̃(k, exp (logx + logx′))

and we may consider Spξ as a function on (K/P0) × X. Similarly we shall
consider

ES(X ) ≡ ES(X) ⊂ L2(X ) ≡ L2(X),
an ES-space with decay conditions as in (2.7.1.).

5.2. Equivalent representations. Let γp be the representation defined
on Hγp

= Lp(H/P1, χr). If we define κp on Lp(K/P0, χr)⊗̂L2(X ) by

(κp(h)(Spξ))(k, x) = Sp(γp(h)ξ)(k, x) = δ
− 1

p (x)∆
− 1

p (h)ξ(h−1kx)

∀h ∈ H, then the representations (κp, Lp(K/P0, χr)⊗̂L2(X )) and (γp,

Lp(H/P1, χr)) are equivalent. Similarly, we define κl, p on Lp(K/P0,

χr)⊗̂L2(X ) by

(κl,p(t)(Spξ))(k, x) = Sp(γl,p(t)ξ)(k, x)

= δ
− 1

p (x)∆
− 1

p (t)χl(t)ξ(kt−1 · (t−1xtx−1)x)

for t ∈ U ⊂ G(l) and κl,p(h) = κp(h) for h ∈ H. As t−1xtx−1 ∈ G(q) ∩ N ⊂
P0 and as χr(t−1xtx−1) = 1, we have that

(κl,p(t)(Spξ))(k, x) = δ
− 1

p (x)∆
− 1

p (t)χl(t)ξ̃(kt−1
, x)

= ∆
− 1

p (t)χl(t)(Spξ)(kt−1
, x),

i.e., t ∈ G(l) acts only on K. The representations (κl,p,L
p(K/P0, χr)⊗̂L2(X ))

and (γl,p, L
p(H/P1, χr)) are equivalent by construction.
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5.3. Kernel of κp(f). The kernel of the operator κp(f), f ∈ ES(H) ⊂
L1(H), is given by the following computations:

(κp(f)(Spξ))(k′, x′)

= δ
− 1

p (x′)
∫
Y

∫
X

∫
K

f((xy)k)∆− 1
p (xyk)ξ(k−1(xy)−1k′x′)dkdxdy

= δ
− 1

p (x′)
∫
Y

∫
X

∫
K

f((xy)((k′)(xy)−1
)k−1) ·∆− 1

p (k′(xy)k−1)

·∆K(k)−1ξ(k(xy)−1x′)dkdxdy

=
∫
Y

∫
X

∫
K

f((xy)((k′)(xy)−1
)k−1)∆

− 1
p (k′(xy)k−1)

·∆K(k)−1 · e−i〈r,log(y)〉e−i〈r,[log(y),log(x−1x′)]〉

· δ−
1
p (x)(Spξ)(k, x−1x′)dkdxdy

=
∫
Y

∫
X

∫
K

f((x′x−1y)((k′)(x
′x−1y)−1

)k−1)∆
− 1

p (k′(x′x−1y)k−1)

·∆K(k)−1 · e−i〈r,log(y)〉e−i〈r,[log(y),log(x)]〉

· δ−
1
p (x′x−1)(Spξ)(k, x)dkdxdy

=
∫
Y

∫
X

∫
K/P0

∫
P0

f(((x′x−1)y)((k′)((x
′x−1)y)−1

) · p0k
−1)

·∆K(k)−1 ·∆− 1
p (y) · e−i〈r,log(p0)〉 · e−i〈r,log(y)〉

· e−i〈r,[log(y),log(x)]〉δ
− 1

p (x′x−1)(Spξ)(k, x)dp0dk̇dxdy,

as ∆ ≡ 1 on K. Consider ρp = indKP0(χq, p) and ρ2 = indKP0(χq, 2). Let’s
write f(x, y)(k) = f(x · y · k), k ∈ K. Then the kernel of κp(f) may be
written

(fκp
)((k′, x′), (k, x))

=
∫
Y

f((x′x−1), y)ρp
((k′)((x

′x−1)·y)−1
, k)

·∆− 1
p (y) · e−i〈r,log(y)〉 · e−i〈r,[log(y),log(x)]〉δ

− 1
p (x′x−1)dy,

where the kernel of ρp(g), g ∈ L1(K), is given by

(ρp(g))(k′, k) =
∫
P0

g(k′p0k
−1) · e−i〈r,logp0〉∆K(k)−1dp0.

In particular, for g ∈ ES(K), gρp
(k′, k) = gρ2

(k′, k) for every multi-index p.
Hence the representations ρp and ρ2 are given by the same formulas (but
act on different spaces).
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5.4. Behavior of projectors. For p = (p1, . . . , pm) we define q = (q1, . . . ,
qm) such that 1

q = 1 − 1
p , which means that 1

qi
= 1 − 1

pi
for each i. Take

α, β ∈ ES(H/P1, χr) ⊂ Lp(H/P1, χr) ∩ Lq(H/P1, χr). One checks that
〈α, β〉 = 〈Spα, Sqβ〉. Hence, if γp(f) is the projector Pα,β, then κp(f) is
the projector PSpα,Sqβ . Conversely, every projector κp(f) = Pα′,β′ , with
α′, β′ ∈ ES(K/P0, χr)⊗̂ES(X ), comes from a projector γp(f) = Pα,β where

α(vxv1 . . . vm) = δ
− 1

p (x−1)α′(v · (xv1x
−1) . . . (xvmx−1), x). Similarly for β

and β′.

5.5. Choice of a particular pλ. Let µ be an arbitrary function in
ES(K/P0, χr) such that 〈µ, µ〉 = 1. For every s ∈ G there is a function
g(s) ∈ ES(K) such that the kernel of ρ2(g(s)) is given by g(s)ρ2

(k′, k) =
µ((k′)s)µ(k). Moreover, as ∆|P0 ≡ 1, the kernels g(s)ρp

and g(s)ρ2
coincide.

Let’s choose a real-valued analytic function ν ∈ ES(X ) ≡ ES(X) ⊂ L2(X )
such that 〈ν, ν〉 = 1. Put

α(x) = e
1
2

Pm
j=1 tr adpj/pj+1

(logx)
ν(x) = δ

1
2 (x)ν(x)

and define λ ∈ ES(H/P1, χr) by the formulas

λ(vxv1 . . . vm) = λ̃(v(xv1x
−1) . . . (xvmx−1), x)

= µ(v(xv1x
−1) . . . (xvmx−1)) · α(x).

One checks that

〈λ, λ〉 = 〈µ, µ〉〈ν, ν〉 = 1 = 〈Spλ, Sqλ〉 = 〈S2λ, S2λ〉,

where the last equalities are due to (5.4.). Moreover, for k = vv1 . . . vm ∈ K,

(S2λ)(k, x) = µ(k)ν(x),

(Spλ)(k, x) = e
Pm

j=1( 1
2
− 1

pj
)tr adpj/pj+1

(logx)
µ(k)ν(x) = δ

1
2
− 1

p (x)µ(k)ν(x).

In order to construct the function pλ ∈ L1(H) that will give us the projectors
associated to λ, let’s put

a(x, y) =
∫
X

α(xu)α(u)ei〈r,[logy,logu]〉 · ei〈r,logy〉 ·∆
1
2 (y)du, ∀x ∈ X ,∀y ∈ Y,

and define pλ ∈ ES(H) ⊂ L1(H) by pλ(xyk) = pλ(x, y)(k) = a(x, y)g(xy)(k).

Proposition 5.5.1. For every p ∈ [1,∞]m, the operator γp(pλ) is a rank
one operator. This is in particular true for the operator γ(pλ) = γ2(pλ).
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Proof. Using the previous computations and the observation (5.1.b) we get

pλ(x′x−1, y)ρp
((k′)(x

′x−1y)−1
, k)

= a(x′x−1, y)µ(k′)µ(k)

= µ(k′)µ(k)
∫
X

α(x′x−1u)α(u)

· ei〈r,[logy,logu]〉ei〈r,logy〉∆
1
2 (y)δ−1(u)du,

where δ−1(u) = e
−

Pm
j=1 tr adpj/pj+1

(logu). Hence

(pλ)κp
((k′, x′), (k, x))

= µ(k′)µ(k)
∫
Y

∫
X

α(x′x−1u)α(u)

· ei〈r,[logy,logu]〉e−i〈r,[logy,logx]〉∆
1
2
− 1

p (y)δ−1(u)δ
− 1

p (x′x−1)du,

= µ(k′)µ(k)
∫
Y

∫
X

ν(x′x−1u)ν(u)

· ei〈r,[logy,logu]〉e−i〈r,[logy,logx]〉∆
1
2
− 1

p (y)δ
1
2
− 1

p (x′x−1)du.

In particular, for p = 2 and κ = κ2, we have

(pλ)κ((k′, x′), (k, x)) = µ(k′)µ(k)
∫
Y

∫
X

ν(x′x−1u)ν(u)

· ei〈r,[logy,logu]〉e−i〈r,[logy,logx]〉dudy

= µ(k′)µ(k)ν(x′)ν(x)

= (S2λ)(k′, x′)(S2λ)(k, x),

as ν is in fact a real-valued function. Hence κ(pλ) is a projector, i.e.,

κ(pλ) = PS2λ,S2λ and γ(pλ) = Pλ,λ.

In order to characterize the kernel of κp(pλ), let’s recall that

∆( 1
2
− 1

p
)(y) = e

Pm
j=1

„
1
2
− 1

pj

«
trλj(logy)

where
∑m

j=1

(
1
pj
− 1

2

)
trλj(·) is a linear form on Y and may hence be iden-

tified with an element of X, because of the duality between X and Y (see
(2.2.)). Let’s write 1

p −
1
2 for this element of X, i.e.,〈

r,

[
1
p
− 1

2
, logy

]〉
=

m∑
j=1

(
1
pj
− 1

2

)
trλj(logy), ∀y ∈ Y,
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by definition. The function ν has been chosen analytic in ES(X ) ≡ ES(X).
Hence it admits an extension to a complex-valued analytic function on XC
which we shall also denote by ν. We compute

(pλ)κp
((k′, x′), (k, x))

= µ(k′)µ(k)δ
1
2
− 1

p (x′x−1)
∫
Y

∫
X

ν((x′x−1) · u)ν(u)

· ei〈r,[logy,logu]〉e
−i〈r,[logy,logx−i( 1

p
− 1

2
)]〉

dudy

= µ(k′)µ(k)δ−
1
p (x′)δ

1
2 (x′)ν

(
logx′ − i

(
1
p
− 1

2

))
· δ−

1
q (x)δ

1
2 (x)ν

(
logx− i

(
1
p
− 1

2

))
,

if we identify ν with a function on the complex vector space XC and if
1
q = 1− 1

p .
Let’s define new functions νp ∈ ES(X ) ≡ ES(X), ζ1, ζ2 ∈ Lp(K/P0,

χr)⊗̂L2(X ) and λp, λ
′
p ∈ ES(H) ⊂ L1(H) by

νp(x) = δ
1
2 (x)ν

(
logx− i

(
1
p
− 1

2

))
, ∀x ∈ X ,

(Spλp)(k, x) = δ
− 1

p (x)µ(k)νp(x) = ζ1(k, x)

(Sqλ
′
p)(k, x) = δ

− 1
q (x)µ(k)νp(x) = ζ2(k, x),

i.e., λp = S−1
p (ζ1) and λ′p = S−1

q (ζ2). Hence

(pλ)κp
((k′, x′), (k, x)) = (Spλp)(k′, x′)(Sqλ

′
p)(k, x),

i.e., κp(pλ) is the projector PSpλp,Sqλ′
p
. So γp(pλ) is also a projector, more

precisely γp(pλ) = Pλp,λ′
p
. Both projectors are idempotent because

〈λp, λ
′
p〉 = 〈Spλp, Sqλ

′
p〉

=
∫
X

∫
K

δ
− 1

p (x)µ(k)νp(x)δ−
1
q (x)µ(k)νp(x)dkdx

= 〈µ, µ〉 ·
∫
X

δ−1(x)(νp(x))2dx

=
∫
X

(
ν

(
logx− i

(
1
p
− 1

2

)))2

dx = 1,

as 1
p + 1

q = 1, 〈µ, µ〉 = 1 and∫
X

(
ν

(
logx− i

(
1
p
− 1

2

)))2

dx =
∫
X

(ν(x))2dx = 〈ν, ν〉 = 1
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by Cauchy’s theorem. �

5.5.2. . The following computation will be important in the characteriza-
tion of the character associated to γl,p ≡ πl,p,p:

〈γl,p(t)λp, λ
′
p〉

= 〈κl,p(t)(Spλp), Sqλ
′
p〉

= ∆− 1
p (t)χl(t)

∫
X

∫
K
(Spλp)(kt−1

, x)(Sqλ′p)(k, x)dkdx

= ∆− 1
p (t)χl(t)

∫
X

∫
K

δ−1(x)µ(kt−1
)νp(x)µ(k)νp(x)dkdx

= ∆− 1
p (t)χl(t)〈µt−1

, µ〉.

In particular, for p = 2 = (2, . . . , 2), λ2 = λ′
2

= λ (as ν is real-valued) and

〈γ̃l,p(t)λp, λ
′
p〉

〈γ̃l(t)λ, λ〉
= ∆

1
2
− 1

p (t).

5.6. Character of L1(Rn, ω) corresponding to γl,p.

5.6.1. . Using the computations of (3.5.) and (3.7.) we get

γl,p(vλ,l(t)) =
1

〈γl(t)λ, λ〉
γl,p(t−1)Pλp,λ′

p
γl,p(t)Pλpλ′

p

= ∆
1
2
− 1

p (t)γl,p(t−1)γp(pλ)

and

(γl,p(h · v))(γp(pλ)ξ) =
(∫

U
h(t)χl−l0(t)∆

1
2
− 1

p (t)dt

)
(γp(pλ)ξ).

Hence χl,p(t)=∆
1
2
− 1

p (t)χl−l0(t) is the character of L1(U , ω)≡L1(G(l)/G(l)∩
N , ω) associated to the representation γl,p.

Remark. If l and l′ are two different extensions of r ∈ h∗ to g, then
χl′,p(t) = χl′−l(t) · χl,p(t), ∀t ∈ U ⊂ G(l). Hence, if l and l′ are in the
same G-orbit, then χl′,p(t) = χl,p(t), ∀t ∈ U ⊂ G(l).

Corollary 5.6.2. The weight ω satisfies the inequality

∆( 1
2
− 1

p
)(x) = e

Pm
j=1

„
1
2
− 1

pj

«
trλj(logx)

≤ ω(x), ∀x ∈ G(l),

for all p. Hence

e
|t|
2

Pm
j=1 |trλj(X)| ≤ ω(exp tX)

≤ C ′(1 + |t|)Ce
|t|
2

Pm
j=1 |trλj(X)|, ∀t ∈ R,∀X ∈ g(l).
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Proof. If t ∈ G(l) ∩ N , then ∆( 1
2
− 1

p
)(t) = 1 and ω ≥ 1. For t ∈ U , for every

multi-index p ∈ [1,∞]m, ∆( 1
2
− 1

p
)(t) = |χl,p(t)| ≤ ω(t) as χl,p is a continuous

character on L1(Rn, ω) ≡ L1(G(l)/G(l) ∩ N , ω) (see proof of (4.2.)). See
(4.1.) for the last assertion. �

5.7. Characterization of an arbitrary simple L1(G)-module.

Proposition 5.7.1. Let S1 and S2 be the following subsets of (Rn)∗ ≡ u∗ ≡
(g(l)/g(l) ∩ n)∗:

S1 =

{
m∑

i=1

(
1
2
− 1

pi

)
trλi(·) | 1 ≤ pi ≤ ∞

}

=

{
m∑

i=1

Citrλi(·) | |Ci| ≤
1
2
, Ci ∈ R

}

S2 =

{
ρ ∈ u∗ | |ρ(X)| ≤

m∑
i=1

1
2
|trλi(X)|, ∀X ∈ u ≡ Rn

}
.

Then S1 = S2.

Proof. Notice first that the linear form ν(·) =
∑m

i=1(
1
2 −

1
pi

)trλi(·) of g(l) is
constant on the classes modulo g(l) ∩ n and may hence be considered as a
linear form on g(l)/g(l) ∩ n. The sets S1 and S2 are closed convex subsets
of (Rn)∗ such that S1 ⊂ S2. Assume there exists ρ ∈ S2\S1. By the Hahn-
Banach theorem there is X0 ∈ Rn ≡ u and α ∈ R such that s1(X0) < α <
ρ(X0), ∀s1 ∈ S1. Let’s then choose s1 ∈ S1 by s1(X) =

∑m
i=1

1
2εitrλi(X),

∀X ∈ u, where εi = 1 if trλi(X0) ≥ 0 and εi = −1 if trλi(X0) < 0. Hence
m∑

i=1

1
2
|trλi(X0)| = s1(X0) < ρ(X0),

which contradicts the fact that ρ ∈ S2. �

Corollary 5.7.2. Let χ be a continuous character on L1(Rn, ω) ≡ L1(U , ω).
Then there is a multi-index p = (p1, . . . , pm) and l′ ∈ g∗ with l′|h = l|h such
that

|χ(expX)| = e
Pm

i=1

“
1
2
− 1

pi

”
trλi(X)

, ∀X ∈ u

and such that

χ(expX) = χl′−l0(expX) · e
Pm

i=1

“
1
2
− 1

pi

”
trλi(X) = χl′,p(expX), ∀X ∈ u,

i.e., every continuous character on L1(G(l)/G(l) ∩N , ω) is of the form

χ(expX) = χl′−l0(expX)eν(X),
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where l′ − l0 ∈ h⊥ and ν ∈ (g(l)/g(l) ∩ n)∗ such that

|ν(X)| ≤ 1
2

m∑
j=1

|trλj(X)|.

Proof. We may write χ(expX) = e−iρ1(X) · eρ2(X) with ρ1, ρ2 ∈ (Rn)∗ ≡
u∗ ≡ (g(l)/g(l) ∩ n)∗. By (4.2.) and (5.6.1.) ρ2 ∈ S2 = S1 and hence there
is a multi-index p = (p1, . . . , pm), pi ∈ [1,∞] for all i, such that

|χ(expX)| = eρ2(X) = e
Pm

i=1

“
1
2
− 1

pi

”
trλi(X)

, ∀X ∈ u ≡ (g(l)/g(l) ∩ n)∗.

We may then choose l′ ∈ g∗ such that l′|h = l|h and such that l′ − l0 = ρ1

on u. �

Theorem 5.7.3.

a) Let (T,U) be a simple L1(G)-module. Then there exists l ∈ g∗, a
polarization p for l in g and a multi-index p ∈ [1,∞]m, such that
(T,U) is equivalent to the simple module

(
π0

l,p,p,H
0
l,p,p

)
.

b) Let p, q ∈ [1,∞]m be two multi-indices. Then
(
π0

l,p,q,H
0
πl,p,q

)
'

(
π0

l,p,p,

H0
πl,p,p

)
if and only if

m∑
i=1

(
1
2
− 1

qi

)
trλi(·) =

m∑
i=1

(
1
2
− 1

pi

)
trλi(·) = ν(·)

on u and hence on g(l), i.e., if the corresponding linear forms ν ∈
(g(l)/g(l) ∩ n)∗ are the same.

Proof. By (3.6.) and (5.7.2.). �

5.7.4. Remarks.

a) One can show that up to equivalence the representations π0
l,p,p are

independent of the choice of the polarization p.
b) Let’s write G̃ for the space of the equivalence classes of simple L1(G)-

modules. Let’s write g̃∗ for the collection of all pairs (l, ν) with l ∈ g∗,
ν ∈ (g(l)/g(l) ∩ n)∗ such that |ν(X)| ≤ 1

2

∑m
j=1 |trλj(X)|,∀X ∈ g(l).

The group G acts on g̃∗ by conjugation. Let g̃∗/G be the set of all
equivalence classes for this action.

We then get our final theorem:

Theorem 5.7.5. There is a bijection between g̃∗/G and G̃.
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6. Final remarks.

As it was already pointed out in the introduction, the algebraically simple
L1(G)-modules for a solvable exponential Lie group are essentially obtained
in the same way as in the case of the nilpotent groups, except that one has to
generalize the induced representations. This is no longer true for topologi-
cally irreducible representations, as it was shown in ([LuMo2]). Two major
differences exist. Usually there are a lot of extensions of a topologically ir-
reducible representation of the subalgebra p∗L1(G/H, L1(H)/ ker γ)∗p to a
topologically irreducible representation of the algebra L1(G/H,L1(H)/ker γ),
whereas this extension is unique in the algebraic case. These different exten-
sions are characterized by different extension norms. But the main difference
arises from the irreducible representations of L1(Rn, ω). These representa-
tions coincide with the characters in the algebraic case. In the topological
case there are a lot of irreducible inifinite dimensional representations of
L1(Rn, ω) if the weight ω is exponential, which happens if and only if the
group G is nonsymmetric. The corresponding representations of L1(G) are
fundamentally different from induced representations. The construction of
such representations is linked to the invariant subspace problem, as it was
shown in ([LuMo2]).
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