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For any prime power q we determine a polynomial fq(X) ∈
Fq(t, u)[X] whose Galois group over Fq(t, u) is the Dickson
group G2(q). The construction uses a criterion and a method
due to Matzat.

1. Introduction.

In this paper we are concerned with the construction of polynomials whose
Galois groups are the exceptional simple Chevalley groups G2(q), q a prime
power, first discovered by Dickson; see Theorems 4.1 and 4.3.

It was shown by Nori [7] that all semisimple simply-connected linear alge-
braic groups over Fq do occur as Galois groups of regular extension of regular
function fields over Fq, but his proof does not give an explicit equation or
even a constructive method for obtaining such extensions. On the other
hand, in a long series of papers Abhyankar has given families of polynomials
for groups of classical types (see [1] and the references cited there). His
ad hoc approach hasn’t yet led to families with groups of exceptional type
(but see [2] for a different construction of polynomials with Galois group the
simple groups of Suzuki). Thus it seems natural to try to fill this gap. In his
recent paper Matzat [6] describes an algorithmic approach which reduces
the construction of generating polynomials for such extensions to certain
group theoretic calculations.

More precisely, let F := Fq(t), with t = (t1, . . . , ts) a set of indetermi-
nates. We denote by φq : F → F , x 7→ xq, the Frobenius endomorphism.
Let G be a reduced connected linear algebraic group defined over Fq, with a
faithful linear representation Γ : G(F ) ↪→ GLn(F ) in its defining character-
istic, also defined over Fq. We identify G(F ) with its image in GLn(F ). Fix
an element g ∈ G(F ) and assume that g ∈ GLn(R), where R := Fq[t]. Any
specialization homomorphism ψ : R → Fqa , tj 7→ ψ(tj), can be naturally
extended to GLn(R). We define

gψ := ψ(g) · ψ(φq(g)) · · ·ψ(φa−1
q (g)) ∈ GLn(Fq).

With these notations Matzat [6, Thm. 4.3 and 4.5] shows the following:

Theorem 1.1 (Matzat). Let G(F ) ≤ GLn(F ) be a reduced connected linear
algebraic group defined over Fq. Let g ∈ GLn(R) such that:
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(i) g ∈ G(F ),
(ii) there exist specializations ψi : R → Fqai , 1 ≤ i ≤ k, such that no

proper subgroup of G(Fq) ≤ GLn(Fq) contains conjugates of all the
gψi

, 1 ≤ i ≤ k.
Then G(Fq) occurs as regular Galois group over F , and a generating polyno-
mial f(t, X) ∈ F [X] for such a G(Fq)-extension can be computed explicitly
from the matrix g.

Thus the strategy for the computation of a G2(q)-polynomial will be the
following: First construct a small faithful matrix representation of G2(F )
in its defining characteristic. For this we use the well-known facts that
G2(F ) is a subgroup of an 8-dimensional orthogonal group over F , and
that this 8-dimensional representation has a faithful irreducible constituent
of dimension 6 for G2(F ), if char(F ) = 2, respectively of dimension 7 if
char(F ) > 2. Secondly, we need to find an element g ∈ G2(F ) with the
properties required in the Theorem. For this, we make use of the known
lists of maximal subgroups of G2(q) by Cooperstein and Kleidman. (These
results require the classification of finite simple groups, but only in a very
weak form.) Finally, the corresponding polynomial has to be computed
using a version of the Buchberger algorithm.

2. Identifying G2(F ) inside the 8-dimensional orthogonal group.

We first introduce some notation. Let V be an 8-dimensional vector space
over a field F of characteristic p ≥ 0, with basis e1, . . . , e8 and Q the qua-
dratic form on V defined by

Q : V → F, Q

(
8∑
i=1

xiei

)
=

4∑
i=1

xix9−i.

We denote by GO8(F ) the group of isometries of Q, the full orthogonal
group, and by SO8(F ) the connected component of the identity in GO8(F ),
of index 2. Thus SO8(F ) is a simple split algebraic group over F of type D4.
The subgroup of upper triangular matrices of GL8(F ) contains a Borel sub-
group B of SO8(F ). More precisely, the unipotent radical of B is generated
by the root subgroups

Xi := {xi(t) | t ∈ F}, i = 1, . . . , 12,

where the xi(t) are defined as in Table 1. Here Ei,j(t) denotes the matrix
having 1’s on the diagonal and one further nonzero entry t in position (i, j).

A maximal torus T in B is given by the set of diagonal matrices

T := {t = diag(t1, t2, t3, t4, t−1
4 , t−1

3 , t−1
2 , t−1

1 ) | ti ∈ F×}.
The simple roots with respect to T are now αi, i = 1, . . . , 4, with αi(t) =
ti/ti+1 for i = 1, 2, 3 and α4(t) = t3t4. In Table 1 we have also recorded the
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Table 1. Root subgroups of SO8(F ).

x1(t) = E1,2(t)− E7,8(t) 1000 x7(t) = E2,5(t)− E4,7(t) 0101
x2(t) = E2,3(t)− E6,7(t) 0100 x8(t) = E1,4(t)− E5,8(t) 1110
x3(t) = E3,4(t)− E5,6(t) 0010 x9(t) = E2,6(t)− E3,7(t) 0111
x4(t) = E3,5(t)− E4,6(t) 0001 x10(t) = E1,5(t)− E4,8(t) 1101
x5(t) = E1,3(t)− E6,8(t) 1100 x11(t) = E1,6(t)− E3,8(t) 1111
x6(t) = E2,4(t)− E5,7(t) 0110 x12(t) = E1,7(t)− E2,8(t) 1211

decomposition of the root corresponding to a root subgroup into the simple
roots α1, . . . , α4. Note that the simple root α2 (with label 0100) is the one
belonging to the central node in the Dynkin diagram of type D4.

The group PSO8(F ) := SO8(F )/Z(SO8(F )) possesses an outer automor-
phism γ of order 3 induced by the graph automorphism of the Dynkin dia-
gram D4 which cyclically permutes the nodes 1, 3 and 4 and fixes the middle
node 2. The group PSO8(F )γ of fixed points in PSO8(F ) under γ is again
a simple connected algebraic group over F , of type G2. Note that γ does
not stabilize the natural representation of SO8(F ). Nevertheless we can
construct G2(F ) as a preimage G of PSO8(F )γ in SO8(F ).

The Borel subgroup B of SO8(F ) contains a Borel subgroup of G. Its
unipotent radical is the product of the subgroups

Xi,j,k := {xi(t)xj(t)xk(t) | t ∈ F}

where (i, j, k) ∈ {(1, 3, 4), (5, 6, 7), (8, 9, 10)}, together with the root sub-
groups Xi = {xi(t) | t ∈ F} for i ∈ {2, 11, 12} (see for example Carter [3,
Prop. 13.6.3]). A maximal torus of G inside T consists of the elements

{t = diag(t1, t2, t1t−1
2 , 1, 1, t−1

1 t2, t
−1
2 , t−1

1 ) | ti ∈ F×}.

From this description we find that the simple roots for G2(F ) are now α, β,
with α(t) := t1/t2 and β(t) := t22/t1, and with corresponding root subgroups
Xα := X1,3,4, Xβ := X2 respectively.

An easy calculation with the generators of root subgroups given above
now shows that G leaves invariant the hyperplane V1 of V consisting of
vectors with equal fourth and fifth coordinate, as well as the 1-dimensional
subspace V2 of V spanned by e4 − e5. Thus we obtain an induced action
of G on V1, respectively on V1/V2 when char(F ) = 2. This yields a faithful
matrix representation Γ : G2(F ) ↪→ GLn(F ) of G2(F ), of dimension n = 7
when char(F ) 6= 2, respectively of dimension n = 6 when char(F ) = 2. It
is well-known that the smallest possible degree of a faithful representation
of G2(F ) is 7, respectively 6 if char(F ) = 2, so our representation Γ is
irreducible.
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Remark 2.1. The matrices given in [4, p. 34] do not define a representation
of G2(2f ). Indeed, the matrix for ha(t) does not have determinant 1, as it
should have (since G2(2f ) is simple for f > 1). Its second diagonal entry
should be t−1. Conjugating Xa(t) by ha(t′) one sees that the middle off-
diagonal entry of Xa(t) should be t2 instead of t. The commutator relations
(see Carter [3, 12.4]; [4, (2.1)] contains misprints) then show that similarly
in the matrices for Xa+b(t) and X2a+b(t) the second nonzero off-diagonal
entry t should be replaced by t2. In this way one recovers the representation
constructed above.

3. Finding a suitable element.

Let first q = 2f be even. Then an easy calculation shows that in our 6-
dimensional representation Γ : G2(F ) → GL6(F ) constructed above, we
have

xα(t) =


1 t 0 0 0 0
0 1 0 0 0 0
0 0 1 t2 0 0
0 0 0 1 0 0
0 0 0 0 1 t
0 0 0 0 0 1

 , xβ(t) =


1 0 0 0 0 0
0 1 t 0 0 0
0 0 1 0 0 0
0 0 0 1 t 0
0 0 0 0 1 0
0 0 0 0 0 1

 ,

and the longest element of the Weyl group of G2(F ) is represented by

w0 =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 .

We choose g := xα(t)xβ(u)w0 ∈ G2(F ) and let

D := Γ(g) =


0 0 0 tu t 1
0 0 0 u 1 0
0 t2u t2 1 0 0
0 u 1 0 0 0
t 1 0 0 0 0
1 0 0 0 0 0

 .(1)

Proposition 3.1. Let q be even and D be defined as above. Then no proper
subgroup of G2(q) contains conjugates of all specializations of D.

Proof. We use the fact that all maximal subgroups of the finite groups G2(q)
are known by Cooperstein [4]. For q = 2 specializations into F8 yield el-
ements of orders 7 and 12, and no maximal subgroup of G2(2) contains
elements of both orders. For q = 4 specializations into F4 yield elements of
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orders 13, 15 and 21. The only maximal subgroup of order divisible by 7 ·13
is PSL2(13), but its order is not divisible by 5, so we are done again.

Now let q ≥ 8. Let G be a subgroup of G2(q) containing conjugates of
all specializations of D. Let α ∈ F×

q2
of order q + 1. Then the minimal

polynomial of α over Fq has the form X2 + Tr(α)X + 1, where Tr(α) =
α + αq ∈ Fq. Thus any element of F×

q2
of order q + 1 occurs as a root of a

polynomial of the shape

X2 + vX + 1, v ∈ Fq.

Clearly, all elements of F×q also occur as zeros of such a polynomial. Now
for v ∈ Fq consider the specialization

ψv : Fq[t, u] → Fq, t 7→ 0, u 7→ v.

Then the specialization ψv(D) of D has characteristic polynomial

X6 + (v2 + 1)X4 + (v2 + 1)X2 + 1 = (X + 1)2(X2 + vX + 1)2.

The 1-eigenspace of ψv(D) only has dimension 1 for v 6= 0, so the order of
ψv(D) is divisible by 2. By our above considerations, we hence find elements
of orders 2(q + 1) and 2(q − 1) as specializations of D. (This can also be
seen as follows: If t = 0 then g specializes to

xβ(u)w0 = xβ(u)(wβwα)3 = xβ(u)wβ · w′

where w′ = wαwβwαwβwα has order 2, centralizes xβ(u)wβ, and xβ(u)wβ
represents the element (

u 1
1 0

)
in the subgroup 〈Xβ, X−β〉 ∼= SL2(q).)

Next, consider the specialization

ψ′v : Fq[t, u] → Fq, t 7→ v, u 7→ 0.

Here, ψ′v(D) has characteristic polynomial

(X2 + vX + 1)2(X2 + v2X + 1).

By the argument above, this again yields elements of orders 2(q−1) and 2(q+
1). But note that this time these elements never have an eigenvalue 1, nor
have any of their powers of order larger than 2. Thus G contains subgroups
of order (q± 1)2. Theorem 2.3 in [4] shows that either G ≤ SL2(q)× SL2(q)
or G = G2(q).

Finally, consider the specialization

ψ′′v : Fq[t, u] → Fq, t 7→ v, u 7→ 1.

The corresponding specialization of D has characteristic polynomial

(X3 + v2X + 1)(X3 + v2X2 + 1).
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If X3 + v2X + 1 is reducible over Fq, then it has a linear factor X + a,
a ∈ Fq, and X3 + v2X + 1 = (X + a)(X2 + aX + 1/a). Clearly, the case
a = 0 is not possible, so for at least one of the q possibilities for v ∈ Fq
the characteristic polynomial has an irreducible factor of degree 3. In this
case, the specialization of D has order dividing q2 + q + 1, but not q − 1.
Since SL2(q) × SL2(q) doesn’t contain such elements, we have G = G2(q),
as claimed. �

For odd q = pf we again choose g := xα(t)xβ(u)w0 ∈ G2(F ). With

xα(t) =



1 t 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 t −t2 0 0
0 0 0 1 −2t 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 −t
0 0 0 0 0 0 1


,

xβ(t) =



1 0 0 0 0 0 0
0 1 t 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 −t 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


,

and

w0 =



0 0 0 0 0 0 1
0 0 0 0 0 −1 0
0 0 0 0 1 0 0
0 0 0 −1 0 0 0
0 0 1 0 0 0 0
0 −1 0 0 0 0 0
1 0 0 0 0 0 0


,

this gives

D := Γ(g) =



0 0 0 0 tu −t 1
0 0 0 0 u −1 0
0 −t2u −t2 −t 1 0 0
0 −2tu −2t −1 0 0 0
0 u 1 0 0 0 0

−t −1 0 0 0 0 0
1 0 0 0 0 0 0


(2)
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in this case. This matrix has separable characteristic polynomial

X7 + (t2 + 1)X6 − (2t2 + u2 + 3)X5 − (t4 + 3t2 + u2 + 3)X4

+ (t4 + 3t2 + u2 + 3)X3 + (2t2 + u2 + 3)X2 − (t2 + 1)X − 1.

We need the following result:

Lemma 3.2. Let q > 3 be an odd prime power. Then there exists v ∈ Fq
such that

X3 − (v2 + 2)X − 1
is irreducible over Fq.

Proof. Assume that f := X3− (v2 +2)X−1 is reducible. Then f has a zero
a ∈ Fq, and X3 − (v2 + 2)X − 1 = (X − a)(X2 + aX + a−1). These zeros
are just the first coordinates of the Fq-points on the elliptic curve E defined
by U3 − (V 2 + 2)U − 1. By the Weil bounds [8], E has at most q+ 1 + 2

√
q

points (u, v) over Fq. Clearly, with (u, v) the point (u,−v) also lies on E,
hence there are at most q/2 + 1 +

√
q distinct values a which can occur as

zeros of f .
Next, we estimate how often f splits completely into linear factors. This

happens if in addition the discriminant (a3 − 4)/a of X2 + aX + a−1 is a
square in Fq. Thus we need to count points on the Fq-curve C defined by
the two equations

U3 − (V 2 + 2)U − 1, U3 −W 2U − 4.

Subtracting these two equations we see that U lies in the function field
Fq(V,W ). Since both V,W have degree at most 2 over Fq(U), the curve C
has genus at most 4. Moreover, the only singular point of C is the point
with coordinates (4, 0, 0) in characteristic 5. Again by the Weil bounds [8]
this means that C has at least q + 1− 2 · 4√q − 6 points over Fq. For each
such point, changing the sign of the V,W -coordinates again yields a point,
hence there are at least (q − 5 − 8

√
q)/4 distinct a ∈ Fq for which f splits

completely. Thus we obtain at most

q/2 + 1 +
√
q − (q − 5− 8

√
q)/4 = (q + 9)/4 + 3

√
q

factorizations of f into a linear and a quadratic factor. The discriminant of
f is a polynomial in v of degree 6, hence f is inseparable for at most six
values of v. Apart from those, each completely splitting f accounts for three
different values of a, so we obtain a total of at most

(q + 9)/4 + 3
√
q + ((q − 5− 8

√
q)/4− 6)/3 + 6 = (2q + 35)/6 + 7/3

√
q

reducible polynomials when v runs over Fq. Hence there remain at least

(q + 1)/2− ((2q + 35)/6 + 7/3
√
q) = (q − 32)/6− 7/3

√
q

irreducible polynomials. This is positive for q ≥ 257. For the remaining
prime powers 3 < q < 257 a computer check shows that the assertion is
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also satisfied. (For q = 5, 9 there is just one irreducible polynomial of the
required shape, for q = 3 there is none.)

Note that the counting of singular points and of inseparable f was very
rough and a more detailed analysis would have reduced the bound consid-
erably. �

Proposition 3.3. Let q be odd and D be the matrix defined in (2). Then
no proper subgroup of G2(q) contains conjugates of all specializations of D.

Proof. Again all maximal subgroups of G2(q) are known by work of Kleid-
man [5]. For q = 3 specializations into F9 yield elements of orders 7, 9, 13.
The only maximal subgroup of G2(3) of order divisible by 7 ·13 is PSL2(13),
but that has no elements of order 9. For q = 5, specialization into F5 yields
element orders 7, 20 and 31, thus we are done again.

For q ≥ 7 let G be a subgroup of G2(q) containing conjugates of all
specializations of D. We again consider the specialization

ψv : Fq[t, u] → Fq, t 7→ 0, u 7→ v.

Then the square of ψv(D) has characteristic polynomial

(X − 1)3(X2 − (v2 + 2)X + 1)2.

This gives rise to elements of orders q± 1 in G. Similarly, the specialization

ψ′v : Fq[t, u] → Fq, t 7→ v, u 7→ 0,

yields the characteristic polynomial

(X − 1)(X2 − (v4 + 4v2 + 2)X + 1)(X2 − (v2 + 2)X + 1)2

for the image of D2. So as in the previous proof we deduce that G must
contain subgroups of orders (q± 1)2. Theorem A in [5] shows that either G
is contained in the central product SL2(q) ◦ SL2(q), or G = G2(q). Finally,
for the specialization

ψ′′v : Fq[t, u] → Fq, t 7→ v, u 7→ 1,

we obtain the characteristic polynomial

(X − 1)(X3 + (v2 + 2)X2 − 1)(X3 − (v2 + 2)X − 1)

for φ′′v(D). Since q ≥ 7 is odd, Lemma 3.2 shows that there exists v ∈ Fq
such that the degree 3 factors of this polynomial are irreducible over Fq.
But SL2(q) ◦ SL2(q) does not contain such elements, hence we have G =
G2(q). �
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4. The polynomials.

It remains to determine generating polynomials for the G2(q)-extensions
whose existence is guaranteed by Theorem 1.1 in conjunction with Proposi-
tions 3.1 and 3.3.

Theorem 4.1. Let q = 2f be a power of 2. Then the polynomial

Xq6 + ue2te4Xq5 + (ue1te1 + ue3te1 + te1 + te3 + 1)Xq4

+ ue2te4(tq
3+q2 + tq

3−q + 1)Xq3

+ te1(ue1tq
2−1 + ue1tq

2+q + ue1 + ue3 + 1)Xq2

+ ue2tq
4+2q2−qXq + ue1tq

4−1X,

with e1 := q4 − q2, e2 := q4 − q3, e3 := q4 + q3, e4 := q4 − q3 + 2q2, has
Galois group G2(q) over Fq(t, u).
Proof. In Proposition 3.1 we have shown that the assumptions of Matzat’s
Theorem 1.1 are satisfied for the matrix D defined in (1). According to
Matzat [6, §1], a generating polynomial for a field extension with group
G2(q) can now be obtained by solving the non-linear system of equations
given by

y = D yq,
where y = (y1, . . . , y6)t, for one of the variables. Solving for y6 yields the
equation displayed in the statement. �

By the Hilbert irreducibility theorem, there exist 1-parameter specializa-
tions of the polynomial in Theorem 4.1 with group G2(q).

Example 4.2. By arguments similar to those used in the proof of Propo-
sition 3.1 it can be checked that the polynomial

X64 + t24X32+(t36 + t12 + 1)X16 + (t30 + t36 + t24)X8

+(t24 + t36 + t27 + t30 + t12)X4 + t30X2 + t27X

obtained by setting u = t has Galois group G2(2) over F2(t).

Theorem 4.3. Let q = pf be an odd prime power. Then the polynomial

Xq7 + ue1te4(te6 + 1)Xq6 − (te2ue3 + (tq
5+q2 + te2)ue2 + te3 + te2 + 1)Xq5

− ue1te4(te5(uq
4+q3 + ue5) + (te6 + 1)(tq

4+q3 + te5 + 1))Xq4

+ te2(ue3 + (te6 + 1)(te6 + tq
3−q + 1)ue2 + 1)Xq3

+ ue1tq
5+q3−2q2(uq

4+q3 + (tq
2+q + tq

2−1 + 1)ue5 + te6 + 1)Xq2

− ue2tq
5−q(te6 + 1)Xq − uq

5−q2tq
5+q3−q2−1X,

where e1 := q5 − q4, e2 := q5 − q3, e3 := q5 + q4, e4 := q5 − q4 + q3 − q2,
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e5 := q4 − q2, e6 := q3 + q2, has Galois group G2(q) over Fq(t, u).

The proof is as for the preceding theorem, starting this time from the
matrix D given in (2), solving for y7, and using Proposition 3.3.

Remark 4.4. The sporadic simple Janko groups J1 and J2 are subgroups
of G2(11), respectively of G2(4). It would be nice to find Galois extensions
for these groups in characteristic 11 respectively 2 by the above method,
possibly as specializations of the polynomials in Theorems 4.1 and 4.3.

Remark 4.5. The next smallest simple exceptional group is the one of type
F4. Its smallest faithful representation has dimension 26, respectively 25 in
characteristic 3. In principle, the methods of this paper should make it
possible to produce an F4(q)-polynomial.

Remark 4.6. The group G2(q), q odd, has q orbits on nonzero vectors in
its 7-dimensional representation. Thus, the polynomial fq(t, u,X) in The-
orem 4.3 has q factors, of degrees roughly q6, and a linear factor. On the
other hand, any specialization of fq has factors of degree at most q2 + q+1,
the maximal element order in G2(q). Thus, fq seems a good candidate for
testing factorization algorithms. Using Maple we have not been able to find
the factorization of fq for q = 3.

Similarly, for q even G2(q) has a single orbit on the nonzero vectors of
the 6-dimensional module. Hence fq(t, u,X) in Theorem 4.1 is irreducible
apart from the trivial linear factor. Again Maple was not able to confirm
this for q = 4.

Acknowledgement. I’m indebted to N. Elkies for pointing out an overzeal-
ous simplification in a previous version.
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