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We examine the space of conformally compact metrics g
on the interior of a compact manifold with boundary which
have the property that the kth elementary symmetric func-
tion of the Schouten tensor Ag is constant. When k = 1 this
is equivalent to the familiar Yamabe problem, and the corre-
sponding metrics are complete with constant negative scalar
curvature. We show for every k that the deformation theory
for this problem is unobstructed, so in particular the set of
conformal classes containing a solution of any one of these
equations is open in the space of all conformal classes. We
then observe that the common intersection of these solution
spaces coincides with the space of conformally compact Ein-
stein metrics, and hence this space is a finite intersection of
closed analytic submanifolds.

Let M
n+1 be a smooth compact manifold with boundary. A metric g

defined on its interior is said to be conformally compact if there is a non-
negative defining function ρ for ∂M (i.e., ρ = 0 only on ∂M and dρ 6= 0
there) such that g = ρ2g is a nondegenerate metric on M . The precise
regularity of ρ and g is somewhat peripheral and shall be discussed later.
Such a metric is automatically complete. Metrics which are conformally
compact and also Einstein are of great current interest in (some parts of)
the physics community, since they serve as the basis of the AdS/CFT cor-
respondence [24], and they are also quite interesting as geometric objects.
Since they are natural generalizations of the hyperbolic metric on the ball
Bn+1, as well as the complete constant negative Gauss curvature metrics
on hyperbolic Riemann surfaces – which exist in particular on the interiors
of arbitrary smooth surfaces with boundary – and which are often called
Poincaré metrics [19], we say that a metric which is both conformally com-
pact and Einstein is Poincaré-Einstein (or P-E for short). Until recently,
beyond a handful of examples, the only general existence result concerning
the existence of P-E metrics was the local perturbation theory of Graham
and Lee [11], which gives an infinite dimensional family of such metrics in
a neighborhood of the hyperbolic metric on the ball, parametrized by con-
formal classes on the boundary sphere near to the standard one. Recently
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many new existence results have been obtained, including further perturba-
tion results by Biquard [7] and Lee [13], and Anderson has some important
global existence results in dimension four [3]. Many interesting geometric
and topological properties of these metrics have also been found [10], [23],
[1] and [2]; this last paper also surveys a number of intriguing examples of
P-E metrics.

A common thread through the analytic approaches to the construction
of these metrics is the possible existence of an L2 obstruction, or more
simply a finite dimensional cokernel of the (suitably gauged) linearization
of the Einstein equations around a solution. For any P-E metric where this
obstruction is trivial, the implicit function theorem readily implies that the
moduli space E of P-E metrics is (locally) a Banach manifold, parametrized
by conformal classes of metrics on ∂M . (Actually, the smoothness of E
is true in generality [3], but this geometric parametrization breaks down.)
Unfortunately, the only known geometric criteria ensuring the vanishing of
this obstruction are strong global ones [13].

One purpose of this note is to introduce some new ideas into this picture
which may help elucidate the structure of this moduli space. We consider
a related family of conformally compact metrics which satisfy certain scalar
nonlinear equations, including and generalizing the familiar Yamabe equa-
tion, which we introduce below. These are sometimes called the σk-Yamabe
equations, k = 1, · · · , n+1. The hyperbolic metric on the ball, or indeed an
arbitrary P-E metric on any manifold with boundary satisfies each of these
equations, and conversely, in this particular (conformally compact) setting,
metrics which satisfy every one of these scalar problems are also P-E. The
punchline is that, in the conformally compact case, the deformation theory
for the σk-Yamabe equations is always unobstructed! This fact seems to
have been unappreciated, except for the case k = 1. The full implications of
this statement in the conformally compact case for the moduli space of P-E
metrics is not completely evident at this point, but this relationship seems
quite likely to be of some value. Furthermore, the deformation theory for
these σk-Yamabe metrics is new, and also of some interest.

To define these equations, recall the Schouten tensor Ag, defined for any
metric g on a manifold of dimension n + 1 by the formula

Ag :=
1

n− 1

(
Ric− R

2n
g

)
;(1)

here Ric := Ricg and R := Rg are the Ricci tensor and scalar curvature
function for g. This tensor occupies a prominent position in conformal
geometry because it transforms quite nicely under conformal changes of
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metric. In fact, if g̃ := e2ug, then

Aeg = Ag −Ddu + du⊗ du− 1
2
|du|2g.(2)

We refer to [6] for a derivation of this formula. For later reference, note that
in terms of any local coordinate system w,

|du|2 g :=
∑

i,j,k,`

gk`∂wk
u ∂w`

u gij dwi dwj ,

du⊗ du :=
∑
i,j

∂wiu ∂wju dwi dwj ,

and

D du :=
∑
i,j

(
∂2

wiwj
u−

∑
k

Γk
ij∂wk

u

)
dwidwj .

We have (somewhat inconsistently) used raised indices in the differentials
(i.e., dwi, etc.) in accord with the standard summation convention.

Definition 1. The metric g is a σk-Yamabe metric if σk(Ag), the kth ele-
mentary symmetric function of the eigenvalues of Ag computed with respect
to g, is constant.

The problem of finding σk-Yamabe metrics is usually posed as a problem
in conformal geometry: Starting with an arbitrary metric g and given β ∈ R,
the σk-Yamabe problem consists in finding a new metric g̃ = e2ug, in the
conformal class of g, such that σk(Aeg) = (−1)kβ. (In the main case of
interest here, the eigenvalues of Ag are all negative, and so the constant β is
positive; this explains our choice of sign.) This way we reduce the problem
to finding a solution u to some scalar nonlinear partial differential equation.
Notice that when k = 1, σ1(Ag) = R/2n, and so g̃ is a σ1-Yamabe metric if
and only if its scalar curvature is constant. In this case the equation for u
becomes

∆gu +
n− 1

2
|∇gu|2 −

R

2n
= β e2u.

Defining v by v4/(n−1) = e2u (and keeping in mind that dim M = n+1), the
equation for v assumes the familiar form

∆gv −
R(n− 1)

4n
v = −n− 1

2
β v

n+3
n−1 ,

and the existence theory when M is compact is complete and by now well-
known [14]. However, when k > 1, the equation for u is fully nonlinear
and the existence theory is much less well understood. Recent significant
progress has been made by Chang-Gursky-Yang [8] when k = 2, and also
by Viaclovsky [22], but much remains to be understood. In particular,
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in contrast with the ordinary Yamabe problem, for k > 1 the σk-Yamabe
problem seems to be somewhat more tractable for positively curved metrics:
a crucial a priori C2 estimate is missing in the case where all eigenvalues of
Ag are negative [22].

We now write out the σk-Yamabe equations (within a conformal class)
more explicitly. Fixing g and using (2), we see that

g̃ = e2u g satisfies σk(Aeg) = (−1)kβ(3)

provided

Fk(g, u, β) := σk

(
D du− du⊗ du +

1
2
|du|2g −Ag

)
− βe2ku = 0.(4)

The symmetric function of the eigenvalues of Aeg here is computed with
respect to g rather than g̃, which accounts for the exponential factor; the
sign on the final term comes from taking σk of −Aeg. For any constant β,
we define

Σk(β) :=
{
g̃ = e2u g : Fk(g, u, β) = 0

}
,(5)

which is some subset within the space of all metrics on M .

As already indicated, the main result here involves the perturbation the-
ory for solutions of Fk(g, u, β) = 0, or equivalently, the structure of the sets
Σk(β), in the case where Mn+1 is a manifold with boundary and all metrics
are conformally compact. In this case, we will fix a defining function ρ for
∂M and write any conformally compact metric g on M as g = ρ−2 g where
g is a metric on M .

Since conformally compact metrics have asymptotically negative (in fact,
isotropic) sectional curvatures, Σk(β) is nonempty only when β > 0. Indeed,
a brief calculation shows that when g = ρ−2g, then near any point of the
boundary (where ρ = 0),

Ag = −1
2
|dρ|2g g +O(ρ−1).(6)

Notice that although g only determines ρ and g up to a conformal factor (i.e.,
g is also equal to (aρ)−2(a2g) for any a ∈ C(M)), the function |dρ|2g is well-
defined at ρ = 0, regardless of this choice. Also, since ρ is a defining function
for ∂M , this quantity is by definition strictly positive at the boundary. We
conclude that for any conformally compact metric g,

σk(Ag) =
(
−1

2
|dρ|2g

)k (n + 1
k

)
+O(ρ),(7)

near ∂M . If σk(Ag) is constant on M , then necessarily |dρ|2g is constant
along the boundary, and so, multiplying g by a constant, we may as well
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assume that

|dρ|2g ≡ 1 when ρ = 0.

In this case, the limit of σk(Ag) at any point of ∂M equals the particular
constant (−1)kβ0

k which corresponds to the hyperbolic metric g0 on Bn+1,
namely

β0
k := 2−k

(
n + 1

k

)
.(8)

Our main result gives a rich class of conformally compact σk-Yamabe
metrics on the manifold M , granting the existence of at least one such
metric. In particular, it states that the deformation theory for this problem
is always unobstructed whenever β > 0. More precisely, we have:

Theorem 1. Let M be a compact smooth manifold with boundary and ρ a
fixed defining function for ∂M . For any metric g on M , denote by [g] its
conformal class. Suppose that σk(Aρ−2g) = (−1)kβ0

k. Then there is a C2,α-
neighborhood U of [g] in the space of conformal classes on M such that every
conformal class [g′] in this neighborhood contains a unique metric g′u = e2ug′

with

σk(Aρ−2 g′u
) = (−1)kβ0

k,

which is near to g; the set of these solution metrics fills out an (open piece
of an) analytic Banach submanifold, with respect to an appropriate Banach
topology.

As noted above, the analogue of this theorem holds also when M is com-
pact without boundary, and the proof is similar but even more straightfor-
ward. For the record, we state this result too:

Theorem 2. Fix β > 0. Let g be a metric on the compact manifold M and
[g] its conformal class. Suppose that Ag ∈ Γ−k (see §1) and σk(Ag) = (−1)kβ.
Then there is a neighborhood U of [g] in the space of conformal classes on M
such that every conformal class [g′] in this neighborhood contains a unique
metric g′u = e2ug′ with

σk(Ag′u) = (−1)kβ,

which is near to g; the set of these solution metrics fills out an (open piece
of an) analytic Banach submanifold, with respect to an appropriate Banach
topology.

Let us return to conformally compact metrics, and connect Theorem 1
with the first theme discussed in the introduction. To begin with, notice
that a metric g is Einstein if and only if:

Ricg =
R

n + 1
g.(9)
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It is well-known that if this is the case then the scalar curvature R is con-
stant. Now (9) is equivalent to either of the two conditions:

Ag =
R

2n(n + 1)
g, or

σk(Ag) =
(

R

2n(n + 1)

)k (n + 1
k

)
for k = 1, . . . , n + 1.

Hence, Poincaré-Einstein metrics are also σk-Yamabe metrics for every k =
1, · · · , n+1 and, if the scalar curvature is normalized so that R = −n(n+1),
the constants σk(Ag) must equal the constants (−1)k β0

k for hyperbolic space.
In particular, the moduli space E of P-E metrics is equal to the intersection
of the Σk(β0

k) over all k. This gives:

Corollary 1. The moduli space E of conformally compact Poincaré-Ein-
stein metrics is a finite intersection of Banach submanifolds, and is closed
in the space of conformally compact metrics on M .

The first statement in this corollary follows directly from the preceding
discussion and Theorem 1, while the second statement follows from the fact
that the space of σ1-Yamabe metrics with scalar curvature equal to a fixed
negative constant is closed.

In some sense, Corollary 1 shows that the somewhat less tractable space
E is a finite intersection of submanifolds Σj , each of which is an analytic
submanifold, but more importantly, each of which has an unobstructed de-
formation theory. This amounts to some sort of figurative ‘factorization’ of
the Einstein equations into n + 1 scalar (albeit fully nonlinear) equations.

The plan for the rest of this paper is as follows: §1 reviews the structure
of the functionals Fk and their linearizations Lk, and this is followed in §2
by a discussion of the function spaces and of the mapping properties of the
Lk on these spaces. The deformation theory for the σk-Yamabe equations
and the proof of Theorems 1 and 2 is the topic of §3. Finally, §4 contains a
list of some interesting open questions raised by the results here.

1. The functionals Fk.

Let us fix a conformally compact metric g0, which we may as well take to
be smooth, i.e., g0 = ρ−2g0, where both ρ and g0 are C∞ on M . Fix also
a constant β > 0. Recall that the metric g = e2ug0 is in Σk(β), and so has
σk(Ag) = (−1)kβ, provided

F(g0, u, β) = σk

(
Ddu− du⊗ du +

1
2
|du|2g0 −Ag0

)
− β e2ku = 0.
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In this section we recall some facts about the ellipticity of this operator and
the structure of its linearization. These facts are taken from [22], and we
refer there for all proofs and further discussion.

To approach the issue of ellipticity, first consider the kth elementary sym-
metric function σk as a function on vectors λ = (λ1, · · · , λn+1) ∈ Rn+1.
Let Γ+

k denote the connected component of the open set {λ : σk(λ) > 0}
containing the positive orthant {λ : λj > 0 ∀ j}. These are all convex cones
with vertices at the origin and

{λ : λj > 0 ∀j} = Γ+
n+1 ⊂ Γ+

n ⊂ · · · ⊂ Γ+
1 = {λ : σ1(λ) > 0}.

Also, let Γ−k = −Γ+
k . A real symmetric matrix is said to lie in Γ±k if its

eigenvalues lie in the corresponding set.
We may equally well consider symmetric two-tensors and their eigenvalues

relative to a metric g, and so we shall transfer to this setting, which is more
natural in terms of the geometric notation.

Proposition 1. If Ag ∈ Γ−k , then u → Fk(g, u, β) is elliptic at any solution
of Fk(g, u, β) = 0.

The proof of this in [22] (see also [21]) relies on the computation of the
linearization of Fk in the direction of the conformal factor u. The neatest
formulation of this requires a definition from linear algebra. For any real,
symmetric matrix B, and any q = 0, · · · , n + 1, define the qth Newton
transform of B as the new real, symmetric matrix

Tq(B) = σq(B)I − σq−1(B)B + · · ·+ (−1)qBq.

Of course, Tn+1(B) = 0. If B is a symmetric two-tensor, then Tq(B) is
defined as a symmetric two-tensor in the obvious way. Now suppose that
B = B(ε) depends smoothly on a parameter ε, and write B′(0) = Ḃ. It is
proved in [20] that

d

dε

∣∣∣∣
ε=0

σk(B(ε)) = Tr(ḂTk−1(B)).(10)

(For symmetric two-tensors, this trace is just the g-inner product of Ḃ with
Tk−1(B).)

We apply this to the Schouten tensors associated to the family of met-
rics g(ε) = e2εφg where g ∈ Σk(βk). We may use the metric g to identify
symmetric 2-tensors with (n + 1)× (n + 1) matrices, or completely equiva-
lently, compute traces of such tensors using the metric and regard the trace
of the product of matrices on the right side of (10) as the g-inner product
of tensors. We have

B(ε) =
(
−Ag + ε D dφ + ε2

(
1
2
|dφ|2 − dφ⊗ dφ

))
,
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so that B(0) = B = −Ag and Ḃ(0) = Ḃ = Ddφ. This gives the formula

Lkφ := DFk|g,0 (0, φ) = 〈Tk−1(−Ag), Ddφ〉g − 2kβkφ.(11)

The proof of Proposition 1 in general (i.e., when g is not necessarily
a solution itself and when the linearization is computed at some solution
u 6= 0) relies on the (nonobvious) fact that Tk−1(B) is positive definite when
B ∈ Γ+

k . We refer to [22] (or [21]) for further details.

Let us compute Lk more explicitly when g is hyperbolic, or in fact, when
g is an arbitrary Poincaré-Einstein metric. We shall always normalize the
metric so that the scalar curvature is given by R = −n(n+1), in which case
the Einstein condition becomes Ric = −ng and σk(Ag) = (−1)k β0

k. By (9),
if g is P-E then Ag = −1

2 g, and so

Tk−1(−Ag) = 21−kTk−1(g) = 21−k
k−1∑
j=0

(−1)j

(
n + 1

k − 1− j

)
g.

One may check by induction that this sum has a closed form expression, and
this leads to the identity

Tk−1(−Ag) = ck,n g, where ck,n = 21−k

(
n

k

)
.

The key observation here is that ck,n > 0. Altogether, we obtain the formula

Lkφ = ck,n ∆φ− 2k β0
k φ,(12)

which holds whenever g is Poincaré-Einstein with Ric = −ng.

If g ∈ Σk(β) is a more general solution (i.e., not necessarily P-E), then
Lk is more complicated. However, certain properties remain valid. A direct
calculation yields:

Proposition 2. Suppose g ∈ Σk(β), β > 0, and let Lk denote the lineariza-
tion of Fk at u = 0. Then

Lkφ = ck,n∆gφ− 2kβφ + ρ3Eφ,(13)

where E is a second order operator with bounded coefficients on M (smooth
if ρ and g = ρ2g are smooth ), and without constant term.

Note especially one of the key point in this result that the operator E
contains no constant term.

We remark that (13) may also be obtained from general principles involv-
ing the theory of uniformly degenerate operators [15] and [16]. Since some
of the main results of this theory will be invoked later anyway, we digress
briefly to explain this setup. Choose coordinates (x, y) := (x, y1, . . . , yn),
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x ≥ 0 near a point of the boundary of M . A second order operator L is said
to be uniformly degenerate if it may be expressed in the form

L =
∑

j+|α|≤2

aj,α(x, y)(x ∂x)j(x ∂y)α.(14)

The coefficients may be scalar or matrix-valued, and although we usually
assume they are smooth, it is easy to extend most of the main conclusions
of this theory when they are polyhomogeneous, or of some finite regularity.
Operators of this type arise naturally in geometry, and in particular all of
the natural geometric operators associated to a conformally compact metric
are uniformly degenerate. Note that the error term ρ3E in (13) is actually of
the form ρE′ where E′ is some second order uniformly degenerate operator
without constant term.

The ‘uniformly degenerate symbol’ of this operator is elliptic provided

σ(L)(x, y; ξ, η) :=
∑

j+|α|=2

aj,α(x, y)ξjηα 6= 0 when (ξ, η) 6= 0.

(For systems, we require σ(L) to be invertible as a matrix when (ξ, η) 6= 0.)
We also define the associated normal operator

N(L) :=
∑

j+|α|≤2

aj,α(0, y)(s∂s)j(s∂v)α.

The boundary variable y enters only as a parameter, while the ‘active’ vari-
ables (s, v) in this expression may be regarded as formal, but in fact are nat-
urally identified with linear coordinates on the inward pointing half-tangent
space T+

(0,y)M . In particular:

Proposition 3. If g is a smooth conformally compact metric (normalized
so that |dρ|2g = 1 at ∂M), then its Laplace-Beltrami operator ∆g is an elliptic
uniformly degenerate operator with normal operator

N(∆g) = ∆Hn+1 := (s ∂s)2 + s2 ∆Rn − n s ∂s.(15)

Furthermore, if g ∈ Σk(β0
k), then the linearization Lk of Fk at u = 0 is also

elliptic and uniformly degenerate, with normal operator

L0
k := N(Lk) = ck,n((s ∂s)2 + s2 ∆Rn − n s ∂s)− 2k β0

k.(16)

As we explain in the next section, the operator Lk is Fredholm on various
natural function spaces. This specializes a criterion which is applicable
to other more general uniformly degenerate operators L, namely that L is
Fredholm if and only if two separate ellipticity conditions hold: First, the
symbol σ(L) should be invertible, and in addition, the normal operator N(L)
must be invertible on certain weighted L2 spaces.
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2. Function spaces and mapping properties.

Let Lk be the linearization considered in the last section. We shall now de-
scribe some of its mapping properties. As indicated above, these properties
also hold for more general elliptic, uniformly degenerate operators L.

We first review one particular scale of function spaces which is convenient
in the present setting, and then state the mapping properties on them en-
joyed by Lk. The material here is taken from [15], to which we refer for
further discussion and proofs.

Fix a reference (smooth) conformally compact metric g0 = ρ−2g0; also,
choose a smooth boundary coordinate chart (x, y) as in the previous section,
and recall the basic vector fields x ∂x and x ∂yj , j = 1, . . . , n. Since x is
a smooth nonvanishing multiple of ρ near ∂M , these vector fields are all
of uniformly bounded lengths with respect to g0, and are also uniformly
independent as x ↘ 0. There are two equivalent ways to define the Hölder
space Λ`,α(M), ` ∈ N, α ∈ (0, 1). In either case, it suffices to work in a
boundary coordinate chart. The first is to set

Λ0,α(M) :=
{

u : sup
|u(x, y)− u(x′, y′)|(x + x′)α

|x− x′|α + |y − y′|α

}
,

where the supremum is taken first over all points w = (x, y), w′ = (x′, y′),
w 6= w′, which lie in some coordinate cube B centered at a point w0 =
(x0, y0) of sidelength 1

2x0, and then over all such cubes. The other is to let
B denote a ball of unit radius with respect to the metric g0 centered at w0,
and to replace the quotient in this definition by

|u(x, y)− u(x′, y′)|
distg0 (w,w′)α

and then take the supremum over all w 6= w′ ∈ B, and then over all such
balls B.

This latter definition is more geometric, while the former definition clearly
implies the scale invariance of these spaces, namely that if u(w) is defined
(and, say, compactly supported) in one of these coordinate charts and if we
define uε(w) = u(w/ε), then the associated norms of u and uε are the same.

We shall also use a few other closely related spaces:
• For ` ∈ N and α ∈ (0, 1), let

Λ`,α(M) :=
{

u : (x ∂x)j(x ∂y)βu ∈ Λ0,α(M) ∀ j + |β| ≤ `
}

.

• For γ ∈ R, ` ∈ N and α ∈ (0, 1), let

ργΛ`,α(M) :=
{

u : u = ργ ũ, where ũ ∈ Λ`,α(M)
}

.
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Thus the first of these are the natural higher order Hölder spaces associ-
ated to the geometry of g0, or equivalently, to differentiations with respect
to the vector fields x ∂x and x ∂y. The second of these spaces are the usual
weighted analogues. The corresponding norms are || · ||`,α and || · ||`,α,γ ,
respectively.

We could equally easily have defined L2- and Lp-based Sobolev spaces,
corresponding to differentiations with respect to the vector fields x ∂x and
x ∂y. The mapping properties we state below all have direct analogues for
these spaces. However, as usual, Hölder spaces are perhaps the simplest to
deal with for nonlinear PDE.

Now let us turn to the mapping properties of Lk in the case where the
conformally compact metric g at which Lk is computed satisfies σk(Ag) =
(−1)k βk

0 . First of all, it follows immediately from the definitions that

Lk : ργ Λ`+2,α(M) −→ ργ Λ`,α(M)(17)

is a bounded mapping for any γ ∈ R and 0 ≤ `. However, this map is not
well-behaved for many values of the weight parameter γ. There are two
ways this may occur. First if γ is sufficiently large positive, then it is not
hard to see that (17) has an infinite dimensional cokernel, while dually, if γ
is sufficiently large negative, then (17) has an infinite dimensional nullspace.
Although we do not use it here, less trivial is the fact that in either of these
two cases the mapping is semi-Fredholm (i.e., has closed range and either
the kernel or cokernel are finite-dimensional).

However, for certain values of γ the range of this mapping may not be
closed. This is determined by a consideration of the indicial roots of Lk. We
say that γ is an indicial root of Lk if Lk(ργ) = O(ργ+1) (note that because
of the uniform degeneracy of Lk, Lk(ργ) = O(ργ) is true for any value of
γ). Thus γ is an indicial root only if some special cancellation occurs. It is
clear that the indicial roots of Lk agree with those of its normal operator
L0

k, and then (16) shows that γ is an indicial root if and only if

ck,n(γ2 − nγ)− 2kβ0
k = 0,

or in other words γ ∈ {γ±} where

γ± :=
n

2
±

√
n2

4
+

2kβ0
k

ck,n
.

In particular

γ− < 0 < n < γ+

since βk, ck,n > 0.
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The relevance of these indicial roots to the mapping properties of (17) is
that when γ is equal to one of these two values, then (17) does not have
closed range. At heart, this stems from the fact that the equation

L0
ku = sγ± ,

has solution u = csγ±(log s) for some constant c, i.e., the inhomogeneous
term is in the appropriate weighted Hölder space but the solution u just
misses being in this space.

Despite these cautions, we have the following basic result:

Mapping properties: If γ− < γ < γ+, then the mapping (17) is Fredholm
of index zero.

The main result of [15] is a considerably more general theorem of this
sort for more general elliptic uniformly degenerate differential operators.
There are two special features of Lk which enter into the precise form of the
statement here. First, there is a nontrivial interval (γ−, γ+) between the two
indicial roots γ±, allowing for the possibility of a ‘Fredholm range’. Second,
the Fredholm index is zero for γ in this interval ultimately because Lk is
self-adjoint on L2(dVg).

We claim that the mapping (17) is actually invertible when γ is in this
Fredholm range. By the result just stated, this claim will be proved if we
show that when γ ∈ (γ−, γ+) the nullspace of Lk is trivial. We do this
now. The basic observation is that the constant term in Lk is negative. If
γ > 0, then any φ ∈ ργΛ`+2,α vanishes at ∂M , and thus if Lkφ = 0, the
maximum principle implies that φ = 0, as desired. To prove the claim for
every γ ∈ (γ−, γ+), we first compute that for any two values γ′, γ′′ ∈ (γ−, γ+)
and constants c′, c′′ > 0 the function

wc′,c′′ := c′ ργ′ + c′′ ργ′′

satisfies Lkwc,c′ < 0 in some small collar neighbourhood M τ of the boundary,
where 0 ≤ ρ ≤ τ . Now fix γ′′ ∈ (γ, γ+) and choose c′′ so that |φ| ≤ c′′ ργ′′

on the set where ρ = τ . Fixing γ′ ∈ (γ−, γ) and c′ > 0, then for any ε > 0,
the functions v± := wc′,c′′ ± φ satisfy Lkv± < 0 in M τ and v± ≥ 0 both
at the inner boundary ρ = τ and also at near the outer boundary where
ρ = 0. By the maximum principle again, v± > 0 in M τ . Letting c′ ↘ 0, we
conclude that |φ| ≤ c′′ ργ′′ . Since we may choose γ′′ > 0, this implies that φ
is bounded in M and vanishes at ∂M . This reduces us to the previous case.

This reasoning shows that, if γ ∈ (γ−, γ+) and φ ∈ ργΛ`+2,α is a solution
of Lkφ = 0, then φ ∈ ργ′Λ`+2,α for any γ′ < γ+. However, on account of the
following basic result from [15], a much sharper result is true.
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Regularity of solutions: If γ− < γ < γ+ and φ ∈ ργΛ`+2,α is a solution
of Lkφ = f where f vanishes to all orders at ∂M , then as x → 0,

φ(x, y) ∼
∞∑

j=0

φj(y) xγ++j , with φj(y) ∈ C∞(∂M),

in particular φ ∈ ργ+C∞(M).

3. Perturbation theory in Σk.

We now proceed to the main deformation result. Let M be a smooth com-
pact, n + 1 dimensional manifold with boundary. We fix a smooth defining
function ρ for ∂M . For any ` ∈ N and any α ∈ (0, 1) we define

M`,α(M) :=
{

g ∈ C`,α(M ;S2(M)) : |dρ|2g = 1 on ∂M
}

.

Having set things up carefully, the proof of Theorem 1 is almost immedi-
ate. Let g ∈ Σk(β0

k) and consider the mapping

H : M2,α(M)× ργ Λ2,α(M) −→ ργ Λ0,α(18)

defined by

H(h, u) := Fk(ρ−2h, u, β0
k).

Near g, the set Σk(β0
k) is identified with the zero set of H. In particular,

(h, u) = (g, 0) ∈ H−1(0).

To find all other nearby solutions, we shall apply the implicit function
theorem, very much in the spirit of the closely related papers [18] and [11].
Thus we must check two things:

(i) The mapping H in (18) is a smooth mapping between the correspond-
ing Banach spaces.

(ii) The linear map u −→ DH|g,0 (0, u) is surjective between these spaces.
The first of these is straightforward from the definitions and (2) and (7),
provided we choose the weight parameter γ ∈ (0, 1). As for the other, recall
that the restriction of this Fréchet derivative to tangent vectors of the form
(0, u) corresponds to the operator Lk. We have already checked that this is
surjective provided we choose the weight parameter γ ∈ (γ−, γ+). But since
(0, 1) ⊂ (γ−, γ+), these restrictions on γ are not inconsistent. Thus fixing
γ ∈ (0, 1), we obtain a smooth mapping

Φ : M2,α(M) −→ ργΛ2,α(M)

with Φ(g) = 0 and such that

H(h, Φ(h)) ≡ 0.

Furthermore, all solutions of H(h, u) in a sufficiently small neighborhood of
(g, 0) are of this form. This concludes the proof of Theorem 1.
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We omit the proof of Theorem 2 because it is nearly identical; indeed, the
only difference is that standard elliptic theory replaces the Fredholm theory
for uniformly degenerate operators we have quoted.

4. Open questions and further directions.

We conclude this note by raising a few other problems and questions related
to the results and methods here.

a) Because of the difficulty in obtaining a C2 estimate for the σk-Yamabe
problem when k > 1, it is worth wondering whether it might be worth-
while to pose a weaker version of this problem, at least for conformally
compact metrics on manifolds with boundary: Namely, given a confor-
mal class [h0] on ∂M , is it possible to extend this conformal class to at
least some conformal class [g] on the interior such that the σk-Yamabe
problem is solvable in [g]? Probably there are infinitely many such
extensions, as is the case when k = 1, but the added flexibility in this
formulation may be of some use.

b) We have shown in Theorem 1 that Σk(β0
k) is a Banach submanifold

in a neighborhood of g, and furthermore that it may be regarded as a
graph over the space of conformal classes, or at least those conformal
classes near to g. For k = 1, every conformal class on M contains
a unique representative lying in Σ1(β0

1), and thus Σ1(β0
1) is a graph

globally over the space C of all conformal classes. It is not known
whether this remains true when k > 1, and thus we define

Ck =
{
c ∈ C : c contains at least one g ∈ Σk(β0

k)
}

.(19)

Note that C1 = C, and Theorem 1 shows that Ck is open in C for every
k.

It seems central to understand whether Ck = C, or in other words,
whether every conformal class on M contains a conformally compact
σk-Yamabe metric. Related to this is the observation that we do not
know whether each of the submanifolds Σk itself is closed; this depends
ultimately on whether some version of this C2 estimate holds.

It also seems interesting to ask for which `-tuple J = {j1, . . . , j`} ⊂
{1, . . . , n + 1} is the set

ΣJ := Σj1(β
0
j1) ∩ · · · ∩ Σj`

(β0
j`

),

closed. Notice that if 1 ∈ J , then this is certainly true because the
C2 estimate for the conformal factor is routine for the scalar curvature
equation.

c) The regularity of the metrics g ∈ Σk(β0
k) is an interesting question.

When k = 1 this is resolved in [16], cf. also [19]: If g is a smooth con-
formally compact metric, then the conformal factor u corresponding to



POINCARÉ-EINSTEIN METRICS 183

the unique solution g̃ = e2ug ∈ [g] has a polyhomogeneous expansion.
Presumably a similar result holds for all k. Note that unless γ+ ∈ N,
this expansion will involve nonintegral powers of ρ; this should not be
viewed negatively, since functions with expansions of this form may be
manipulated just as easily as smooth functions.

d) The σk-Yamabe problem considered here extends naturally to the more
general setting of the singular σk-Yamabe problem: Given a smooth
metric g0 on a compact manifold M and a closed subset Λ ⊂ M , when
is it possible to find a conformally related metric g = e2ug0 which is
both complete on M ⊂ Λ and a σk-Yamabe metric? When k = 1 it
is known that the dimension of Λ is intimately related to the sign of
the imposed scalar curvature of the solution, and very good existence
results are known when Λ is a submanifold [5] and [17]. What is the
correct statement, and to what extent is this true when k > 1? There
are a number of interesting analytic problems of this nature, and we
shall return to this soon.

e) In general (not just in the conformally compact setting), E sits inside
the finite intersection ∩Σk. Does it appear here as a finite codimen-
sional analytic set, and if so, is this related to some sort of Kuranishi
reduction for the perturbation theory for E?

f) If g is a conformally compact metric on M and if σk(Ag) = (−1)kβ

and σk′(Ag) = (−1)k′β′ are constant, then necessarily(
β

β0
k

)1/k

=
(

β′

β0
k′

)1/k′

.(20)

This follows at once from (6) and (7).

For any (n + 1)-tuple of numbers β ≡ (β1, . . . , βn+1), define

Σ(β) :=
n+1⋂
k=1

Σk(βk).

By (20) it is clear that in the class of conformally compact metrics,
Σ(β) = ∅ unless βk = (−λ)k β0

k for some λ > 0 and for all k.

By contrast, on any compact manifold without boundary, it may
happen that for some other (n + 1)-tuple β of positive numbers, the
set Σ(β) is nonempty. If g ∈ Σ(β), then Ricg has constant eigenvalues.
In particular, metrics with ∇Ric = 0 are in Σ(β) for some β. However,
the reverse inclusion may not be true and it appears that very little
is known about metrics with Ricci tensor having constant eigenvalues,
but cf. [4].

The (presumably) smaller class of metrics with parallel Ricci tensor
is more tractable, but it does not seem to be known if the eigenvalues
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can be constant without the Ricci tensor being parallel. Examples
would be very welcome. Also, in any setting (compact or conformally
compact or ...) it seems to be a very basic problem in Riemannian
geometry to ask what are the possible (n+1)-tuples (β1, . . . , βn+1) for
which Σ1(β1) ∩ · · · ∩ Σn+1(βn+1) is nonempty?
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