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We present a set of global invariants, called “mass inte-
grals”, which can be defined for a large class of asymptoti-
cally hyperbolic Riemannian manifolds. When the “boundary
at infinity” has spherical topology one single invariant is ob-
tained, called the mass; we show positivity thereof. We apply
the definition to conformally compactifiable manifolds, and
show that the mass is completion-independent. We also prove
the result, closely related to the problem at hand, that confor-
mal completions of conformally compactifiable manifolds are
unique.

Introduction.

Let (M, b) be a smooth n-dimensional Riemannian manifold, n ≥ 2 and let
Nb denote the set of functions V on M such that

∆bV + λV = 0,(0.1)

D̊iD̊jV = V (Ric(b)ij − λbij),(0.2)

for some constant λ < 0. Here Ric(b)ij denotes the Ricci tensor of the metric
b, D̊ the Levi-Civita connection of b, and ∆b := bk`D̊kD̊` is the Laplacian of
b. Rescaling b if necessary, we can without loss of generality assume that

λ = −n so that Rb = bijRic(b)ij = −n(n− 1).

(M, b) will be called static if

Nb 6= {0}.
This terminology is motivated by the fact that for every V ∈ Nb the
Lorentzian metrics defined on R× (M \ {V = 0}) by the formula

γ = −V 2dt2 + b(0.3)

are static solution of the Einstein equations, Ric(γ) = λγ (and the Riemann-
ian metrics V 2dt2 + b are actually Einstein as well).

The object of this work is to present a set of global invariants, constructed
using Nb, for metrics which are asymptotic to a class of static metrics. The
model case of interest is the hyperbolic metric, which is static in our sense:
The set Nb is then linearly isomorphic to Rn+1; however, other classes of
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metrics will also be allowed in our framework. The invariants introduced
here stem from a Hamiltonian analysis of general relativity, and part of
the work here is a transcription to a Riemannian setting of the Lorentzian
analysis in [16]. Related definitions have been given recently by Wang [39]
(with a spherical conformal infinity) and Zhang [41] (in dimension 3, again
with spherical asymptotic geometry), under considerably more restrictive
asymptotic and global conditions. Wang’s definition of mass for asymptoti-
cally hyperbolic manifolds [39] coincides with ours, when his much stronger
asymptotic decay conditions are satisfied (note, however, that his proof of
the geometric character of the mass is incomplete, as he ignores the pos-
sibility of existence of inequivalent conformal completions). Moreover, the
hypothesis of [39] and [41] that (M, g) has compact interior is replaced by
that of completeness; this strengthening of the positivity theorem is essen-
tial when the associated Lorentzian space-time contains “degenerate” event
horizons.

This work is organised as follows: In Section 1 we review a few static
metrics, and discuss their properties relevant to the work here. In Sec-
tion 2 we define the “mass integrals”, we make precise the classes of metrics
considered, and we show how to obtain global invariants out of the mass
integrals. We show that our boundary conditions are sharp, in the sense
that their weakening leads to mass integrals which do not provide geometric
invariants. It is conceivable that the strengthening of some of our conditions
could allow the weakening of some other ones, leading to geometric invari-
ants for other classes of manifolds; we expect that such a mechanism occurs
for the Trautman-Bondi mass of asymptotically hyperboloidal manifolds. In
several cases of interest one obtains a single invariant, which we call the mass
of (M, g), but more invariants are possible depending upon the topology of
the “boundary at infinity” ∂∞M of M — this is determined by the number
of invariants of the action of the group of isometries of b on Nb, see Section 3
for details. Regardless of this issue, we emphasise that we only consider the
“global charges” of [16] related to Killing vectors which are normal to the
level sets of t in the space-time metric (0.3): The remaining space-time in-
variants of [16], associated, e.g., to “rotations” of M , involve the extrinsic
curvature of the initial data hypersurface and are of no concern in the purely
Riemannian setting here. In Section 4 we prove positivity of the mass so
obtained for metrics asymptotic to the hyperbolic one. As a corollary of
the positivity results we obtain a new uniqueness result for anti-de Sitter
space-time, Theorem 4.3. We also consider there the case of manifolds with
a compact inner boundary. In Section 5 we show how to define mass for
a class of conformally compactifiable manifolds. The question of geometric
invariance of the mass is then closely related to the question of uniqueness
of conformal completions; in Section 6 we prove that such completions are
indeed unique.
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1. The reference metrics.

Throughout this paper we will assume that the manifold contains a region
Mext ⊂M together with a diffeomorphism

Φ−1 : Mext → [R,∞)×N,(1.1)

where N is a compact boundaryless manifold, such that the reference metric
b on Mext takes the form

Φ∗b =
dr2

r2 + k
+ r2h̆ =: b0,(1.2)

with h̆ — a Riemannian metric on N with scalar curvature Rh̆ and the
constant k equal to

Rh̆ =

{
(n− 1)(n− 2)k, k ∈ {0,±1}, if n > 2,
0, k = 1, if n = 2,

(1.3)

(recall that the dimension of N is (n − 1)); here r is a coordinate running
along the [R,∞) factor of [R,∞)×N . There is some freedom in the choice
of k in (1.2) when n = 2, associated with the range of the angular variable
ϕ on N = S1 (see the discussion in Remark 3.1 below) and we make the
choice k = 1, as it corresponds to the usual form of the two-dimensional
hyperbolic space.

When (N, h̆) is the unit round (n − 1)-dimensional sphere (Sn−1, gSn−1),
then b is the hyperbolic metric. Equations (1.2) and (1.3) imply that the
scalar curvature Rb of the metric b is constant:

Rb = −n(n− 1).

Moreover the metric b will be Einstein if and only if h̆ is. We emphasise
that for all our purposes we only need b on Mext, and we continue b in an
arbitrary way to M \Mext whenever required.

The cases of main interest seem to be those where h̆ is a space form — it
then follows from the results in [16, Appendix B] that we have

k = 0,−1 =⇒ Nb0 = Vect{
√
r2 + k},(1.4)

k = 1, (N, h̆) = (Sn−1, gSn−1) =⇒ Nb0 = Vect{V(µ)}µ=0,...,n,(1.5)

V(0) =
√
r2 + k, V(i) = xi,(1.6)

with the usual identification of [R,∞)× Sn−1 with a subset of Rn in (1.6).
However, we shall not assume that h̆ is a space-form, or that Equations (1.4)-
(1.6) hold unless explicitly stated.

For the purposes of Section 5 we note the following conformal represen-
tation of the metrics (1.2): One replaces the coordinate r by a coordinate x
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defined as

x =
2

r +
√
r2 + k

⇐⇒ r =
1− kx2/4

x
,(1.7)

which brings b into the form

b = x−2
(
dx2 + (1− kx2/4)2h̆

)
(1.8)

=: x−2b̃,

with b̃ — a metric smooth up to boundary on {x ∈ [0, xR] × N}, for a
suitable xR.

2. The mass integrals.

Let g and b be two Riemannian metrics on a manifold M , and let V be any
function there. We set

eij := gij − bij(2.1)

(the reader is warned that the tensor field e here is not a direct Riemannian
counterpart of the one in [16]; the latter makes appeal to the contravariant
and not the covariant representation of the metric tensor). As before we
denote by D̊ the Levi-Civita connection of b, and we use the symbol Rf to
denote the scalar curvature of any metric f . The basic identity from which
our mass integrals arise is the following:

√
det g V (Rg −Rb) = ∂i

(
Ui(V )

)
+
√

det g (ρ+Q),(2.2)

where

Ui(V ) := 2
√

det g
(
V gi[kgj]lD̊jgkl +D[iV gj]kejk

)
,(2.3)

ρ := (−V Ric(b)ij + D̊iD̊jV −∆bV bij)gikgj`ek`,(2.4)

Q := V (gij − bij + gikgj`ek`)Ric(b)ij +Q′.(2.5)

Brackets over a symbol denote anti-symmetrisation, with an appropriate
numerical factor (1/2 in the case of two indices). Here Q′ denotes an ex-
pression which is bilinear in eij and D̊keij , linear in V , dV and HessV , with
coefficients which are constants in an ON frame for b. The idea behind this
calculation is to collect all terms in Rg that contain second derivatives of the
metric in ∂iUi; in what remains one collects in ρ the terms which are linear
in eij , while the remaining terms are collected in Q; one should note that the
first term at the right-hand-side of (2.5) does indeed not contain any terms
linear in eij when Taylor expanded at gij = bij . The mass integrals will be
flux integrals — understood as a limiting process — over the “boundary at
infinity of M” of the vector density Ui.
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In general relativity a normalising factor 1/16π, arising from physical con-
siderations, is usually thrown in into the definition of Ui. From a geometric
point of view this seems purposeful when the boundary at infinity is a round
two dimensional sphere; however, for other topologies and dimensions, this
choice of factor does not seem very useful, and for this reason we do not
include it in the definition.

We note that the linearisation of the mass integrands Ui coincides with
the linearisation of the charge integrands of [16] evaluated for the Lorentzian
metrics 4b = −V 2dt2+b, 4g = −V 2dt2+g, with X = ∂t, on the hypersurface
t = 0; however the integrands do not seem to be identical. Nevertheless,
under the conditions of Theorem 2.3 the resulting numbers coincide, because
under the asymptotic conditions of Theorem 2.3 only the linearised terms
matter.

The convergence of the mass integrals requires appropriate boundary con-
ditions, which are defined using the following orthonormal frame {fi}i=1,n

on Mext:

Φ−1
∗ fi = r−1εi, i = 1, . . . , n− 1, Φ−1

∗ fn =
√
r2 + k ∂r,(2.6)

where the εi’s form an orthonormal frame for the metric h̆. We moreover
set

gij := g(fi, fj).(2.7)

Asymptotic decay conditions 2.1. We shall require:∫
Mext

∑
i,j

|gij − δij |2 +
∑
i,j,k

|fk(gij)|2
 r ◦ Φ dµg <∞,(2.8a)

∫
Mext

|Rg −Rb| r ◦ Φ dµg <∞,(2.8b)

∃ C > 0 such that C−1b(X,X) ≤ g(X,X) ≤ Cb(X,X).(2.9)

For the V ’s of Equations (1.4) or (1.6) we have

V = O(r),
√
b#(dV, dV ) = O(r),(2.10)

where b# is the metric on T ∗M associated to b, and this behavior will be
assumed in what follows:

Proposition 2.2. Let the reference metric b on Mext be of the form (1.2),
suppose that V satisfies (2.10), and assume that Φ is such that Equations
(2.8)-(2.9) hold. Then for all V ∈ Nb0 the limits

HΦ(V ) := lim
R→∞

∫
r=R

Ui(V ◦ Φ−1)dSi(2.11)

exist, and are finite.
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The integrals (2.11) will be referred to as the mass integrals.

Proof. For any R1, R2 we have∫
r=R1

UidSi =
∫
r=R2

UidSi +
∫

[R1,R2]×N
∂iUi dnx,(2.12)

and the result follows from (2.2)-(2.5). �

Under the conditions of Proposition 2.2, the integrals (2.11) define a linear
map from Nb0 to R. Now, each map Φ used in (1.2) defines in general a
different background metric b on Mext, so that the maps HΦ are potentially
dependent upon Φ. (It should be clear that, given a fixed h̆, (2.11) does
not depend upon the choice of the frame εi in (2.6).) It turns out that this
dependence can be controlled, as follows:

Theorem 2.3. Consider two maps Φa, a = 1, 2, satisfying (2.8) together
with

∑
i,j

|gij − δij |+
∑
i,j,k

|fk(gij)| =

{
o(r−n/2), if n > 2,
O(r−1−ε), if n = 2, for some ε > 0.

(2.13)

Then there exists an isometry A of b0, defined perhaps only for r large
enough, such that

HΦ2(V ) = HΦ1(V ◦A−1).(2.14)

Proof. The arguments of the proof of Theorem 2.3 follow closely those given
at the beginning of Section 4 and in Section 2 of [16], we need, however,
to adapt some of the necessary ingredients to our different setup here. The
conclusion of Proposition 5.2 below, which holds for all manifolds (N, h̆)
considered here, enables us to use Theorem 3.3 (2) of [16]: If Φ1 and Φ2

are two maps as above satisfying the decay assumptions (2.8)-(2.9) and
(2.13) with respect to (isometric) reference metrics b1 := (Φ−1

1 )∗b0 and b2 :=
(Φ−1

2 )∗b0, then there exists an isometry A of the background metric b0,
defined perhaps only for r large enough, as made clear in Proposition 5.2,
such that

Φ2 − Φ1 ◦A = o(r−n/2).
One also has a similar — when appropriately formulated in terms of b-ortho-
normal frames, as in [16] — decay of first two derivatives.

It follows directly from the definition of HΦ that

HΦ1◦A(V ) = HΦ1(V ◦A−1).

In order to establish (2.14) it remains to show that

HΦ1◦A(V ) = HΦ2(V ).(2.15)
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Now, Corollary 3.5 of [16] shows that Φ1 ◦A has the same decay properties
as Φ1, so that — replacing Φ1 by Φ1 ◦ A — to prove (2.15) it remains to
consider two maps Φ−1

1 = (r1, vA1 ) and Φ−1
2 = (r2, vA2 ) (where vA denote

abstract local coordinates on N) satisfying

r2 = r1 + o
(
r
1−n

2
1

)
,(2.16)

vA2 = vA1 + o
(
r
−(1+n

2
)

1

)
,

together with elements V1 := V ◦Φ−1
1 of Nb1 and V2 := V ◦Φ−1

2 of Nb2 having
the same expression in the first or the second system of coordinates. Local
coordinates vA might not be defined on the whole of M ; we shall remove this
problem by embedding the manifold N in R2(n−1), so that local coordinates
are turned into global coordinates. This has no effect in the sequel of the
proof but enables us to consider a well-defined vector field

ζ = (r2 − r1)
∂

∂r1
+
∑
A

(vA2 − vA1 )
∂

∂vA1
,

defined only along M , and tangent to M . The decay estimates above imply
that ζ = o(r−n/2) in the reference metric b1; by Theorem 3.3 (2) of [16]
the same holds for its first two D̊-derivatives. Elementary calculations show
then that

b2 = b1 + Lζb1 + o(r−n), V2 = V1 + D̊iV ζ
i + o(r1−n),(2.17)

together with their first derivatives. Hence, to leading order in powers of
r ≈ r1, everything behaves as if we were considering a first order variation
of metrics through the action of the flow of the vector field ζ.

We shall now show that HΦ1(V ) = HΦ2(V ). For the purpose of the
calculations that follow it will be easier to replace the local integrand U by
the following one:

Ui =
√

det b
(
−V D̊jg

ij + V bijbklD̊jg
kl + 2 D̊[iV bj]kejk

)
,(2.18)

which yields the same limit at infinity when integrated on an element V
of Nb on larger and larger spheres (strictly speaking, we should not denote
them by the same letter U, since they are different vector densities which
give identical results only after an integration process; we shall however do
so since expression (2.18) will only be used in the course of the current
proof; we emphasise that the definition (2.3) is used in all other places in
the paper).

We now compute the variation of U when passing from the asymptotic
map Φ1 (with reference metric b1 and function V1) to the second map Φ2

(with reference metric b2 and function V2). From Equation (2.17), we deduce

Ui
2 − Ui

1 = δUi + o(r1−n),(2.19)
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where δUi is obtained by linearisation in ζ at g = b and will be computed
below, while the remainder terms decay sufficiently fast so that they do not
contribute when integrated at infinity against either b1 or b2. It remains
to show that δUi does not contribute either when integrated at infinity. In
Equation (2.18), the only terms that contribute a priori to the variation
of U are the following: bij , bkl,

√
det b, D̊ and V , but the decay estimates

(2.17) show at first glance that only the variation of D̊ will contribute to
the first-order term δU. We now compute it using Formulae 1.174 of [8]. In
all what follows, we denote b = b1 and V = V1. Then,

δUi =
√

det b
(
−V D̊kD̊

kζi + V D̊kD̊
iζk − 2V Ric(b)ikζk

)
(2.20)

+
√

det b
(
−2(D̊iV )D̊kζ

k + (D̊kV )D̊iζk + (D̊kV )D̊kζ
i
)
.

Fortunately, this will appear to be the sum of a divergence term plus lower
order terms. The first step is to use the following elementary facts:

−V D̊kD̊
kζi = −D̊k(V D̊kζi) + (D̊kV )D̊kζi,(2.21)

V D̊kD̊
iζk = D̊k(V D̊iζk)− (D̊kV )D̊iζk,

which yield

δUi = 2
√

det b
(
(D̊kV )D̊kζi − (D̊iV )D̊kζ

k − V Ric(b)ikζk
)

(2.22)

+ divergence term.

Each of the first two terms in the right-hand side may be transformed with

(D̊kV )D̊kζi = D̊k(ζiD̊kV )− (D̊kD̊kV )ζi,(2.23)

−(D̊iV )D̊kζ
k = −D̊k(ζkD̊iV ) + (D̊kD̊

iV )ζk,

and one may also use that V is an element of Nb to conclude that

Ui
2 − Ui

1 = divergence term + o(r1−n).(2.24)

This establishes the covariance of the mass functional. �

Remark 2.4. For the purpose of explicit calculations we note that un-
der (2.13) the mass integral HΦ(V(0)) = HΦ(

√
r2 + k) can be written as:

HΦ(V(0)) = lim
R→∞

(R2 + k)×

(2.25)

∫
{r=R}

(
−
n−1∑
i=1

{
∂eii
∂r

+
keii

r(r2 + k)

}
+

(n− 1)enn
r

)
dn−1µh,

assuming that the right-hand-side of (2.25) converges. Here dn−1µh is the
Riemannian measure associated with the metric h induced on the level sets
of the function r.
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Remark 2.5. Conditions (2.13) are sharp, in the following sense: Let g be
the standard hyperbolic metric, thus in a coordinate system (r, vA), where
the vA’s are local coordinates on Sn−1, we have

g =
dr2

r2 + k
+ r2h̆.(2.26)

Let, for sufficiently large r, Φ−1
γ (r, vA) = (r(r, vA), vB(r, vA)) be given by

the formula

r = r + γr1−n/2, vA = vA,(2.27)

where γ is a constant. Then HΦγ (
√
r2 + k) does depend upon γ: In order

to see that, consider any background metric of the form

b = a2(r)dr2 + r2h̆,

and let g satisfy

g = gnn(r, vA)a2(r)dr2 + c(r, vA)r2h̆,(2.28)

for some differentiable functions gnn and c. One finds

UidSi|r=const := Ui∂icdr ∧ dv1 ∧ · · · ∧ dvn−1|r=const

(2.29)

=
(n− 1)c(n−3)/2rn−2

a(r)
√
gnn

{
V

(
gnn − 1− r

∂c

∂r

)
+
(
r
∂V

∂r
− V

)
(c− 1)

} √
det h̆AB dv1 ∧ · · · ∧ dvn−1.

Applying this formula to the above g and b one obtains

HΦγ (
√
r2 + k) =

1
4
(n+ 8)n(n− 1)γ2VolgSn−1 (Sn−1).(2.30)

One can also check that the numerical value of the linearised expression
(2.25) reproduces the right-hand-side of (2.30) for the metrics at hand, thus
is again not invariant under (2.27).

3. The mass.

In the asymptotically flat case the mass is a single number which one assigns
to each end of M ([4] and [15]); it is then natural to enquire whether there
are some geometrically defined numbers one can extract out of the family
of maps HΦ. This will depend upon the structure of Nb0 and we shall give
here a few important examples. Throughout this section we assume that
Nb0 6= ∅.

A. The simplest case is that of the manifold (N, h̆) of (1.1)-(1.2) having a
strictly negative Ricci tensor, with scalar curvature Rh̆ = −(n − 1)(n − 2),
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so that n ≥ 3 and k = −1 in (1.2). Similarly to the space forms discussed
in Section 1, Nb0 is then [16, Appendix B] one dimensional:

V ∈ Nb0 ⇐⇒ V = λV(0), λ ∈ R, V(0) :=
√
r2 + k.(3.1)

The coordinate system of (1.2) is uniquely defined, so is the function V(0);
the number

m := HΦ(V(0)),(3.2)

calculated using any Φ satisfying the conditions of Theorem 2.3, provides
the desired, Φ-independent definition of mass relative to b0, whenever (2.6)
and (2.13) hold.

B. Consider, next, the case of a flat (N, h̆) with n ≥ 3, so that k = 0 in
(1.2). Equation (3.1) holds again; however, the coordinate r is not anymore
uniquely defined by b, since (1.2) is invariant under the rescalings

r → ar, h̆→ a−2h̆, a ∈ R∗.

This freedom can be gotten rid of by requiring, e.g.,

Volh̆(N) = 1;

the number m obtained then from (3.2), with V(0) as in (3.1), provides the
desired invariant.

C. The case k = +1 requires more work. Consider first the case where
(N, h̆) = (Sn−1, gSn−1), so that the reference metric is the hyperbolic metric;
it is convenient to start with a discussion of Nb in two models of the hyper-
bolic space: In the ball model, we consider the ball B = {x ∈ Rn, |x| < 1}
endowed with the metric b = ω−2δ, where

ω =
1
2
(1− |x|2),(3.3)

and δ is the flat Euclidean metric. From (1.5)-(1.6) one finds that the set
Nb defined in (0.1)-(0.2) is the (n+ 1)-dimensional vector space spanned by
the following basis of functions:

V(0) =
1 + |x|2

1− |x|2
, V(i) =

2xi

1− |x|2
,(3.4)

where xi is any of the Cartesian coordinates on the flat ball. In geodesic
coordinates around an arbitrary point in the hyperbolic space, the hyper-
bolic metric is b = dr2 + sinh2(r)gSn−1 and the above orthonormal basis of
Nb may be rewritten as V(0) = cosh(r) and V(i) = sinh(r)ni, where ni is the
restriction of xi to the unit sphere centred at the pole.

The space Nb is naturally endowed with a Minkowski metric η, with signa-
ture (+,−, · · · ,−), issued from the action of the group of isometries O+(n, 1)
of the hyperbolic metric ( cf., e.g., [16, Appendix B]). The basis given above
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is then orthonormal with respect to this metric, with the vector V(0) being
timelike, i.e., η(V(0), V(0)) > 0. We define the time orientation of Nb using
this basis — by definition a timelike vector X(µ)V(µ) is future directed if
X(0) > 0, similarly for covectors; this finds its roots in a Hamiltonian anal-
ysis in the associated Lorentzian space-time. Assuming that there exists a
map Φ for which the convergence conditions of Proposition 2.2 are satisfied,
we set

p(µ) := HΦ(V(µ)).(3.5)

Under isometries of b the V(µ)’s are reshuffled amongst each other under the
usual covariant version of the defining representation of the Lorentz group
O+(n, 1). It follows that the number

m2 :=

∣∣∣∣∣(p(0))
2 −

n∑
i=1

(p(i))
2

∣∣∣∣∣(3.6)

is a geometric invariant, which provides the desired notion of mass for a
spherical asymptotic geometry. The nature of the action of O+(n, 1) on Nb

shows that the only invariants which can be extracted out of the HΦ’s are
m2 together with the causal character of p(µ) and its future/past pointing
nature if relevant. Under natural geometric conditions p(µ) is timelike future
pointing or vanishing, see Section 4 below. For timelike p(µ)’s it appears
natural to choose the sign of m to coincide with that of p(0), and this is the
choice we shall make.

Suppose, finally, that the manifold (N, h̆) is the quotient of the unit round
sphere (Sn−1, gSn−1) by a subgroup Γ of its group of isometries. For generic
Γ’s one expects the conformal isometry group of (N, h̆) to be trivial, in
which case all the integrals p(µ) defined by Equation (3.5) define invariants.
In any case, for nontrivial Γ’s conformal isometries of (N, h̆) are isometries
(for compact Einstein manifolds which are not round spheres the group
of conformal isometries coincides with the group of isometries; this follows
immediately, e.g., from what is said in [29]; P.T.C. is grateful to A. Zeghib
and C. Frances for useful comments concerning the structure of the group
of conformal isometries of quotients of spheres), and, in addition to m, p(0)

becomes then a geometric invariant. Further invariants may occur depending
upon the details of the action of the group of isometries of (N, h̆) on Nb0 .

Remark 3.1. Our results also apply in dimension n = 2. This might seem
somewhat surprising at first sight, because there is no direct useful equivalent
of asymptotic flatness and of the associated notion of mass given by an
ADM-type integral in dimension 2: When the scalar curvature is in L1,
the appropriate analogue of mass is the deficit angle, as made precise by
the Shiohama theorem [37]. For the metrics considered here the Shiohama
theorem does not apply; however, the metrics we study can be thought of as
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having a minus infinite deficit angle, consistently with a naively understood
version of the Shiohama theorem — the ratio of the length of distance circles
to the distance from any compact set tends to infinity as the distance does.
Examples of metrics on Mext which satisfy our asymptotic conditions and
have a well-defined nontrivial mass — with respect to a background given
by the 2-dimensional hyperbolic metric — are provided by the Riemannian
counterpart of the generalised (2 + 1)-dimensional Kottler metrics,

g =
dr2

r2 − η
+ r2dϕ2, ϕ ∈ [0, 2π] mod 2π,(3.7)

for some constant η ∈ R; η = −1 corresponds to the standard hyperbolic
metric (as pointed out by Bañados, Teitelboim and Zanelli [3], for positive
η the associated static Lorentzian space-times with V =

√
r2 − η can be

extended to space-times containing a black-hole region). The metrics (3.7)
have constant Gauss curvature equal to minus one for all η ∈ R, so the
integral condition on Rg in (2.8) holds with

b =
dr2

r2 + 1
+ r2dϕ2;

the remaining conditions arising from (2.8), as well as (2.9) and (2.13), are
easily checked. Applying formula (2.25) one obtains

m = p(0) = 2π(1 + η)

(the remaining p(µ)’s are zero by symmetry considerations). For strictly
negative η there is a sense in which m is related to a deficit angle, as follows:
A coordinate transformation r → λr, ϕ → ϕ/λ, with λ2 = −η brings the
metric (3.7) to the standard hyperbolic space form,

g =
dr2

r2 + 1
+ r2dϕ2, ϕ ∈ [0, 2π/λ] mod 2π/λ,(3.8)

except for the changed range of variation of the angular variable ϕ; that
range will coincide with the standard one if and only if the mass vanishes.
For metrics asymptotic to (3.7) the geometric invariance of the mass should
follow directly from this deficit angle character. This suggests strongly that
some methods specific to dimension 2, perhaps in the spirit of the Shiohama
theorem (cf. also [32]), could provide simpler proofs of geometric invariance
and positivity when n = 2; we have not investigated this issue any further.

4. Mass positivity for metrics asymptotic to the standard
hyperbolic metric.

In this section we consider metrics asymptotic to the standard hyperbolic
metric b of constant negative curvature −1; by this we mean that the Rie-
mannian manifold (N, h̆) is the unit round sphere (Sn−1, gSn−1). We wish
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to show that the usual positivity theorem holds under the weak asymptotic
hypotheses considered in the previous sections.

Theorem 4.1. Let (M, g) be a complete boundaryless spin manifold with a
C2 metric, and with scalar curvature satisfying

Rg > −n(n− 1),

and suppose that the asymptotic conditions (2.8) and (2.13) hold with (N, h̆)
= (Sn−1, gSn−1). Then the covector p(µ) defined by Equation (3.5) is timelike
future directed or zero (in particular p(0) ≥ 0). Moreover, it vanishes if and
only if (M, g) is isometrically diffeomorphic to the hyperbolic space.

Remark 4.2. 1. The C2 differentiability of the metric can be replaced by
a weighted W 2,p Sobolev condition.

2. As already pointed out, we say that a linear functional p on Nb is causal
(resp. timelike) and future-directed if it can be written as (p(0), . . . , p(n)) in
any orthonormal and future-oriented basis (V(0), . . . , V(n)) with

(p(0))
2 −

n∑
i=1

(p(i))
2 > 0 and p(0) > 0 (resp. > 0).(4.1)

This is the obvious equivalent of the corresponding definition for vectors;
note, however, that with our signature (−,+, . . . ,+) future directed vectors
are not mapped to future directed covectors by the isomorphism of TM with
T ∗M associated with the metric.

We emphasise that the Lorentz vector character of p(µ) is not related to
the tangent space of some point of M , or of some “abstract asymptotic
point” (“the tangent space at io” — this last interpretation can be given
to energy-momentum in the asymptotically Euclidean context), but arises
from the fact that the adjoint action of the isometry group of the (standard)
hyperbolic space, on the subspace of its Lie algebra singled out by Equa-
tions (0.1)-(0.2), is that of the defining representation of the Lorentz group
on Rn+1.

3. Condition (2.8b) is actually not necessary for positivity, in the following
sense: Under the remaining conditions of Theorem 4.1, the argument of the
proof of Proposition 2.2 shows that p(0) = ∞ whenever (2.8b) does not hold.

4. Such a theorem cannot be obtained in a more general setting. For in-
stance, in the asymptotically Euclidean context, it is well-known that posi-
tivity statements may fail if the metric is asymptotic to some Z2-quotient of
the Euclidean space [30]. In the asymptotically hyperbolic setting, Horowitz
and Myers [25] have constructed an infinite family of metrics with ends as-
ymptotic to a cuspidal hyperbolic metric (the topology of the end is R×T 2),
and with masses as negative as desired. If the topology of the end is the
product of a half-line with a negatively curved Riemann surface, the mass
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may also be negative when minimal interior boundaries are allowed, and it
is expected that the infimum of the possible masses is achieved only for the
Kottler black-hole metrics [25, 28, 38, 12] and [17].

5. The C2 differentiability of the metric can be replaced by weighted
Sobolev-type conditions; this is, however, of no concern to us here.

As a corollary of Theorem 4.1, together with [17, Theorem I.3] and the
remarks at the end of Section V of [17] one has (see [17, Corollary I.4];
compare [9]):

Theorem 4.3. Let V be a strictly positive function on a three dimensional
manifold M such that the metric

γ := −V 2dt2 + g,

is a static solution of the vacuum Einstein equations with strictly negative
cosmological constant on the space-time M := R×M . If:

(i) (M, g) is C3 compactifiable in the sense of Section 5 below, and if
(ii) the conformal boundary at infinity of M is S2, with V −2g extending by

continuity to the unit round metric on S2,
then (M, g) is the hyperbolic space, so that (M, γ) is the anti-de Sitter space-
time.

Preliminaries to the proof. The Proof of Theorem 4.1 will follow the
Gibbons-Hawking-Horowitz-Perry variation [21] of the classical Witten ar-
gument for the positivity of mass [40] (cf. also [34], [1] and the remarks
done in [18]), and relies on the existence on the hyperbolic space of a wealth
of distinguished spinor fields, called imaginary Killing spinors. These are
solutions ϕ of the differential equation

D̂b
Xϕ = Db

Xϕ+
i

2
cb(X)ϕ = 0,(4.2)

where we denote by cb(X)ϕ the Clifford action of a vector X on a spinor ϕ
with respect to the metric b. On hyperbolic space there is a set of maximal
dimension of imaginary Killing spinors, which trivialise the spinor bundle.
They can be described explicitly in the following manner [6]: One may
choose the standard basis {∂i} of the flat space as reference frame, thus
inducing an isomorphism between the spinor frame bundle of (B, e) and
B × Spin(n). This can be transferred to the hyperbolic space through the
usual conformal covariance (of “weight zero”) of spinor bundles [20]. In this
trivialisation, the Killing spinors of b are then the spinor fields ϕu given by

ϕu(x) = ω−
1
2 (1− icδ(x))u(4.3)

where u is any nonzero constant spinor on the flat ball B, and ω is the
conformal factor of the hyperbolic metric defined in (3.3).
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Following the terminology due to H. Baum, Th. Friedrich and I. Kath [19,
7] and [6], the spinor ϕu is said to be of Type I (resp. of Type II) if

‖u‖4
δ +

n∑
i=1

〈cδ(∂i)u, u〉2δ is zero (resp. is positive).(4.4)

Type I spinors are actually sufficient for our purposes, we shall describe
these ones only. For any imaginary Killing spinor, the function

Vu = 〈ϕu, ϕu〉b
is always an element of Nb. If ϕu is moreover of Type I, then there is
a set of n constants (ai) ∈ Sn−1 ⊂ Rn and a constant λ > 0, such that
Vu = λ(V(0) −

∑
i aiV(i)): Indeed, an explicit computation from Equation

(4.3) above shows that, in the ball model,

Vu(x) = ||u||2δ
1 + |x|2

1− |x|2
+ i

n∑
j=1

〈cδ(∂j)u, u〉δ
2xj

1− |x|2
,(4.5)

which is clearly future directed, and the Type I condition (4.4) yields that
Vu is isotropic in Nb. This shows in particular that Killing spinors of Type
I always exist on the hyperbolic space in any dimension. Further, e.g., as
a result of covariance under isometries, any future directed isotropic combi-
nation V(0) −

∑
i aiV(i), (ai) ∈ Sn−1, can be obtained as a Vu for some Type

I Killing spinor (i.e., for some constant spinor u on the flat ball) in any
dimension. For later use we also note that

dVu(X) = i〈cb(X)ϕu, ϕu〉b.

Proof of Theorem 4.1. Let A be the symmetric endomorphism defined over
Mext by g(A·, A·) = b(·, ·), which we will take to be of the form

A = I − 1
2
e+ {quadratic and higher order in e}

if e is small enough; by this we mean that Aij = δij − 1
2b
ikekj+ a second

order Taylor expansion error term. One may use A as an isomorphism
between the orthonormal frame bundles of b and g and any lift of it as an
isomorphism between their spinor frame bundles. This enables, as in [1]
(compare [10]), to transfer the spin connection Db of (Mext, b) on the spinor
bundle of (Mext, g); for notational convenience, the new connection will be
denoted by Db̂. Note that this has the effect that the Clifford action cb(X)
of a vector X is transformed into the Clifford action cg(AX) of AX. As a
consequence, the transferred spinors, still denoted by ϕu, are now solutions
of

D̂b̂
Xϕu = Db̂

Xϕu +
i

2
cg(AX)ϕu = 0.(4.6)
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We now denote by D the spinor connection associated to the Levi-Civita
connection of the metric g and define the modified connection on spinors

D̂X = DX +
i

2
cg(X).

For any ϕu we set
Φu = χϕu + ψu,

where χ is a cut-off function that vanishes outside of Mext and is equal to
1 for r large enough. Suppose, first, that ψu is compactly supported, hence
vanishes for r ≥ R for some R on Mext. We apply the standard Schrödinger-
Lichnerowicz ([33] and [36]) formula relating the rough Laplacian of the
modified connection D̂ to the Dirac Laplacian D̂∗D̂ [1], where

D̂Φu = DΦu −
ni

2
Φu,(4.7)

with D being the usual Dirac operator associated with the metric g. Letting
SR = {r = R} ⊂Mext one obtains∫

M\{r≥R}
‖D̂Φu‖2

g +
1
4

(Rg + n(n− 1)) ‖Φu‖2
g − ‖D̂Φu‖2

g(4.8)

=
∫
SR

BAν(Φu)

=
∫
SR

BAν(ϕu),

where ν is the outer b-unit normal to Sr, so that Aν is its outer g-unit
normal, and BAν(ϕu) is the boundary integrand, explicitly defined by

BY (ρ) = 〈D̂Y ρ+ cg(Y )D̂ρ, ρ〉g(4.9)

for any spinor ρ and vector Y .
Assume that (M, g) is not the hyperbolic space, otherwise there is nothing

to prove. LetH be the usual Hilbertian completion of the space of compactly
supported smooth spinors ψ on M with respect to the norm defined as

‖ψ‖2
H :=

∫
M

(
‖D̂ψ‖2

g +
1
4

(Rg + n(n− 1)) ‖ψ‖2
g

)
dµg.(4.10)

We wish to show that for any Φu = χϕu + ψu, with ψu ∈ H, we will have

∫
M
‖D̂Φu‖2

g +
1
4

(Rg + n(n− 1)) ‖Φu‖2
g − ‖D̂Φu‖2

g = lim
R→∞

∫
SR

BAν(ϕu).

(4.11)

We start by showing that H can be identified with a space H of H1
loc spinor

fields on M , with the norm ‖ · ‖H still given by (4.10) (after identification)
for all ψ ∈ H. First, it is not too difficult to show [5] that in dimension
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larger than or equal to three there exists a strictly positive L∞loc function w
on M such that for all H1

loc spinor fields ψ with compact support we have∫
M
‖ψ‖2

g w dµg ≤
∫
M
‖D̂ψ‖2

gdµg.(4.12)

The function w can be chosen to be constant in the asymptotically hy-
perbolic end. In dimension two one can also prove (4.12) if one assumes
further that there are no imaginary Killing spinors. This is sufficient for
our purposes because, if there exists a Killing spinor then, by [6], we are
in hyperbolic space, where there is nothing to prove. So one might as well
suppose that there are no such spinors.

Let H be the space of measurable spinor fields on M such that

‖ψ‖2
H :=

∫
M
‖ψ‖2

g

(
w +

1
4
(Rg + n(n− 1))

)
dµg +

∫
M
‖D̂ψ‖2

gdµg <∞

(4.13)

where D̂ψ is understood in the distributional sense. Define H̊ ⊂ H as the
completion of C∞

c , in H, with respect to the ‖ · ‖H norm. It is then easy to
verify the following:

Proposition 4.4. The inequality (4.12) remains true for all ψ ∈H̊.

Proof. Both sides of (4.12) are continuous on (H, ‖ · ‖H). �

Proposition 4.5. If (M, g) is complete then H =H̊.

Proof. If φ ∈ H then the sequence χiφ converges to φ in (H, ‖ · ‖H), where
χi(p) = χ(dp0(p)/i), where dp0 is the distance to some chosen point p0 ∈M ,
while χ : R → [0, 1] is a smooth function such that χ|[0,1] = 1, χ|[2,∞) = 0.
Smoothing χiφ using the usual convolution operator yields the result. �

Proposition 4.6. If (M, g) is complete then there is a natural continuous
bijection between (H, ‖ · ‖H) and (H, ‖ · ‖H) which is the identity on C1

c ; in
particular, elements of H can be identified with spinor fields on M which
are in H.

Proof. By Proposition 4.5 both spaces are Hilbert spaces containing C1
c as

a dense subspace, with the norms being equivalent when restricted to C1
c by

Proposition 4.4. �

Let F (ψ) denote the left-hand side of Equation (4.11) with Φu = χϕu+ψ
there, let ψi ∈ C1

c converge to ψ in H, we have
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F (ψ)− F (ψi) = ‖ψ‖2
H − ‖ψi‖2

H

+ 2
∫
M
〈D̂(χϕu), D̂(ψ − ψi)〉

− 2
∫
M
〈D̂(χϕu), D̂(ψ − ψi)〉

+
1
2

∫
M

(Rg + n(n− 1)) 〈χϕu, ψ − ψi〉.

It should be clear from the fact that D̂(χϕu) ∈ L2(M) that all the terms
above converge to zero as i tends to infinity, except perhaps for the last one
(recall that we are only assuming that 0 ≤ (Rg + n(n− 1))|V | ∈ L1(Mext));
the convergence of that last term can be justified as follows:∣∣∣∣∫

M
(Rg + n(n− 1)) 〈χϕu, ψ − ψi〉

∣∣∣∣
≤
(∫

M
(Rg + n(n− 1)) ‖χϕu‖2

g

)1/2(∫
M

(Rg + n(n− 1)) ‖ψ − ψi‖2
g

)1/2

≤ ‖χϕu‖H‖ψ − ψi‖H .
(Here we have applied the Cauchy-Schwarz inequality associated with the
positive quadratic form occurring in the left-hand-side above.) Now, F (ψi) =
F (0), and we have shown that Equation (4.11) holds for all ψu ∈ H, as
claimed.

To obtain positivity of the left-hand-side of Equation (4.11) we seek a Φu

such that

D̂Φu = 0 ⇐⇒ D̂ψu = −D̂(χϕu).(4.14)

We now use the fact that ϕu solves (4.6), hence

D̂Xϕu =
(
DX −Db̂

X

)
ϕu −

i

2
cg(AX −X)ϕu.(4.15)

Now, in any g-orthonormal frame {fα}α=1,...,n, if ω denotes the connection
1-forms of either D or Db̂ (with the obvious notations), one has:

DX −Db̂
X =

1
4

n∑
α,β=1

(
ωαβ(X)− ωb̂αβ(X)

)
cg(fα)cg(fβ).(4.16)

The calculations of [1, Section 2.2] lead then to

|D̂ϕu| ≤ C
(
|D̊A|b + |A− id|b

)
|ϕu| =⇒ D̂ (χϕu) ∈ L2(M,dµg).

(4.17)

Equation (4.17) and arguments known in principle [1, 35, 14] and [23]
(cf. also [5]) show that there exists ψu in H such that Equation (4.14)
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holds. It then remains to show that the integral at the right-hand-side of
Equation (4.11) is related to the mapHΦ. In order to do this, we complement
ν into a direct b-orthonormal basis {ν, ei}i=1,...,n−1. Seen as sitting in M ,
{Aν,Aei}i=1,...,n−1 is a direct g-orthonormal basis on Sr. One easily finds

BAν(ϕu) =
n−1∑
i=1

〈cg(Aν)cg(Aei)D̂Aeiϕu, ϕu〉g.(4.18)

From (4.15) and (4.16), we obtain

BAν(ϕu) =
1
4

n−1∑
i=1

n∑
α,β=1

(ωαβ(Aei)

− ωb̂αβ(Aei))〈cg(Aν)cg(Aei)cg(fα)cg(fβ)ϕu, ϕu〉

+
i

2

n−1∑
i=1

〈cg(Aν)cg(Aei)cg(A(Aei)−Aei)ϕu, ϕu〉

= −1
2

n−1∑
i,j=1

(ωj0(Aei)− ωb̂j0(Aei))〈cg(Aei)cg(Aej)ϕu, ϕu〉

+
1
4

n−1∑
i,j,k=1

(ωjk(Aei)

− ωb̂jk(Aei))〈cg(Aν)cg(Aei)cg(Aej)cg(Aek)ϕu, ϕu〉

+
i

2

n−1∑
i=1

〈cg(Aν)cg(Aei)cg(A(Aei)−Aei)ϕu, ϕu〉,

where the subscript .0 in the last formula denotes the basis element Aν.
These formulae correct Equation (34), page 20, in [1]: In the second line of
that equation the multiplicative factor 1/4 should be changed to 1/8; this
minor mistake carries over to all the equations that follow.

One may now use [1, Formulae (2-3)] to compute the difference between
the connection 1-forms of D and Db (or, equivalently, the connection 1-
form of Db̂) with respect to the covariant derivative DbA. Following again
Andersson and Dahl’s argument [1], and noting that all the imaginary-
valued terms have to cancel out because the left-hand-side of (4.8) is real,
one eventually gets:
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BAν(ϕu)

(4.19)

=
1
2

n−1∑
i=1

(
g((Db

AνA)ei, Aei)− g((Db
AeiA)ν,Aei)

)
〈ϕu, ϕu〉g

+
1
4

∑
i,j,k distinct

g((Db
eiA)ej , Aek) 〈cg(Aν)cg(Aei)cg(Aej)cg(Aek)ϕu, ϕu〉g

+
i

2

n−1∑
i=1

〈cg(Aν)cg(Aei)cg (A(Aei)−Aei)ϕu, ϕu〉g.

Using the (spin) isomorphism A, this can immediately be rewritten as:

BAν(ϕu)(4.20)

=
1
2

n−1∑
i=1

(
b(A−1(Db

AνA)ei, ei)− b(A−1(Db
AeiA)ν, ei)

)
〈ϕu, ϕu〉b

+
1
4

∑
i,j,k distinct

b(A−1(Db
eiA)ej , ek) 〈cb(ν)cb(ei)cb(ej)cb(ek)ϕu, ϕu〉b

+
i

2

n−1∑
i=1

〈cb(ν)cb(ei)cb (Aei − ei)ϕu, ϕu〉b,

where all computations take now place on the spinor bundle of the reference
hyperbolic metric. Taking into account the relationship between the squared
norm of ϕu and Vu, we now recall that our asymptotic conditions imply that,
in the last formula, any quadratic term in A− I and DbA (or, equivalently,
in e = g−b), when integrated on Sr, has limit value zero as r goes to infinity.
One may then eliminate a large number of occurrences of the map A from
the above formula. We will use below the notation U ' V to mean that V
is the only term that contributes when integrating U on larger and larger
spheres. Equivalently,

U ' V =⇒ lim
r→∞

∫
Sr

U = lim
r→∞

∫
Sr

V.

Then, one obtains in our case:
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BAν(ϕu) '
1
2

n−1∑
i=1

(
b((Db

νA)ei, ei)− b((Db
eiA)ν, ei)

)
〈ϕu, ϕu〉b

(4.21)

+
1
4

∑
i,j,k distinct

b((Db
eiA)ej , ek) 〈cb(ν)cb(ei)cb(ej)cb(ek)ϕu, ϕu〉b

+
i

2

n−1∑
i=1

〈cb(ν)cb(ei)cb (Aei − ei)ϕu, ϕu〉b.

Furthermore, the last term in the previous formula is easily computed and
it remains:

BAν(ϕu) '
1
2

n−1∑
i=1

(
b((Db

νA)ei, ei)− b((Db
eiA)ν, ei)

)
〈ϕu, ϕu〉b

+
1
4

∑
i,j,k distinct

b((Db
eiA)ej , ek) 〈cb(ν)cb(ei)cb(ej)cb(ek)ϕu, ϕu〉b

− i

2
(tr(A− I) 〈cb(ν)ϕu, ϕu〉b − 〈cb((A− I)ν)ϕu, ϕu〉b) .

The second term in this last formula contributes as zero, since A (hence
DbA) is symmetric and ei · ej · is antisymmetric. We then get:

lim
r→∞

∫
Sr

BAν(ϕu) = lim
r→∞

∫
Sr

1
2

n−1∑
i=1

(
b((Db

νA)ei, ei)− b((Db
eiA)ν, ei)

)
〈ϕu, ϕu〉b

− i

2
(tr(A− I)〈cb(ν)ϕu, ϕu〉b − 〈cb((A− I)ν)ϕu, ϕu〉b) .

To compare with our previous formulae for mass integrals, we now replace
A by I − 1

2 e (as remainder terms in a Taylor expansion contribute as zero
in the limit) and relate the norms 〈ϕu, ϕu〉b and 〈cb(ν) ·ϕu, ϕu〉b to Vu using
|ϕu|2b = Vu and i〈cb(X)ϕu, ϕu〉b = dVu(X) to obtain in the limit:

−1
4

lim
r→∞

∫
Sr

Vu

(
d(trb e)(ν)−

n−1∑
i=1

Db
eie(ν, ei)

)
− (trb e) dVu(ν) + dVu(e(ν)),

or, equivalently,

lim
r→∞

∫
Sr

BAν(ϕu) =
1
4

lim
r→∞

∫
Sr

Uiνi.(4.22)

As the left-hand side in the Schrödinger-Lichnerowicz formula (4.11) is non-
negative, this implies that the mass (seen as a linear functional on Nb0)
is nonnegative on any future-directed null vector in Nb0 . Standard consid-
erations in Lorentzian geometry yield that this linear functional is causal
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and future directed (notice that we use here only the existence of imaginary
Killing spinors of Type I, which is valid in any dimension). It remains to
show that it is either timelike, or vanishes.

Suppose, then, that the mass HΦ (still seen as a linear functional on Nb0)
is isotropic, then there exists a nonzero element W of the light cone in Nb0

such that it evaluates against W as zero. Up to rescaling, W can be written
as V(0)−

∑
i aiV(i) and we already noticed there exists a constant spinor u on

(B, e) such that Vu = W . The Lichnerowicz-Schrödinger formula above has
then a vanishing contribution at infinity. This implies the associated spinor
Φu is a Killing spinor, and H. Baum’s work shows that (M, g) is isometric
to the hyperbolic space ([1] and [6]). The mass functional HΦ is then zero
and this ends the Proof of Theorem 4.1. �

Manifolds with boundary. When (M, g) has a compact boundary one expects
that the correct statement is the Penrose inequality ([11, 26] and [27]),
which seems to lie outside of the scope of the Witten-type argument given
above. Recall, however, that this last argument does lead to a positivity
statement ([21, 22] and [23]) when compact boundaries occur:

Theorem 4.7. Let (M, g) be a complete spin manifold with a C2 metric,
with a compact nonempty boundary of mean curvature

Θ 6 n− 1,

and with scalar curvature satisfying

Rg > −n(n− 1).

If the asymptotic conditions (2.8) and (2.13) hold with (N, h̆)=(Sn−1, gSn−1),
then the covector p(µ) defined by Equation (3.5) is timelike future directed.

Proof. When ∂M is nonempty, a supplementary boundary integral over ∂M ,
given by∫

∂M
BAν(Φu) =

∫
∂M

〈
D∂MΦu +

1
2

(Θ− (n− 1)icg(n))Φu,Φu

〉
,(4.23)

appears in Equations (4.8) and (4.11), where Θ is the inwards oriented mean
extrinsic curvature of ∂M , while D∂M is a boundary Dirac operator. It is
defined as

D∂M = cg(n)
n−1∑
i=1

cg(ei)Dei ,

where D is the spin connection intrinsic to ∂M , explicitly defined on spinors
fields on M restricted to ∂M as

DX = DX −
1
2
cg(n)cg(B(X)),(4.24)

where B is the shape operator of the boundary.
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Following [21] (compare [23]) we impose the following boundary condition
on the spinors Φu:

Φu = εΦu,(4.25)

where ε is a hermitian involution on spinors given by

ε = i cg(n)(4.26)

as in [24]. It is proved in this paper that this leads to a self-adjoint elliptic
problem for the Dirac operator which can be solved. Positivity of the mass is
obtained through the same argument as before, the boundary contribution
(4.23) having the correct sign since εD∂M = −D∂Mε so that

〈Φu,D∂MΦu〉 = 〈Φu,D∂MεΦu〉(4.27)

= −〈Φu, εD∂MΦu〉
= −〈εΦu,D∂MΦu〉
= −〈Φu,D∂MΦu〉.

As a result, 〈Φu,D∂MΦu〉 vanishes and it remains∫
∂M

BAν(Φu) =
∫
∂M

〈
1
2

(Θ− (n− 1))Φu,Φu

〉
(4.28)

for the boundary contribution. This proves as above that the covector p(µ)

defined by Equation (3.5) is timelike future directed, or lightlike future di-
rected, or vanishing. Let us show that those last two possibilities cannot
occur: Clearly, p(µ) can be lightlike or vanish if and only if M carries an
imaginary Killing spinor Φu satisfying the boundary condition (4.25) at ∂M .
Further, Equation (4.28) implies that Θ is identically equal to (n − 1) —
otherwise, the imaginary Killing spinor field Φu would be zero on an open
set on the boundary, a situation which is forbidden by the uniqueness prop-
erty of solutions of ordinary differential equations. Moreover it is a classical
fact [6] that existence of an imaginary Killing spinor implies that (M, g) is
Einstein, of scalar curvature −n(n− 1).

Hence we have the following situation: A noncompact Einstein mani-
fold, looking like the hyperbolic space at infinity and with a compact in-
ner boundary of constant mean curvature n − 1. Choose any very large
sphere-like compact submanifold S in the asymptotically hyperbolic end of
M and consider the part of M located inside S. It is a compact Einstein
n-manifold with boundary having two components, one of constant mean
curvature Θ∂M = n− 1 and the other one having (not necessarily constant)
mean curvature ΘS close to that of a sphere in the hyperbolic space by
(2.13), hence which can be taken so that ΘS > n − 1 at each point of S
(here, both mean curvatures are computed with respect to the normal unit
vector pointing towards infinity).
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Let now p be in ∂M the closest point to S and γ be a minimising ge-
odesic from S to p, starting from a point q in S. Let ` be the distance
from ∂M to S, i.e., the distance from p to q. We now consider the family
∂Mδ of submanifolds obtained by pushing the boundary ∂M a distance δ
through its normal exponential map towards S, and the analogously defined
submanifolds Sη obtained from S by pushing it a distance η towards ∂M .

For δ > 0 small enough, the submanifold ∂Mδ is still smooth. Moreover,
the contact point r of ∂Mδ and γ is necessarily the closest point of ∂Mδ to
S (and is at distance `− δ). As γ is minimising, the distance function to S
is smooth in an open neighborhood of γ \ {p}, hence the submanifold S`−δ
is smooth around r, contained in the (closure of the) unbounded part of M
delimited by ∂Mδ and is necessarily tangent at r to ∂Mδ.

It remains to show that this leads to a contradiction. This follows from
classical comparison geometry: The usual Riccati equation for the nor-
malised mean curvature H = Θ

n−1 reads [13]:

H ′ 6 −H2 − Ric(γ′, γ′)
n− 1

where H stands either for the outwards normalised mean curvature of the
family {∂Mδ} or for the outwards normalised mean curvature of the family
{Sη} and ′ denotes differentiation with respect to either δ or −η. As (M, g)
is Einstein, this translates in our context as:

H ′ 6 1−H2

and one gets by standard arguments that

H∂Mδ
6 1 and HSη > 1 for any η > 0, δ > 0.

At the point r, this contradicts the comparison principle for the mean cur-
vature equation, which ends the proof. �

Remark 4.8. This result is of special interest in general relativity, where
the condition on the mean curvature (Θ 6 n − 1) has the following inter-
pretation: Let α ∈ R be a constant satisfying |α| ≤ 1, then our Riemannian
manifold can be thought of as arising from a spacelike slice i(M) in a vacuum
space-time with cosmological constant Λ := −(1−α2)n(n−1) ≤ 0, such that
i(M) has extrinsic curvature Kij = αgij . The condition Rg ≥ −n(n − 1)
is then equivalent to requiring positive energy density on i(M), while the
condition Θ 6 −α(n−1) is equivalent to the statement that ∂M is an outer-
future-trapped, or marginally outer-future-trapped, compact hypersurface
in i(M). Under suitable global conditions existence of such surfaces implies
existence of a black hole region in the associated space-time. Similarly the
condition Θ 6 α(n− 1) is associated with outer-past-trapped surfaces, and
leads to existence of white hole regions. A significant consequence of the
above result is then that the trapped surface situation is far away from
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the case of vanishing mass. This gives mathematical support (disjoint from
all known physical reasons) to the idea that some statement analogous to
the Penrose inequality ([11] and [27]) should hold in the asymptotically
hyperbolic case as well.

Remark 4.9. In the special (and interesting for physics) case α = 0 (i.e.,
Θ ≤ 0), there is a shorter way to prove that mass cannot vanish: In the proof
of Theorem 4.7, one may take for ε any self-adjoint involution satisfying
cg(n)ε = −εcg(n) and εD∂M = −D∂Mε (such an ε will certainly exist if our
Riemannian manifold is isometrically embedded as a Riemannian slice in
a Lorentzian (n + 1)-dimensional manifold, or more generally, if the spinor
bundle carries a representation of the Clifford algebra of the Lorentzian
metric γ = −e0 ⊗ e0 + g; in any of those cases one sets ε = cγ(e0)cγ(n) —
note however that, in the rest of the proof as well as in the other parts of the
paper, our discussion will stay purely Riemannian, as opposed to [21, 23]
and [34]). A calculation identical to (4.27) shows that the boundary integral
will have the right sign and the proof goes through without modifications,
implying that the covector p(µ) is timelike future directed, or lightlike future
directed, or vanishing. Assuming one of the last two conclusions, the equality
case in the Lichnerowicz-Weitzenböck formula yields again existence of an
imaginary Killing spinor. When restricted to the boundary, this spinor
field would then be an eigenspinor of the formally self-adjoint boundary
Dirac operator D∂M for a purely imaginary eigenvalue, which is certainly
impossible on a compact manifold.

5. The mass of conformally compactifiable asymptotically
hyperbolic ends.

The metric g of a Riemannian manifold (M, g) will be said to be Ck com-
pactifiable if there exists a compact Riemannian manifold with boundary
(M ≈ M ∪ ∂∞M ∪ ∂M, g̃), where ∂M = ∂M ∪ ∂∞M is the metric bound-
ary of (M, g̃), with ∂M — the metric boundary of (M, g), together with a
diffeomorphism

ψ : intM →M

such that

ψ∗g = Ω−2g̃,(5.1)

where Ω is a defining function for ∂∞M (i.e., Ω ≥ 0, {Ω = 0} = ∂∞M , and
dΩ is nowhere vanishing on ∂∞M), with g̃ — a metric which is Ck up-to-
boundary on M . The triple (M, g̃,Ω) will then be called a Ck conformal
completion of (M, g). Clearly the definition allows M to have a usual com-
pact boundary. (M, g) will be said to have a conformally compactifiable end
Mext if M contains an open submanifold Mext (of the same dimension that
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M) such that (Mext, g|Mext) is conformally compactifiable, with a connected
conformal boundary ∂∞Mext.

In the remainder of this section we shall assume for simplicity that the
conformally rescaled metric g̃ is smooth up to boundary; it should be clear
how the conditions here can be adapted to a weighted Hölder or Sobolev
setting to allow lower differentiability compactifications consistent with the
requirements of Theorem 2.3.

It is easily seen, using the transformation properties of the Riemann tensor
under conformal transformations (cf., e.g., [29]) that for smoothly compact-
ifiable metrics all the sectional curvatures κ of g satisfy

(κ+ |dΩ|2eg#)(p) →p→∂∞M 0,(5.2)

where | · |k denotes the norm of a tensor with respect to a metric k; recall
that g# is the metric on T ∗M associated to g.

Now, Equation (5.1) determines only the conformal class [g̃] of g̃. Without
loss of generality we can restrict the representative g̃ of [g̃] so that the metric
h0 induced by g̃ on ∂∞M has constant scalar curvature normalised as in
(1.3), and this restriction will be made in what follows.

A compactifiable metric will be called asymptotically hyperbolic in an end
Mext if

∀ p ∈ ∂∞Mext |dΩ|2eg#(p) = 1.(5.3)

In what follows we restrict our considerations to a single end Mext, replacing
M by Mext we will assume that M = Mext, so that ∂∞M = ∂∞Mext. When-
ever (5.3) holds on ∂∞M , a preferred representative of [g̃] in a neighborhood
of ∂∞M can be chosen by requiring that

|dΩ|2eg# ≡ 1.(5.4)

Using x := Ω as the first coordinate, a coordinate system can be constructed
(in some perhaps smaller neighborhood of ∂∞M) in which g takes the form

g = x−2
(
dx2 + hx

)
,

where hx is an x-dependent family of metrics on N := ∂∞M . We define the
reference metric b as

b := x−2
(
dx2 + (1− kx2/4)2h0

)
(5.5)

(compare Equation (1.8)). To make contact with Section 3, we assume that
b is one of the metrics considered there. If r is defined by Equation (1.7),
then the asymptotic conditions of Proposition 2.2 and of Theorem 2.3 will
hold if and only if

0 ≤ i ≤ bn/2c ∂ix
(
hx − (1− kx2/4)2h0

) ∣∣∣
x=0

= 0(5.6)

⇐⇒ hx = (1− kx2/4)2h0 + o(xbn/2c),
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where bαc denotes the integer value of α, and if

Rg + n(n− 1) = O(xn−1).(5.7)

For instance, in the physically significant case n = 3, Equation (5.6) is
equivalent to the requirement that the second fundamental form of ∂∞M
vanishes in the conformal gauge (5.4).

Under Equations (5.6)-(5.7), given some compactification (M1, g1,Ω1) of
an end (Mext, g) of M , we use the background (5.5) to define its mass,
whenever the resulting background is one of those discussed in Section 3.
(As already pointed out, when (∂∞M,h0) = (Sn−1, gSn−1) this definition
coincides with that of [39].) Consider a second compactification (M2, g2,Ω2)
of (M, g) satisfying the above requirements; it is far from clear that the
resulting mass will be the same. This turns out to be the case:

Theorem 5.1. Suppose that (M, g) contains a conformally compactifiable
end Mext such that (∂∞Mext, g̃|∂∞Mext) is one of the manifolds considered
in Section 3 (that is, the scalar curvature of h̆ is as in (1.3) and either h̆
has strictly negative Ricci curvature, or is flat, or is the round sphere, or a
quotient thereof). Assume, moreover, that Equations (5.6)-(5.7) hold. Then
the mass of Mext, as defined above, is independent of the compactification
of Mext chosen for its calculation.

Proof. As already pointed out above, we can modify the ga’s and Ωa’s so
that

|dΩa|g#a = 1(5.8)

in a neighborhood of ∂∞Ma. Using the Ωa’s as the first coordinate, in
neighborhoods of respective boundaries we can write the metrics ga as

ga = dΩ2
a + ha,

where ha is the metric induced by ga on the level sets of Ωa. We introduce
radial coordinates ra as in (1.7),

ra =
1− kΩ2

a/4
Ωa

,

so that

g =
dr21
r21 + k

+ r21h
1
ABdv

A
1 dv

B
1 =

dr22
r22 + k

+ r22h
2
ABdv

A
2 dv

B
2 ,

where k is defined by Equation (1.3) using the boundary metric arising out
from g1, and we have denoted by (ra, vAa ), a = 1, 2, the corresponding local
coordinates near ∂∞Ma. It follows from [16, Theorem 3.3] that the map

(r1, vA1 ) → (r2, vA2 )
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extends by continuity to a differentiable map from M1 to M2. Equivalently,
φ−1

1 ◦φ2 extends by continuity to a continuous map fromM1 toM2. Further,
point 1 of [16, Theorem 3.3] shows that the limit

lim
r1→∞

vA2 (r1, vA1 )

exists, and defines a C∞ conformal diffeomorphism Ψ from (∂∞M1, h
1|∂∞M1)

to (∂∞M2, h
2|∂∞M2):

Ψ∗h2|∂∞M2 = eψh1|∂∞M1 .(5.9)

Replacing g1 by eψg1 and Ω1 by Ω1e
ψ/2 , where, by an abuse of notation,

we use the same symbol eψ to denote the extension of eψ from ∂∞M1 to M1

such that
|d(Ω1e

ψ/2)|(eψg)# = 1,

we obtain Equation (5.9) with ψ = 0, hence h1|∂∞M1 is isometric to h2|∂∞M2 .
As a result, Theorem 2.3 together with the discussion of Section 3 establishes
Theorem 5.1. �

We note that the argument just given also proves the following:

Proposition 5.2. Consider (Mext, b) with a metric of the form (1.2). Then
for every conformal isometry Ψ of (N, h̆) there exists R∗ > 0 and a b-
isometric map Φ : [R∗,∞)×N → [R,∞)×N , such that

lim
r→∞

Φ(r, ·) = Ψ(·).

6. Uniqueness of conformal completions.

It should be clear that the invariance of the mass is related to the question
of uniqueness of conformal compactifications. There are several issues to ad-
dress here: g1 is conformal to an appropriate pull-back of g2 on the interior
of M1, but the relative conformal factor could blow up as one approaches
the boundary of M1. Even if the relative conformal factor remains uniformly
bounded both from above and below, it is not clear whether or not it extends
differentiably — or even just continuously — to the boundary. Let us show
that things behave as expected, so that conformal completions are confor-
mally diffeomorphic in the sense of manifolds with boundary ; notations are
the same as in the previous section.

Theorem 6.1. Let (M, g) be a Riemannian manifold endowed with two
C∞-conformal compactifications (M1, g1,Ω1) and (M2, g2,Ω2). Then

φ−1
1 ◦ φ2 : intM2 → intM1

extends by continuity to a C∞ conformal up-to-boundary diffeomorphism
from (M2, g2) to (M1, g1), in particular M1 and M2 are diffeomorphic as
manifolds with boundary.
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Remark 6.2. Results about completions of finite differentiability can be
obtained in a similar way, by chasing the order of differentiability through
various steps of the arguments below.

Proof. Let ϕ2 be defined on intM1 by the equation

ϕ2 :=
Ω2 ◦ φ−1

2 ◦ φ1

Ω1
> 0;

Equation (5.8) gives

1 = |dΩ2|2g#2
(6.1)

= |ϕ2dΩ1 + Ω1dϕ2|2g#2
= ϕ2

2|dΩ1|2g#2
+ 2ϕ2Ω1g

#
2 (dϕ2, dΩ1) + Ω2

1|dϕ2|2g#2
= |dΩ1|2g#1

+ 2ϕ−1
2 Ω1g

#
1 (dϕ2, dΩ1) + ϕ−2

2 Ω2
1|dϕ2|2g#1

,

hence

2Ω1g
#
1 (d(lnϕ2), dΩ1) = −Ω2

1|d(lnϕ2)|2g#1
≤ 0.(6.2)

We can identify a neighborhood of ∂M1 with ∂M1 × [0, x0] using the flow
of g#

1 (dΩ1, ·). Equation (6.2) shows that lnϕ2 is monotonously increasing
along the integral curves of the vector field g#

1 (dΩ1, ·) when Ω1 decreases, so
that there exists a constant C2 := inf∂M1×{x0} ϕ2 such that on ∂M1× [0, x0]
we have

ϕ2 ≥ C2 > −∞.(6.3)

Applying the same argument, with g1 and g2 interchanged, to

ϕ1 :=
Ω1 ◦ φ−1

1 ◦ φ2

Ω2
=

1
ϕ2

◦ φ−1
1 ◦ φ1 : intM2 → R,

shows that on ∂M1 × [0, x0] it holds

ϕ1 ≥ C1 > −∞.(6.4)

Equations (6.3) and (6.4) clearly imply that the ϕa’s are uniformly bounded
and uniformly bounded away from zero.

Set

φ12 := φ−1
1 ◦ φ2, φ21 := φ−1

2 ◦ φ1.
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Let σga denote the distance function associated with the metric ga. For p, q
in intM1 we have

σg2(φ21(p), φ21(q)) = inf
Γ

∫
Γ

√
g2

(
dΓ
ds
,
dΓ
ds

)
(6.5)

= inf
Γ

∫
Γ

√
ϕ−2

1 (φ12
∗g1)

(
dΓ
ds
,
dΓ
ds

)

≥ inf
Γ
C

∫
Γ

√
(φ12

∗g1)
(
dΓ
ds
,
dΓ
ds

)

= C inf
φ12(Γ)

∫
φ12(Γ)

√
g1

(
dφ12(Γ)
ds

,
dφ12(Γ)
ds

)
= Cσg1(p, q).

This, together with an identical calculation with g1 and g2 interchanged
shows that φ12 and φ21 are uniformly Lipschitz continuous.

Clearly, M2 is the metric completion of the manifold M with respect to
the metric (φ−1

2 )∗g2; similarly for M1. An identical calculation shows that
the metrics (φ−1

a )∗ga, a = 1, 2 define uniformly equivalent distance functions.
But completions obtained using equivalent distances are homeomorphic; it
follows thatM1 is homeomorphic toM2, in particular ∂M1 is homeomorphic
to ∂M2. In fact, by definition we have

φ21 ◦ φ12 = idM2 , φ12 ◦ φ21 = idM1 .(6.6)

Since φ12 and φ21 are continuous, they have an extension by continuity
to the metric completed spaces; we will use the same symbol to denote
those extensions. It is then easily seen that (6.6) with Ma replaced by
Ma holds for the extensions, so that the extensions do directly provide the
desired homeomorphism. Equation (6.5), together with its equivalent with
g1 interchanged with g2, further show that the extensions φ21 and φ12 are
uniformly Lipschitz continuous on M1 and M2. Obviously

φ21 : ∂M1 → ∂M2, φ12 : ∂M2 → ∂M1,

with φ21|∂M1 and φ12|∂M2 being homeomorphisms inverse to each other by
the completed spaces equivalent of (6.6). We have:

Lemma 6.3. The map φ21 is C1 up-to-boundary.

Proof. We can conformally rescale g so that (5.3) holds with g̃ = g1 and
Ω = Ω1; as (5.3) is conformally invariant, (5.3) will also hold with g̃ = g2
and Ω = Ω2. Introducing coordinates ra as in the proof of Theorem 5.1
with, say k = 0, we can apply Theorem 3.3 of [16] to obtain the desired
conclusion. �
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Returning to the proof of Theorem 6.1, Lemma 6.3 shows that for all
p ∈ ∂M1 the maps (φ21)∗(p) are similarities with nonzero ratio (in general
depending upon p). Differentiability of φ21 further implies that φ21 is ACLn,
as defined in [31]. We can then use a deep result of Lelong-Ferrand [31,
Theorem A] to conclude that ϕ2|∂M1 and φ21|∂M1 are smooth. Now, u :=
(ϕ2)

n−2
2 solves the Yamabe equation,

∆g1u−
n− 2

4(n− 1)
Rg1u = (Rg2 ◦ φ21)u(n+2)/(n−2).(6.7)

Here, as before, Rga denotes the curvature scalar of the metric ga. The
right-hand-side of this equation is in L∞(M1), and standard results on the
Dirichlet problem imply that u — and hence ϕ2 — is uniformly C1 on M1.
Now, φ21 is an isometry between g1 and ϕ−2

2 g2 which implies that, in local
coordinates, φ21 satisfies on M1 the over-determined set of equations

∂2φi21

∂x`∂xm
= Γk`m(x)

∂φi21
∂xk

− Γirs(φ21(x))
∂φr21
∂x`

∂φs21
∂xm

,

where Γirs are, in local coordinates, the Christoffel symbols of the Riemann-
ian metric (ϕ2 ◦φ12)2g2. The right-hand-side of this set of equations extends
by continuity to a continuous function on M1, which shows that φ21 is uni-
formly C2 on M1. It follows that the right-hand-side of Equation (6.7)
is uniformly C1 on M1, hence ϕ2 is uniformly C2 on M1. An inductive
repetition of this argument establishes our claims. �

Remark 6.4. It would be of interest to find a proof of Lemma 6.3 which is
more in the spirit of conformal geometry than the methods of [16].

Remark 6.5. Recall that there exists a conformally invariant version of the
Abbott-Deser mass, due to Ashtekar and Magnon [2], in a Lorentzian space-
time setting. We expect this expression to have a Riemannian counterpart
which is also conformally invariant, with the numerical value thereof identi-
cal to that of the expression we propose. If that is the case, Theorem 5.1 is
actually a straightforward corollary of Theorem 6.1; in particular one would
not need to invoke the rather messy calculations of Theorem 2.3, which are
implicitly used in the proof of Theorem 5.1.
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[15] P.T. Chruściel, Boundary conditions at spatial infinity from a Hamiltonian point
of view, Topological Properties and Global Structure of Space-Time (P. Bergmann
and V. de Sabbata, eds.), Plenum Press, New York, 1986, 49-59, MR 92h:83003,
Zbl 0687.53070.
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