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We provide a method to obtain linear Weingarten surfaces
from a given such surface, by imposing a one parameter alge-
braic condition on a Ribaucour transformation. Our main re-
sult extends classical results for surfaces of constant Gaussian
or mean curvature. By applying the theory to the cylinder,
we obtain a two-parameter family of complete linear Wein-
garten surfaces (hyperbolic, elliptic and tubular), asymptoti-
cally close to the cylinder, which have constant mean curva-
ture when one of the parameters vanishes. The family con-
tains n-bubble Weingarten surfaces which are 1-periodic, have
genus zero and two ends of geometric index m, where n/m
is an irreducible rational number. Their total curvature van-
ishes, while the total absolute curvature is 8πn. We also apply
the method to obtain families of complete constant mean cur-
vature surfaces, associated to the Delaunay surfaces, which
are 1-periodic for special values of the parameter.

Introduction.

In the last two decades a great activity in research has been devoted to
surfaces of constant mean curvature (cmc) surfaces. After the first exam-
ple of a non-totally umbilical compact cmc surface immersed in R3 found
by Wente [W1], a series of papers by Meeks [M], Korevaar, Kusner and
Solomon [KKS], Pinkal and Sterling [PS], Kapouleas [K], Karcher [Ka],
Abresch [A], Walter [Wa] gave important contributions to the theory and
to the construction of examples of complete immersed cmc surfaces.

Some of the results proved for cmc surfaces were also extended by Rosen-
berg and Sa Earp [RS], and by Brito and Sa Earp [BS] to the so called spe-
cial Weingarten immersed surfaces, and in particular to surfaces whose mean
curvature H and Gaussian curvature K satisfy a linear relation aH+K = b
where a ≥ 0, b > 0.

In this paper, we consider a method of constructing linear Weingarten
surfaces based on Ribaucour transformations. A linear Weingarten surface
of R3 is a surface whose Gaussian curvature K and mean curvature H satisfy
a linear relation α+βH+γK = 0, where α, β, γ ∈ R. Such a surface is said
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to be hyperbolic (resp. elliptic) when ∆ := β2− 4αγ < 0 (resp. ∆ > 0). The
relation ∆ = 0 characterizes the tubular surfaces. In particular, surfaces
of constant negative Gaussian curvature are hyperbolic, while surfaces of
constant mean curvature (including minimal) and constant positive curva-
ture are elliptic. Ribaucour transformations for constant Gaussian curvature
and constant mean curvature surfaces, were considered at the beginning of
last century (see Bianchi [Bi]) and they were recently applied for the first
time to obtain minimal surfaces [CFT2]. We should mention that Bäcklund
transformations for hyperbolic linear Weingarten surfaces were considered
by [Bi] and generalized to higher dimensions by [Bu].

Our main result in this paper extends Ribaucour transformations to lin-
ear Weingarten surfaces and also provides a unified version for the clas-
sical results. As an application of the theory, we obtain an interesting,
two-parameter family of complete linear Weingarten surfaces associated to
the cylinder. This family shows that the Ribaucour transformation under
consideration is not necessarily a Darboux transformation and it provides
an unexpected result. Namely, the existence of complete hyperbolic linear
Weingarten surfaces immersed in R3. Hilbert’s theorem shows that there
are no complete surfaces of constant negative curvature immersed in R3. Al-
though such surfaces and hyperbolic linear Weingarten surfaces correspond
to solutions of the sine-Gordon equation, the family of examples associated
to the cylinder shows that there exist infinitely many complete hyperbolic
linear Weingarten surfaces immersed in R3. The results of this paper were
announced in [T].

We point out that although linear Weingarten surfaces are locally par-
allel to minimal surfaces or surfaces of constant Gaussian curvature, with
same ∆, the parallelism procedure cannot be applied to extend the method
of Ribaucour transformation to linear Weingarten surfaces, since it is not
a global construction and in general it produces singularities. This is rein-
forced by the existence of complete hyperbolic linear Weingarten surfaces,
which obviously cannot be parallel to any complete surface of constant neg-
ative Gaussian curvature.

The paper is organized as follows: In Section 1, we consider Ribaucour
transformations for surfaces and we provide an algebraic condition for such
a transformation to relate two linear Weingarten surfaces. We show that
the linear system of differential equations corresponding to the Ribaucour
transformation with the additional algebraic condition is integrable on linear
Weingarten surfaces. As a consequence of the theory we get the correspond-
ing results for H-cmc surfaces. In this case, for a given such surface, the
parameter must satisfy c(c− 2H) > 0.

In Section 2, by considering the cylinder as a linear Weingarten surface
satisfying −1/2 + H + γK = 0, we obtain a two-parameter family of im-
mersions X̃cγ , of R2 into euclidean space R3, which are linear Weingarten
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surfaces. Not all of them are complete. We characterize the complete ones
in terms of the pair of real numbers (c, γ). This family of complete surfaces
contains hyperbolic, elliptic and tubular linear Weingarten surfaces which
are all asymptotically close to the cylinder. One family of lines of curvature
is planar while the other one is spherical (which may degenarate into pla-
nar). We describe the symmetries of these surfaces, which are quite distinct
whenever c < 0 and c > 0. For generic values of the parameters, the immer-
sions are not periodic. However, for special values of (c, γ), namely for each
c < 0 and

√
1− c(2γ + 1) = n/m an irreducible rational number, we get an

n-bubble surface X̃cγ . This is an immersed cylinder into R3, with two ends
of geometric index m and n isolated points of maximum and of minimum
for the Gaussian curvature. We show that its total curvature vanishes while
its total absolute curvature is 8πn. Moreover, we prove that the ends are
embedded if and only if m = 1 and in this case, they are cylindrical ends.
If c > 0 or c < 0 and

√
1− c(2γ + 1) is not a rational number, then X̃cγ is

a complete immersion of R2 into R3, not periodic in any variable and it has
an infinite number of isolated critical points for the Gaussian curvature.

In Section 3, by restricting the constant γ = 0 in the previous section, we
get a one parameter family of complete 1/2-cmc immersions X̃c from R2 into
R3. These surfaces are not periodic for generic values of c. However, special
values of c, produce 1-periodic cmc n-bubble surfaces. These immersed cmc-
cylinders were first described by Sievert [S] for n = 2 (see also [PS]), and
their existence was proved later in [G-B] and [SW]. We also show that
these surfaces are of finite type one (as defined in [PS]).

In Section 4, we obtain families of cmc surfaces associated to the Delau-
nay surface by Ribaucour transformations. By restricting the range of the
parameter c conveniently we obtain families of complete H-cmc surfaces.
We describe their symmetries and as in the case of the surfaces associated
to the cylinder, for special values of c we get a family of 1-periodic surfaces.

1. Ribaucour transformation for linear Weingarten surfaces.

In this section, we first recall the theory of Ribaucour transformation for sur-
faces. For the proofs and more details see [Bi] and [CFT1]. We then prove
that, imposing a one-parameter algebraic condition on a Ribaucour transfor-
mation, we have a correspondence between linear Weingarten surfaces. We
show that starting with such a surface the system of equations is integrable
and provides a family of new Weingarten surfaces. As a consequence of the
theory we get the corresponding results for cmc surfaces.

Let M be an orientable surface of R3 without umbilic points. We de-
note by N its Gauss map. We say that M̃ is associated by a Ribaucour
transformation to M , if and only if, there exists a differentiable function h

defined on M and a diffeomorphism ψ : M → M̃ such that: p+h(p)N(p) =
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ψ(p) + h(p)Ñ(ψ(p)), for all p ∈ M , where Ñ is the normal map of M̃ ;
the subset p + h(p)N(p), p ∈ M , is an 2-dimensional submanifold and ψ
preserves lines of curvature.

We say that M̃ is locally associated by a Ribaucour transformation to M
if for all p̃ ∈ M̃ there exists a neighborhood of p̃ in M̃ which is associated
by a Ribaucour transformation to an open subset of M . Similarly, one may
consider the corresponding definitions for parametrized surfaces.

The following results give a characterization of Ribaucour transforma-
tions.

Theorem 1.1. Let M be an orientable surface of R3, without umbilic points
and N its Gauss map. Let ei, 1 ≤ i ≤ 2 be orthonormal principal directions,
λi the corresponding principal curvatures, i.e., dN(ei) = λiei. A surface
M̃ is locally associated to M by a Ribaucour transformation, if and only if,
there exist parametrizations X̃ : U ⊂ R2 → M̃ and X : U ⊂ R2 →M and a
differentiable function h : U → R such that 1 + hλi 6= 0,

X̃ = X + h(N − Ñ),(1)

where Ñ is a unit vector field normal to X̃(U) given by

Ñ =
1

∆ + 1

(
n∑

i=1

2Ziei + (∆− 1)N

)
,(2)

Zi =
dh(ei)
1 + hλi

∆ =
n∑

i=1

(
Zi
)2(3)

and h is a generic solution of the differential equation

dZj(ei) + Ziωij(ei)− ZiZjλi = 0, 1 ≤ i 6= j ≤ 2,(4)

where ωij are the connection forms of the frame ei.

Proof. Let Ñ be a unit vector field given by

Ñ =
2∑

i=1

biei + b3N, where
2∑

i=1

(bi)2 + (b3)2 = 1.(5)

We introduce the following notation:

dÑ(ei) =
2∑

k=1

Lk
i ek + L3

iN,(6)

where for 1 ≤ i, k ≤ 2

Lk
i = dbk(ei) +

∑
j

bjωjk(ei) + b3λiδik, L3
i = db3(ei)− biλi.(7)
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We will later show that the following relations hold:

bi = Zi(1− b3).(8)

In this case, from (5) we get

b3 =
∆− 1
∆ + 1

.(9)

We will now prove the theorem. Assume that M̃ is locally associated
to M by a Ribaucour transformation. Then by definition there exist local
parametrizations X of M , X̃ of M̃ and a function h defined on U ⊂ R2 such
that X̃+h Ñ = X+hN, where Ñ is a unit vector field normal to M̃ , which
may be considered as in (5). Since

dX̃ = dX + dh(N − Ñ) + h(dN − dÑ)(10)

it follows from the relations dX =
∑

j ωjej and dN(ei) = λiei that

dX̃(ei) = (1 + hλi)ei + dh(ei)(N − Ñ)− hdÑ(ei).(11)

Hence, 〈dX̃(ei), Ñ〉 = 0 implies

(1 + hλi)bi + dh(ei)(b3 − 1) = 0, i = 1, 2.(12)

Since X + hN is two dimensional, it follows that 1 + hλi 6= 0 for all i.
Therefore we conclude from (12) that the relations (8) hold and hence b3 is
given by (9). dX̃(ei) are orthogonal principal directions, i.e.,

〈dX̃(ei), dX̃(ej)〉 = 〈dÑ(ej), dX̃(ei)〉 = 〈dÑ(ej), dÑ(ei)〉 = 0 for i 6= j.

Hence, using (6) and Equation (11), we get

〈dÑ(ei), dX̃(ej)〉 = Lj
i (1 + hλj) + L3

i dh(ej) = 0, for i 6= j.

It follows from (7) and the last equality, that h satisfies Equation (4).
Conversely, assume h is a solution of (4) such that 1 + hλi 6= 0,∀i, then

we define Zi and ∆ by (3), bi and b3 by (8) and (9). It follows from (7) and
(4) that

Lk
i + ZkL3

i = 0, i 6= k,(13)

and

ZiLi
i +
(

(Zi)2 − ∆ + 1
2

)
L3

i = 0.(14)

We consider Ñ and X̃ as in (5) and (1) respectively. We need to show that
X̃ is associated toX by a Ribaucour transformation. We first observe that Ñ
is a unit vector field. In fact,

∑
i(b

i)2+(b3)2 = (1−b3)2∆+(b3)2 = 1, since b3

is given by (9). We next verify that Ñ is normal to X̃. From the definition of
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X̃, we have that dX̃(ei) is given by (11). Hence, using the fact that |Ñ | = 1,
we conclude that 〈dX̃(ei), Ñ〉 = (−(1 + hλi)Zi + dh(ei))(b3 − 1) = 0.

Using (6), Equation (14) and the definition of ∆, one proves that 〈dÑ(e1),
dÑ(e2)〉 = 0. Therefore, it follows from Equations (10) and (13), that for
i 6= j

〈dÑ(ei), dX̃(ej)〉 = Lj
i (1 + hλj) + L3

i dh(ej) = 0.

Finally, we prove that dX̃(e1) and dX̃(e2) are orthogonal. In fact,

〈dX̃(e1), dX̃(e2)〉 = dh(e2)
[
−(1 + hλ1)b1 + dh(e1)(1− b3)

]
= 0,

where the last equality follows from the definition of bi and Equation (13).
Moreover, for generic h, X̃ is an immersed surface. Introducing the eigen-
values λ̃i, dÑ(ei) = λ̃idX̃(ei), it follows from (11) that

(1 + hλ̃i)dX̃(ei) = (1 + hλi)ei + dh(ei)(N − Ñ).

Hence we conclude from (5) and (8) that

|1 + hλ̃i||dX̃(ei)| = |1 + hλi|.
�

One can linearize Equation (4) as we will show in Proposition 1.2. We first
observe that from the proof given above and from (6), we have 〈dÑ(ei), N〉 =
L3

i = λ̃i〈dX̃(ei), N〉. Therefore, whenever dh(ei) 6= 0, using (11), (5) and
(6) we obtain the principal curvatures given by

λ̃i =
L3

i

dh(ei)(1− b3)− hL3
i

.(15)

Proposition 1.2. If h is a solution of (4) which does not vanish on a simply
connected domain, then h = Ω/W where Ω and a non-vanishing function
W satisfy

dΩi(ej) = Ωjωij(ej), for i 6= j,(16)

dΩ =
2∑

i=1

Ωiωi,(17)

dW = −
2∑

i=1

Ωiλ
iωi.(18)

Conversely, suppose (16)-(18) are satisfied, such that W (W+Ωλi) 6= 0, then
h = Ω/W is a solution of (4).

Proof. Assume h is a nonvanishing solution of (4), then ψ =
∑

i Z
iωi/h, is

a closed form. Hence, on a simply connected domain there exists a differ-
entiable function Ω such that d(log Ω) = ψ. We define Ωi = dΩ(ei) and



RIBAUCOUR TRANSFORMATIONS FOR WEINGARTEN SURFACES 271

W = Ω/h. Then dh(ei) = Ωi(1 + Ωλi/W )/W and (17) holds. Moreover,
it follows from (4) that (16) and (18) are satisfied. Conversely if (16)-(18)
hold, considering Zi = Ωi/W one concludes that (4) is satisfied. We define
h = Ω/W , then it follows that dh(ei) = Zi(1 + hλi). �

We observe that it follows from the proof of Proposition 1.2 that

dh(ei) =
Ωi

W
(1 + Ωλi/W ) Zi =

Ωi

W
∆ =

∑
j(Ωj)2

(W )2
.(19)

Hence dh(ei) 6= 0 if and only if Ωi 6= 0. For each solution Ωi, 1 ≤ i ≤ 2,
of (16), there exists a 2-parameter family of solutions of the system (17),
(18). In fact, Equation (16) is the integrability condition of the system of
equations (17), (18) for Ω and W .

The Ribaucour transformation of a surface is given in terms of the solu-
tions of the above system.

Theorem 1.3. Let M be an orientable surface of R3, without umbilic points,
parametrized by X : U ⊂ R2 → M . Assume ei, 1 ≤ i ≤ 2 are orthogonal
principal directions, λi the corresponding principal curvatures and N is a
unit vector field normal to M . A surface M̃ is locally associated to M , by a
Ribaucour transformation, if and only if, there exist differentiable functions
W,Ω,Ωi : V ⊂ U → R, which satisfy (16)-(18), such that W (W+Ωλi)(ΩiS−
ΩdS(ei)) 6= 0, ∀i and X̃ : V ⊂ R2 → M̃ , is a parametrization of M̃ given by

X̃ = X − 2Ω
S

(∑
i

Ωiei −WN

)
,(20)

where

S =
∑

i

(Ωi)2 +W 2.(21)

Moreover, the normal map of X̃ is given by

Ñ = N +
2W
S

(∑
i

Ωiei −WN

)
(22)

and the principal curvatures of X̃ for each 1 ≤ i ≤ 2 are given by

λ̃i =
dS(ei)W + Ωiλ

iS

ΩiS − ΩdS(ei)
if Ωi 6= 0.(23)

Proof. Let X and X̃ be parametrizations of M and M̃ . We have seen in
Theorem 1.1 that the normal vector field Ñ is given by (2). Hence it follows
from (19) and (9) that (22) holds. The expression (20) follows directly from
(1) and (22). The condition W (W + Ωλi) 6= 0, ∀i follows from the fact that
h = Ω/W and 1 + hλi 6= 0.
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If Ωi 6= 0, then we consider (15). It follows from (7)-(9) and (19) that

L3
i = 2

W

S2
(WdS(ei) + ΩiSλ

i).

Therefore, using (19) and (9) we have that

dh(ei)(1− b3)− hL3
i = 2

W

S2
(ΩiS − ΩdS(ei)).

From the last two relations we conclude that (23) holds. �

We observe that, eventually, the parametrization of M̃ given by (20)
may extend regularly to wherever W (W + Ωλi) vanishes (see for example
Section 2). From now on, whenever we say that a surface M̃ is locally
associated by a Ribaucour to a surface M , we are assuming that there are
functions Ω, Ωi and W locally defined, satisfying (16)-(18).

We now provide a sufficient condition for a Ribaucour transformation to
transform a linear Weingarten surface into another such surface.

Theorem 1.4. Let M be a surfaces of R3, without umbilic points and let
M̃ be associated to M by a Ribaucour transformation, such that the normal
lines intersect at a distance function h. Assume that h = Ω/W is not
constant along the lines of curvature and the functions Ωi, Ω and W satisfy
the additional relation

S = 2c(αΩ2 + βΩW + γW 2),(24)

where S is defined by (21), c 6= 0 and α, β, γ are real constants. Then M̃ is a
linear Weingarten satisfying α+βH̃+γK̃ = 0, if and only if α+βH+γK = 0
holds for the surface M , where K, H and K̃, H̃ are the Gaussian and mean
curvatures of M and M̃ respectively. Moreover, M̃ has no umbilic points.

Proof. We will introduce the following notation for the right-hand side of
the algebraic equation (24):

P = αΩ2 + βΩW + γW 2.(25)

Since S satisfies S = 2cP , it follows from (17) and (18) that

dS = 2cdP = 2c
∑

i

[(2αΩ + βW )ωi + (2γW + βΩ)ωi3] Ωi.(26)

Therefore,

WdS(ei) + SΩiλ
i = 2cΩi

{[
(2αΩ + βW )− (2γW + βΩ)λi

]
W + λiP

}(27)

SΩi − ΩdS(ei) = 2cΩi

(
P − Ω

[
(2αΩ + βW )− (2γW + βΩ)λi

])
.
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By assumption dh(ei) 6= 0, i.e., Ωi 6= 0, for all i, therefore from (23), (25)
and (27) we get

λ̃i =
2αΩW + βW 2 + λi(αΩ2 − γW 2)
(2γΩW + βΩ2)λi − (αΩ2 − γW 2)

.(28)

In order to conclude the proof we introduce the following notation:

L = 2αΩW + βW 2 T = αΩ2 − γW 2 Q = 2γΩW + βΩ2.

Then, λ̃i = (L + λiT )/(Qλi − T ) and hence, the numerator of α − β
2 (λ̃1 +

λ̃2) + γλ̃1λ̃2 is equal to

αT 2 + βLT + γL2 +H(2αTQ− βT 2 + βLQ− 2γLT )

+K(αQ2 − βTQ+ γT 2).

By substituting α, βH and γK, on the right-hand side of this last equality,
by the two other terms of the expression α+ βH + γK = 0, we get

α+ βH̃ + γK̃ = 0 if and only if (βT + γL− αQ)(L− 2TH −QK) = 0,

where the last equality follows from the fact that the expression βT+γL−αQ
is identically zero.

We conclude the proof of the theorem by observing that

λ̃2 − λ̃1 =
LQ+ T 2

(Qλ1 − T )(Qλ2 − T )
(λ2 − λ1).

Since LQ+T 2 = P 2 = S2/(4c2) 6= 0 and M has no umbilic points, it follows
that M̃ has no umbilic points. �

The natural question one poses is if the system (16)-(18) with the addi-
tional condition (24) is integrable, whenever we start with a linear Wein-
garten surface. The following theorem answers this question affirmatively:

Theorem 1.5. Let M be a surface of R3, which satisfies α + βH + γK =
0 and H2 − K > 0. Then the system of equations (16)-(18) and (24) is
integrable and the solution is uniquely determined on a simply connected
domain U by any given initial condition satisfying (24). Moreover, whenever
α 6= 0, any solution of the system defined on U is either identically zero and
hence anihilates S or else the function S does not vanish on U .
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Proof. We initially observe that as a consequence of (16)-(18) and (24) we
only need to prove that the system

dΩ =
∑

i

Ωiωi(29)

dW =
∑

i

Ωiωi3

dΩi = Ωjωij + c(2αΩ + βW )ωi − [(1− 2cγ)W − cβΩ]ωi3 i 6= j

is integrable.
We start by showing that if (29) holds then S−2cP is a constant function,

where S and P are defined by (21) and (25) respectively. In fact,

dS − 2cdP = 2
∑

i

ΩidΩi + 2(W − cβΩ− 2cγW )dW − 2c(2αΩ + βW )dΩ

= 2
∑
i,j

ΩiΩjωij = 0.

Therefore, by choosing the initial condition at a point such that S = 2cP ,
we will have (24) identically satisfied on a connected domain.

Now we consider the ideal I generated by the 1-forms

θ = dΩ−
∑

i

Ωiωi(30)

ϕ = dW −
∑

i

Ωiωi3

θi = dΩi − Ωjωij − c(2αΩ + βW )ωi + [(1− 2cγ)W − cβΩ]ωi3 i 6= j.

A straightforward computation shows that dθ = −
∑

i θi ∧ ωi and dϕ =
−
∑

i θi ∧ ωi3. Similarly, using (30) we obtain that

dθi = −θj ∧ ωij + ϕ ∧ [(1− 2cγ)ωi3 − cβωi]− cθ ∧ (βωi3 + 2αωi) +

+ 2cΩj(α+ βH + γK)ωi ∧ ωj

where i 6= j. Since the surface is linear Weingarten, it follows that I is
closed under exterior differentiation, hence the system (29) is integrable.

Assume that S(p0) = 0 for p0 ∈ U . Then it follows from (21) that Ω1,
Ω2 and W vanish at p0. Since (24) holds we conclude that if α 6= 0, then
Ω(p0) = 0. Since U is simply connected, the uniqueness of solutions for
the system implies that Ω ≡ Ω1 ≡ Ω2 ≡ W ≡ 0 and hence S ≡ 0. This
concludes the proof of the theorem. �

As a consequence of Theorems 1.3 and 1.4 we obtain:

Theorem 1.6. Let M be a linear Weingarten surface, without umbilic
points, satisfying α + βH + γK = 0 and locally parametrized by X : U ⊂
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R2 → M ⊂ R3. Any linear Weingarten parametrized surface, locally as-
sociated to X by a Ribaucour transformation as in Theorem 1.5 is given
by

X̃ = X − 2Ω
S

(∑
i

Ωiei −WN

)
,(31)

where ei are orthogonal principal directions, Ω, Ωi, W are solutions of (16)-
(18) and (24), and X̃ is an immersed surface defined on

Ũ =
{
(u1, u2) ∈ U ; T 2 + 2TQH +Q2K 6= 0

}
(32)

where T = αΩ2 − γW 2 and Q = 2γΩW + βΩ2.

Proof. We only need to show that X̃, defined by (31), is a parametrized sur-
face of R3. With the same notation introduced in the proof of Theorem 1.4,
we observe that S = 2cP , where P is defined by (25) and the differential of
S is given by (26). Therefore, we get that

d

(
Ω
S

)
=

1
2cP 2

∑
k

Ωkηk

where ηk for k = 1, 2 is a 1-form defined by

ηk = (γW 2 − αΩ2)ωk − (βΩ2 + 2γΩW )ωk3.(33)

It follows from this expression and the last two equations of system (29)
that

dX̃ =
1
P

2∑
i=1

ηiẽi(34)

where

ẽ1 =
1
cP

[(cP − Ω2
1)e1 − Ω1Ω2e2 +WΩ1e3](35)

ẽ2 =
1
cP

[−Ω1Ω2e1 + (cP − Ω2
2)e2 +WΩ2e3].(36)

A simple computation shows that these vectors are orthonormal. There-
fore, X̃ is an immersion wherever η1∧η2 6= 0, i.e., on the subset Ũ described
by (32). �

Remark 1.7. We observe that, as a consequence of the proof of Theo-
rem 1.6, the principal directions ẽ1, ẽ2, of X̃ are given by (35) and (36).
Moreover, its dual forms, which are determined by (34), are given by ω̃i =
1
P (γW 2 − αΩ2 + (βΩ + 2γW )Ωλi)ωi. We also observe that the surfaces de-
scribed in Theorem 1.6 depend on 4 parameters. However, in some cases the
number of parameters may reduce to one (the parameter c), if we exclude
surfaces which are congruent by rigid motions of R3.
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Our next results give the H-cmc case, which is obtained by considering
H a nonzero constant, α = −H, β = 1 and γ = 0 on Theorems 1.4-1.6. For
later use, we will explicitly give the corresponding results.

Corollary 1.8. Let M be a regular surface of R3, with no umbilic point.
Let M̃ be associated by a Ribaucour transformation to M , such that the
normal lines intersect at a distance function h. Assume that h = Ω/W is
not constant along the lines of curvature and the functions Ωi, Ω and W
satisfy the additional relation

S = 2cΩ(−HΩ +W ),(37)

where S is defined by (21), c 6= 0 and H 6= 0 are real constants. Then M̃

is an H-cmc surface, if and only if, M is an H-cmc surface. Moreover, M̃
has no umbilic points.

Corollary 1.9. Let M be an H-cmc surface of R3. Then the system of
Equations (16)-(18) and (37) is integrable and the solution is uniquely de-
termined on a simply connected domain U by any given initial condition
satisfying (37). Moreover, for any solution of the system defined on U the
function S does not vanish on U .

As a consequence of Theorem 1.6, we get our next result. We observe that
in the case of H-cmc surfaces, by considering α = −H, β = 1 and γ = 0, we
conclude that (32) reduces to Ω4(K −H2) 6= 0.

Corollary 1.10. Let M be an H-cmc surface with no umbilic points, locally
parametrized by X : U ⊂ R2 →M ⊂ R3. Any H-cmc parametrized surface,
locally associated to X by a Ribaucour transformation as in Corollary 1.9 is
given by

X̃ = X − 1
c(W −HΩ)

(∑
i

Ωiei −WN

)
,(38)

where ei are orthogonal principal directions, Ω, Ωi, W are solutions of (16)-
(18) and (37) and the constant c satisfies c(c− 2H) > 0.

Proof. We only need to prove that c satisfies c(c − 2H) > 0. This follows
from the algebraic condition (37), which can be written as∑

i

(Ωi)2 + (W − cΩ)2 − c(c− 2H)Ω2 = 0.

Remark 1.11. It follows from the proof of Theorem 1.6 that if M and M̃
are H-cmc surfaces associated by a Ribaucour transformation as in Corol-
lary 1.10, then the principal directions ẽ1, ẽ2, of M̃ are given by (35) and



RIBAUCOUR TRANSFORMATIONS FOR WEINGARTEN SURFACES 277

(36) where P = Ω(W −HΩ). Its dual forms are,

ω̃i =
(H + λi)Ω
W −HΩ

ωi.(39)

Moreover, it follows from (28) that

λ̃i =
W 2 −HΩ(2W + λiΩ)

Ω2(λi +H)
(40)

and the Gaussian curvature is given by

K̃ = H2 +
(W −HΩ)4

Ω4(K −H2)
.(41)

2. Families of linear Weingarten surfaces associated to the
cylinder.

In this section, by applying Theorem 1.6 to the cylinder, we obtain a two
parameter (c, γ) family of complete linear Weingarten surfaces. The pa-
rameters belong to a region composed by two connected components of R2.
One of these components contains curves which provide n-bubble surfaces
(Weingarten and cmc) which are 1-periodic, have genus zero and two ends
of finite geometric index. We also show that their total curvature vanishes,
while the total absolute curvature is 8πn.

Proposition 2.1. Consider the cylinder parametrized by

X(u1, u2) = (cos(u2), sin(u2), u1) (u1, u2) ∈ R2(42)

as a linear Weingarten surface satisfying −1/2+H+γK= 0. A parametrized
surface is a linear Weingarten surface locally associated to X by a Ribaucour
transformation as in Theorem 1.5, if and only if, it is given by

X̃cγ = X − 2(f + g)
c[(2γ + 1)g2 − f2]

(f ′Xu1 + g′Xu2 − gN)(43)

where N is the inner unit normal vector field of the cylinder, c 6= 0 and γ
are real constants such that

ξ(c, γ) = 1− c(2γ + 1)(44)

and c are not simultaneously positive, and f(u1), g(u2) are solutions of the
equations

f ′′ + cf = 0,(45)

g′′ + ξg = 0(46)

with initial conditions satisfying(
(f ′)2 + (g′)2 + ξg2 + cf2

)
(u0

1, u
0
2) = 0.(47)
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Moreover, X̃cγ is a regular surface defined on the subset of U where(
(f + g)2 + 2γg2

) (
f2 + 2(2γ + 1)fg + (2γ + 1)g2

)
6= 0.(48)

Proof. The first fundamental form of the cylinder is given by ds2 = du2
1+du2

2

and λ1 = 0, λ2 = −1. In order to obtain the Ribaucour transformations,
we need to solve the following system of equations, which is obtained from
(16)-(18):

∂Ωi

∂uj
= 0,

∂Ω
∂ui

= Ωi,
∂W

∂ui
= −Ωiλ

i, 1 ≤ i 6= j ≤ 2.

The associated surface will be linear Weingarten when Ω1 and Ω2 satisfy
∂Ω1/∂u1 = c(W − Ω) and ∂Ω2/∂u2 = (c− 1 + 2cγ)W.

Since Ωu1u2 = 0, it follows that Ω = f(u1) + g(u2), where f and g are
functions of u1 and u2 respectively. Therefore Ω1 = f ′ and Ω2 = g′. More-
over, W = g+a, where a is a real constant and the functions f and g satisfy
the following equations:

f ′′ + cf − ca = 0

g′′ + ξ(g + a) = 0.

It follows from these equations and the expressions of Ω andW , that without
loss of generality we can consider a = 0. Therefore, f and g must satisfy
Equations (45) and (46) and the algebraic condition (24), which reduces to
(47). Moreover, since this last condition should be identically satisfied by
the nontrivial solution functions f and g, we conclude that the constants
c 6= 0 and γ are such that c and ξ cannot be simultaneously positive.

Moreover, from (20) we conclude that the associated linear Weingarten
surface is given by (43). From (32) we obtain the domain where X̃ is regular,
which is described by (48). �

The family of linear Weingarten surfaces given by (43) includes the cylin-
der. In fact, if we choose the initial conditions such that f ≡ 0, g 6= 0 for
ξ ≤ 0 or f 6= 0, g ≡ 0 for c < 0, we get a reparametrization of the cylinder.

Each linear Weingarten surface associated to the cylinder as in Proposi-
tion 2.1, is parametrized by lines of curvature and the metric is given (see
Remark 1.7) by ds2 = ψ2

1du
2
1 + ψ2

2du
2
2, where

ψ1 =
(f + g)2 + 2γg2

(1 + 2γ)g2 − f2
and ψ2 =

(1 + 2γ)g2 + 2(1 + 2γ)fg + f2

(1 + 2γ)g2 − f2
.(49)

These expressions show that the Ribaucour transformation, applied to the
cylinder for γ 6= 0, is not a Darboux transformation.
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We now introduce a notation, which will be useful in the following results.
A rotation of angle θ in the xy plane of R3 will be denoted by

Rθ =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .(50)

We denote by Tδ the translation defined by

Tδ(x, y, z) = (x, y, z + δ).(51)

Proposition 2.2. Consider the linear Weingarten surfaces associated to
the cylinder and parametrized by (43). Excluding the cylinder:

i) If cξ ≥ 0, then any surface X̃cγ has curves of singularities.
ii) If cξ < 0 then, up to rigid motions of R3, the surface X̃cγ is determined

by the functions

f = ε1
√
|ξ| sin(

√
c u1) g = ε2

√
c cosh(

√
|ξ|u2) if c > 0, ξ < 0(52)

f = ε1
√
ξ cosh(

√
|c|u1) g = ε2

√
|c| sin(

√
ξ u2) if c < 0, ξ > 0(53)

where εi = ±1, c 6= 0 and γ are real numbers and ξ(c, γ) is defined by
(44).

Proof. We observe that the functions f and g of the family of surfaces de-
scribed by (43) are given by

f =
{
a1 cos(

√
cu1) + b1 sin(

√
cu1) if c > 0,

a1 cosh(
√
|c|u1) + b1 sinh(

√
|c|u1) if c < 0,

g =


a2u2 + b2 if ξ = 0,
a2 cosh(

√
|ξ|u2) + b2 sinh(

√
|ξ|u2) if ξ < 0,

a2 cos(
√
ξu2) + b2 sin(

√
ξu2) if ξ > 0,

and the constants satisfy the algebraic relation given by (47),

a1 = b1 = a2 = 0 if c > 0 and ξ = 0,
c(b21 − a2

1)− a2
2 = 0 if c < 0 and ξ = 0,

c(b21 + a2
1) + ξ(a2

2 − b22) = 0 if c > 0 and ξ < 0,
c(b21 − a2

1)− ξ(a2
2 − b22) = 0 if c < 0 and ξ < 0,

c(b21 − a2
1)− ξ(a2

2 + b22) = 0 if c < 0 and ξ > 0.

If c > 0, and ξ = 0, then the surface X̃ reduces to the cylinder. If c < 0 and
ξ = 0, there are curves in R2 where (48) vanishes.

If cξ > 0, since by Proposition 2.1 c and ξ(c, γ) cannot be simultaneously
positive, then we may only have c < 0 and ξ < 0. In this case, the functions
f and g are defined as above, γ < −1/2 and there are four curves on R2

determined by (48)

f + g ±
√

2|γ| g = 0 f + (2γ + 1)g ±
√

2γ(2γ + 1) g = 0
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where X̃ is not regular.
If c > 0 and ξ < 0, then by choosing a1 = b1 = 0 we have b2 = ±a2, f = 0,

g = a2 exp(±
√
|ξ|u2) and the surface X̃ reduces to a reparametrization of

the cylinder. Therefore, excluding the cylinder, we may assume a2
1 + b21 6= 0

and

f = ε1
√
|ξ| sin(A+

√
c u1) g = ε2

√
c cosh(B +

√
|ξ|u2).

Similarly, If c < 0 and ξ > 0, then excluding the cylinder, we may assume
a2

2 + b22 6= 0 and hence

f = ε1
√
ξ cosh(A+

√
|c|u1) g = ε2

√
|c| sin(B +

√
ξ u2).

We conclude the proof by observing that the constants A and B, without
loss of generality, may be considered to be zero. One can verify that the
surfaces with different values of A, B are congruent by rigid motions of R3.
In fact, using the notation X̃cγAB for the surface X̃cγ with fixed constants
A and B, we have

X̃cγAB = R− B√
|ξ|
X̃cγ00 ◦ h+ T− A√

|c|

where h(u1, u2) = (u1 +A/
√
|c|, u2 +B/

√
|ξ|). �

We observe that it follows from the above expressions that the function
P defined by (25), reduces to

P = [(2γ + 1)g2 − f2]/2(54)

and it does not vanish on R2. This will be useful for considering global
properties of the surfaces obtained in Proposition 2.2.

In order to study the regularity of the surfaces obtained in Proposition 2.2,
we introduce the following notation:

h1(c, γ) = 2c(2γ + 1)
(√

2γ(2γ + 1)− 2γ
)
− 1,(55)

h2(c, γ) = 2c
(√

2|γ|+ 2γ
)
− 1,(56)

h3(c, γ) = −2c(2γ + 1)
(√

2γ(2γ + 1) + 2γ
)
− 1,(57)

h4(c, γ) = 2c
(√

2|γ| − 2γ
)

+ 1,(58)

h5(c, γ) = −2c(2γ + 1)
(√

2γ(2γ + 1)− 2γ
)

+ 1.(59)

Our next result shows that a surface X̃cγ given by (43) is an immersion
of R2 if and only if the pair (c, γ) belongs to a region with two connected
components of R2 determined by the functions ξ(c, γ) and h1(c, γ) . . . h5(c, γ)
(see Figure 1).
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−

1

2

γ

c

h1=0

ξ=0

h2=0

h3=0

h4=0

h5=0

Figure 1. Any pair (c, γ), in each of the two connected
components, generates a complete linear Weingarten surface,
which satisfies the relation −1/2+H−γK = 0 and it is cmc
when γ = 0. The dashed curves in the left region, given by
1− c(2γ+1) = n2/m2, generate 1-periodic n-bubble surfaces
with two ends of geometric index m (see Figure 2).

Proposition 2.3. A Weingarten surface X̃cγ given by Proposition 2.2 is an
immersion of R2, if and only if, cξ(c, γ) < 0 and the pair (c, γ) belongs to
one of the following subsets of R2:

i) c > 0 and one of the following holds:
a) γ ≥ 0 and ξ(c, γ) < 0, h1(c, γ) < 0;
b) −1/2 < γ < 0 and ξ(c, γ) < 0, h2(c, γ) < 0.

ii) c < 0 and one of the following holds:
a) γ ≥ 0 and h3(c, γ) < 0;
b) −1 ≤ γ < 0 and h4(c, γ) > 0;
c) γ ≤ −1 and h5(c, γ) > 0.

Proof. From Proposition 2.2, we have seen that if the surface X̃ is a regular
immersion of R2, then excluding the cylinder, we only need to consider
cξ < 0.
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i) If c > 0 and ξ < 0 then the functions f and g are given by (52). If
γ ≥ 0, X̃cγ is an immersion of R2 if and only if the second factor of (48) does
not vanish. It follows from (44) that this is equivalent to having h1(c, γ) < 0,
where h1 is defined by (55).

If γ < 0, then 1/c − 1 < 2γ < 0. Hence, c > 1 and −1/2 < γ < 0.
Then X̃cγ is a regular immersion of R2, if and only if the first factor of
(48) does not vanish i.e., 1/(2γ + 1) < c < 1/2(

√
2|γ|+ 2γ), or equivalently

h2(c, γ) < 0, where h2 is defined by (56). This concludes the proof of i).

ii) If c < 0 and ξ(c, γ) < 0, then the surface X̃cγ is defined by (43) and
the functions f and g are given by (53). We need to consider four cases for γ.
If γ ≥ 0, then the nonvanishing of the second factor of (48) is equivalent to√
|c|
(
2γ + 1 +

√
2γ(2γ + 1)

)
<
√
ξ, i.e., h3(c, γ) < 0, where h3 is defined

by (57). If −1/2 < γ < 0, from the first factor of (48) we conclude that the
pair (c, γ) must satisfy h4(c, γ) > 0, where h4 is defined by (58).

If γ ≤ −1/2, then both factors of (48) should not vanish on R2 This
occurs if and only if the following inequalities hold:

|1±
√

2|γ| |
√
|c| <

√
ξ |2γ + 1±

√
2γ(2γ + 1)|

√
|c| <

√
ξ.(60)

If −1 ≤ γ ≤ −1/2 then
√

2γ(2γ + 1) − 2γ − 1 ≤ 1 +
√

2|γ|. Hence, the
system (60) holds if and only if h4(c, γ) > 0. If γ ≤ −1 then 1 +

√
2|γ| ≤√

2γ(2γ + 1)− 2γ − 1. Therefore, (60) holds if and only if(√
2γ(2γ + 1)− 2γ − 1

)√
|c| <

√
ξ

i.e., h5(c, γ) > 0, where h5 is defined by (59). This concludes the proof. �

Our next result shows that the linear Weingarten surfaces, locally asso-
ciated to the cylinder by a Ribaucour transformation, are asymptotically
close to cylinders.

Proposition 2.4. Let X(u1, u2) be the parametrized cylinder given by (42).
Any linear Weingarten surface X̃cγ given by Proposition 2.3, satisfies the
following:

i) If c < 0 and ξ(c, γ) > 0 then ∀ε > 0 there exists L > 0 such that

|X̃cγ(u1, u2)−X(u1 ± 2/
√
|c|, u2)| < ε ∀(u1, u2) ∈ R2 with ± u1 ≥ L

and ∣∣∣∣∣∂i+jX̃cγ

∂ui
1∂u

j
2

(u1, u2)−
∂i+jX

∂ui
1∂u

j
2

(u1, u2)

∣∣∣∣∣ < ε,

where 1 ≤ i+ j ≤ 2, and i, j are nonnegative integer numbers.
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ii) If c > 0 and ξ(c, γ) < 0 then ∀ε > 0 there exists L > 0 such that

|X̃cγ(u1, u2)−X(u1, u2 ± θ)| < ε ∀(u1, u2) ∈ R2 with ± u2 ≥ L,

where θ is such that cos θ = 1−2/(c(1+2γ)) and sin θ = −2
√
−ξ/(c(1+

2γ)).

Proof. If c < 0 and ξ(c, γ) > 0 then the functions f and g are given by (53).
It follows from a straightforward computation that

c2

4

∣∣∣X̃cγ(u1, u2)−X(u1 ± 2/
√
|c|, u2)

∣∣∣2 = S2
1 + S2

2 + S2
3 ,

where

S1 =
(f + g)f ′

2P
±
√
|c|, S2 =

(f + g)g′

2P
, S3 =

(f + g)g
2P

,

where P is given by (54). Since g and g′ are bounded functions, we have
that limu1→±∞ Si(u1, u2) = 0 uniformly with respect to u2. Similarly, con-
sidering the difference of the first and second derivatives of X̃cγ and X as a
linear combination of the vectors Xu1 , Xu2 and N , one can show that each
coefficient tends to 0 uniformly in u2, when u1 → ±∞. This concludes the
proof of i). Similar arguments prove ii). �

Our next result shows that the regular surfaces X̃cγ given in Proposi-
tion 2.3 are complete. Moreover, the connected region described by ii) con-
tains an infinite number of curves ( determined by considering

√
1− c(2γ + 1)

to be a rational number) such that the corresponding surfaces are 1-periodic
n-bubbles whose total absolute curvature is 8πn.

Proposition 2.5. Any linear Weingarten surface X̃cγ, given by Proposi-
tion 2.3 is complete.

a) If c < 0 and
√
ξ(c, γ) = n/m is an irreducible rational number, then

X̃cγ is an immersion of a cylinder into R3, with two ends of geometric
index m and n isolated points of maximum (respectively minimum) for
the Gaussian curvature. Moreover, the total curvature of X̃cγ is zero,
while its total absolute curvature is 8πn. The ends are embedded if and
only if m = 1. In this case they are cylindrical ends.

b) If c > 0 or c < 0 and
√
ξ is not a rational number then X̃cγ is an

immersion of R2 into R3 (not periodic in any variable) with an infinite
number of isolated critical points of its Gaussian curvature.

Proof. Assume ξ > 0 and c < 0 then the functions f and g are given by
(53) and the coefficients of the first fundamental form ψi of X̃cγ are given by
(49). Therefore, lim|u1|→∞ |ψi| = 1 for i = 1, 2 uniformly in u2. Hence, there
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exits k > 0 such that |ψ(u1, u2)| > 1/2 for all (u1, u2) ∈ R2 with |u1| > k.
Let

mi = min
{
|ψi(u1, u2)|, (u1, u2) ∈ [−k, k]×

[
0,

2π√
ξ

]}
.

Since X̃cγ is regular, mi > 0. Moreover, g(u2) = g(u2 + 2π/
√
ξ), therefore

|ψi(u1, u2)| ≥ mi in [−k, k] × R. Now consider m0 = min{m1,m2, 1/2},
then |ψi| ≥ m0 in R2. We conclude that X̃cγ is a complete surface. The
case ξ < 0 and c > 0 is analogous.

For c < 0 if
√
ξ(c, γ) = n/m is an irreducible rational number, then X̃cγ

is periodic in the variable u2 with period 2mπ. Hence it is an immersion of
a cylinder into R3. Moreover, the surface has two ends F± corresponding
to u1 → ±∞.

It follows from (41) that the Gaussian curvature K̃ of X̃cγ , is given by

K̃ =
2fg(f2 + (1 + 2γ)g2)

((f + g)2 + 2γg2)(f2 + (1 + 2γ)g(2f + g))
.

Therefore, the domain R× [0, 2mπ] of X̃ is composed of 2n horizontal strips
where K̃ changes sign from positive to negative at each open consecutive
strip and vanishes on the bordering straight lines. Moreover, limu1→±∞ K̃ =
0 uniformly in u2 in each strip. The critical points of K̃ are determined by
the points (u1, u2) which anihilate f ′ and g′, which occur at X̃(0, u0

2), where
u0

2 = m(2k + 1)π/2n, 0 ≤ k ≤ 2n− 1. We conclude that the image of each
of the n regions of positive (resp. negative) curvature has an isolated point
of maximum (resp. minimum) Gaussian curvature.

As an immediate consequence of K̃, it follows that the total curvature
vanishes. Moreover, a straightforward computation shows that on a hori-
zontal strip with positive curvature, the total curvature is 4π. Hence, the
total absolute curvature is 8πn.

In order to show that the ends F± have geometric index m, we consider
for each λ ∈ R, the intesection curve Γλ of the surface with the horizontal
plane z = λ. Let

γλ =
{

(u1, u2) ∈ R2; z̃(u1, u2) = u1 +
2f ′(f + g)

c[f2 − (1 + 2γ)g2]
= λ

}
.

It is not difficult to prove that γλ is a regular connected curve, which is the
graph of a function u1 = βλ(u2), for λ > 0 sufficiently large. Moreover, it
follows from Proposition 2.4 that the curvature kλ of the curve Γλ(u2) =
X̃(βλ(u2), u2), has the following property: limλ→∞ kλ(u2) = 1 uniformly in
u2.
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If
√
ξ(c, γ) = n/m then z̃ and hence βλ are periodic functions in u2 with

period 2mπ. Therefore, for λ sufficiently large, Γλ is a closed curve and

lim
λ→∞

1
2π

∫ 2mπ

0
kλ(u2) du2 = m.

The curve Γλ will be a simple closed (convex) curve if and only if m = 1.
We conclude that the end F+ has geometric index m and it is embedded
if and only if m = 1. Using the symmetry of the surface (X̃c,γ(−u1, u2) is
obtained by X̃c,γ(u1, u2) by reflecting with respect to the x0y plane) we get
the result for F−.

If c > 0 or c < 0 and
√
ξ is not a rational number then X̃c,γ is a nonperiodic

immersion of the plane into R3, with an infinite number of isolated critical
points of its Gaussian curvature. �

Our next two results provide the symmetries of the complete linear Wein-
garten surfaces given by Proposition 2.3. In Figure 2, one can visualize
some of the surfaces given by X̃cγ . In order to describe the symmetries of
the surfaces we introduce the following notation:

A reflection with respect to a plane z = z0 will be denoted by

Zz0(x, y, z) = (x, y,−z + 2z0).(61)

Let Vβ = (− sinβ, cosβ, 0) be a unit vector determined by a constant
β. The reflection with respect to the plane orthogonal to Vβ which passes
through the origin is denoted by

Sβ(p) = p− 2〈p, Vβ〉Vβ, p ∈ R3,(62)

where 〈, 〉 denotes the euclidean inner product of R3.

Proposition 2.6. Any complete linear Weingarten surface X̃cγ, given by
Proposition 2.3 with c < 0 satisfies the following symmetries:

X̃cγ(u1, u2 + θ) = RθX̃cγ(u1, u2),(63)

where θ = 2π/
√
ξ(c, γ),

X̃cγ(u1, u2 + βk) = Sβk
X̃cγ(u1,−u2 + βk),(64)

where βk = (2k + 1)π/2
√
ξ(c, γ),

X̃cγ(−u1, u2) = Z0X̃cγ(u1, u2),(65)

where ξ is given by (44) and Rθ, Z0 and Sβk
are defined by (50)-(62).

Proof. The surface X̃cγ with c < 0 is described by (43) where f and g

are given by (53). Moreover, X̃cγ(u1, u2) = Ru2Y (u1, u2) where Y = (1 −
gΛ, −g′Λ, u1 − f ′Λ), Λ = (f + g)/cP and P is given by (54). Therefore, we
have

X̃cγ(u1, u2 + θ) = Ru2+θY (u1, u2 + θ) = RθRu2Y (u1, u2) = RθX̃cγ(u1, u2),
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a) b)

c) d)

e) f)

Figure 2. Complete Weingarten surfaces X̃cγ which satisfy
the relation −1/2 +H + γK = 0 and they are associated to
the cylinder by Ribaucour transformations. a), b) and c) are
1-periodic cmc surfaces obtained by considering γ = 0 and√

1− c = n/m a rational number equal to 2/1, 3/2 and 7/6
respectively. d) and e) are 1-periodic Weingarten surfaces for
which γ = 0.2,

√
1− c(2γ + 1) = 14/13 and γ = −1/2, c =

−0.1 respectively. f) is a cmc surface obtained by considering
c = 2.8 and γ = 0.
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which proves (63).
From the definition of Sβk

we have Sβk
(x, y, z) = R2βk

S0(x, y, z). More-
over, g(−u2 + βk) = g(u2 + βk) and g′(−u2 + βk) = −g′(u2 + βk). Hence,

Sβk
X̃cγ(u1,−u2 + βk) = R2βk

S0R−u2+βk
Y (u1,−u2 + βk)

= R2βk
S0R−u2+βk

S0Y (u1, u2 + βk)

= Ru2+βk
Y (u1, u2 + βk) = X̃cγ(u1, u2 + βk),

where we have used the identity S0R−u2+βk
S0 = Ru2−βk

. This proves (64).
The proof of (65) follows from the equalities

X̃cγ(−u1, u2) = Ru2Y (−u1, u2) = Z0X̃cγ(u1, u2).

�

Proposition 2.7. Any complete linear Weingarten surface X̃cγ, given by
Proposition 2.3 with c > 0 satisfies the following symmetries:

X̃cγ(u1 + δ, u2) = TδX̃cγ(u1, u2), where δ =
2π√
c
,(66)

X̃cγ(u1 + z0, u2) = Zz0X̃cγ(−u1 + z0, u2), where z0 =
(2k + 1)π

2
√
c

,(67)

X̃cγ(u1, u2) = S0X̃cγ(u1,−u2),(68)

where k is an integer, Tδ, Zz0 and S0 are defined by (51), (61) and (62)
respectively.

Proof. The surface X̃cγ is described by (43) where f and g are given by (52).
Therefore, (66) follows immediately. In order to prove (67), we observe that
f(−u1 + z0) = f(u1 + z0), and f ′(u1 + z0) = −f ′(−u1 + z0). Therefore, we
conclude that

X̃cγ(u1 + z0, u2) = Ru2Y (u1 + z0, u2) = Zz0X̃cγ(−u1 + z0, u2),

where we have used the function Y introduced in the proof of Proposition 2.6.
Finally, we prove (68) by observing that

S0X̃cγ(u1,−u2) = S0R−u2Y (u1,−u2) = S0R−u2S0Y (u1, u2)

= Ru2Y (u1, u2) = Ru2Y (u1, u2) = X̃cγ(u1, u2).

�

We conclude by observing that the linear Weingarten surfaces given by
X̃cγ are tubular surfaces when γ = −1/2, since they satisfy ∆ = β2−4αγ =
0, and they provide examples of complete surfaces with ∆ < 0 and ∆ > 0.
The lines of curvature X̃cγ(u1, u

0
2) are planar, while the curves X̃cγ(u0

1, u2),
when f ′(u0

1) 6= 0, are contained on a sphere centered at (0, 0, f/f ′(u0
1)) with

radius
√

1 + (f/f ′)2. Whenever f ′(u0
1) = 0 (it can only occur for c > 0)
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then X̃cγ(u0
1, u2) are planar lines of curvature. Surfaces with one family of

planar curvature lines while the other family of curvature lines is spherical
is said to be of Joachimsthal type by Wente [W2].

3. Families of cmc surfaces associated to the cylinder.

In this section we describe a one parameter family of 1/2-cmc surfaces ob-
tained from the cylinder by Ribaucour transformations. The surfaces are
contained in the class of linear Weingarten surfaces described in Proposi-
tion 2.1 where we restrict γ = 0. These surfaces could also be obtained di-
rectly from the cylinder by applying Ribaucour transformations as in Corol-
laries 1.9 and 1.10.

In [PS], Pinkal and Sterling introduced the notion of a solution of fi-
nite type of the equation wzz + sinh(2w)/2 = 0, where z is the complex
variable z = u1 + iu2. The cmc surfaces associated to such solutions,
i.e., those parametrized by isothermal coordinates such that the metric
is given by ds2 = 4e2w(du2

1 + du2
2), are also called cmc surfaces of finite

type. In particular a solution w is of finite type 1, if considering ϕ1 = wz

and ϕ2 = wzzz − 2w3
z , there exist complex numbers a and b such that

ϕ2 = aϕ1 + bϕ1. We will show that the cmc surfaces we obtain associated
to the cylinder are of finite type 1.

Proposition 3.1. Excluding the cylinder, any 1/2-cmc parametrized sur-
face locally associated to the cylinder as in Theorem 1.5 is given, up to rigid
motions of R3, by

X̃c = X +
2

c(f − g)
(f ′Xu1 + g′Xu2 − gN)(69)

where N is the inner unit normal field of the cylinder paramerized by (42),
c is a real constant such that c < 0 or c > 1, and the functions f(u1) and
g(u2) are given by

f = ε1
√
c− 1 sin(

√
c u1) g = ε2

√
c cosh(

√
c− 1u2) if c > 1,(70)

f = ε1
√

1− c cosh(
√
|c|u1)g = ε2

√
|c| sin(

√
1− c u2) if c < 0,(71)

where εi = ±1. These surfaces are of finite type 1.

Proof. By considering γ = 0 in (43)-(47), we get the right-hand side of (69),
where f and g are solutions of

f ′′ + cf = 0 g′′ + (1− c)g = 0(72)

and the initial conditions for f and g must satisfy(
(f ′)2 + (g′)2 + (1− c)g2 + cf2

)
(u0

1, u
0
2) = 0.(73)

Moreover, since this last condition should be identically satisfied by the
nontrivial solution functions f and g, we conclude that the constant c 6= 0
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is such that c(1 − c) ≤ 0, hence c < 0 or c ≥ 1. However, when c = 1, it
follows from (73) that g = b2 where b2 6= 0 is a real constant and f ≡ 0. In
this case X̃ reduces to the cylinder and therefore c 6= 1.

From (44) we have that ξ = 1 − c. Therefore, using Corollary 2.2, we
conclude that if c > 1 then (52) reduces to (70) and if c < 0 then (53)
reduces to (71). Each 1/2-cmc surface described by (69) is parametrized
by isothermal coordinates where the metric is given (see (49)) by ds2 =
ψ2(du2

1 + du2
2), with ψ = (f + g)/(g − f). Any 1/2-cmc surface described

above is of finite type 1. In fact, considering w = log(ψ/2), ϕ1 = wz,
ϕ2 = wzzz − 2w3

z , it is a straightforward computation to verify that ϕ2 =
(1/2− c)ϕ1 + ϕ1. �

The properties of these cmc surfaces are given in the following results:

Proposition 3.2. Any 1/2-cmc surfaces X̃c given by (69) is a complete
surface asymptotically close to the cylinder. Moreover,

a) If c < 0 and
√

1− c = n/m is an irreducible rational number, then
X̃c is an immersion of a cylinder into R3, with two ends of geometric
index m and n isolated points of maximum (respectively minimum) for
the Gaussian curvature. The total curvature of X̃c is zero, while its
total absolute curvature is 8πn. The ends are embedded if and only if
m = 1. In this case they are cylindrical ends.

b) If c > 1 or c < 0 and
√

1− c is not a rational number then X̃c is
a nonperiodic immersion of R2 into R3, with an infinite number of
isolated critical points of its Gaussian curvature.

Proof. The properties of any surface X̃c and its asymptotic behaviour are
consequences of Propositions 2.4 and 2.5, where we consider γ = 0. We
observe that in this case the Gaussian curvature K̃c of X̃c, is given by K̃c =
2fg(f2 + g2)/(f + g)4. �

Proposition 3.3. Any 1/2-cmc surface X̃c with c < 0 satisfies the symme-
tries defined by (63)-(65) where θ= 2π/

√
1− c and βk = (2k+1)π/(2

√
1− c).

Proposition 3.4. Any 1/2-cmc surface X̃c with c > 1 satisfies the symme-
tries defined by (66)-(68).

We observe that the family of cmc surfaces considered in this section,
is a special case (γ = 0) of the linear Weingarten surfaces of the previous
section. Therefore, they are cmc surfaces of Joachimsthal type (see [A, Wa]
and [W2]).

4. Families of cmc surfaces associated to Delaunay surfaces.

In this section, by using Ribaucour transformations, we will obtain families
of cmc surfaces associated to the Delaunay surfaces. We will consider the
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Delaunay surfaces parametrized by

X(u1, u2) = (ρ(u1) cos(u2), ρ(u1) sin(u2), ϕ(u1)),(74)

where a 6= 0 is a real constant such that 1− 4aH > 0,

ρ(u1) =
1√
2H

(
1− 2aH +

√
1− 4aH cos(2Hu1)

)1/2
,(75)

ϕ(u1) =
∫ u1

0

(
Hρ+

a

ρ

)
dt u1 ∈ R.(76)

The generating curves are unduloids when a > 0 and they are nodoids when
a < 0.

Proposition 4.1. A parametrized surface is a H-cmc surface locally associ-
ated to a Delaunay surface X, given by (74), by a Ribaucour transformation
as in Corollary 1.10, if and only if, it is given by

X̃ = X− ρ

c[ag + (`−Hf)ρ]
·(77)

·
(

(ρ′g + f ′)Xu1 +
g′

ρ
Xu2 −

(
ag

ρ
+ `+Hρg

)
N

)
where N is the inner unit normal vector field of the Delaunay surface, c 6= 1

2a
is such that c < 0 or c > 2H and `(u1), f(u1), g(u2) are solutions of the
equations

f ′′ − (c+ λ1)`− cλ2f = 0,(78)

g′′ + (1− 2ac)g = 0,(79)

−ρ′f ′ + cρλ1f + ρ(c+ λ2)` = 0,(80)

where

λ1 = −H + a/ρ2 λ2 = −H − a/ρ2(81)

and the initial conditions must satisfy(
(g′)2 + (1− 2ac)g2 + (f ′)2 + `2 + 2cHf2 − 2cf`

)
(u0

1, u
0
2) = 0.(82)

Proof. The first fundamental form of the Delaunay surface is given by ds2 =
du2

1 + ρ2(u1)du2
2 and the eigenvalues λ1 and λ2 of dN are given by (81).

There are no umbilic points and the 1-forms dual to the principal directions
are ω1 = du1 ω2 = ρdu2. Moreover, the connection forms are given by
ω12 = ρ′du2, ω13 = −λ1du1 and ω23 = −λ2ρdu2.
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In order to obtain the Ribaucour transformations of the Delaunay sur-
face, we need to solve the integrable system (16)-(18), and (37) (see Corol-
lary 1.10), which reduces to the following system of differential equations:

Ω,u1 = Ω1 Ω,u2 = Ω2ρ(83)

W,u1 = −Ω1λ
1 W,u2 = −Ω2λ

2ρ(84)

Ω1,u1 = cλ2Ω + (c+ λ1)W Ω1,u2 = ρ′Ω2(85)

Ω2,u1 = 0 Ω2,u2 = −ρ′Ω1 + cρλ1Ω + ρ(c+ λ2)W(86)

where the initial condition for the solution must satisfy (37) at a given point.
From (86) and (85) we get

Ω2 = g′(u2) Ω1 = ρ′g + f ′(u1)(87)

where g and f are functions of u2 and u1 respectively, and it follows from
(83) and (84) that

Ω = ρg + f W = −ρgλ2 + `(u1),(88)

where

`′(u1) = −λ1f ′.(89)

Substituting (87) and (88) into Equations (85) and (86), we get

(ρ′′ + ρλ1λ2)g = −f ′′ + cλ2f + (c+ λ1)`

g′′ =
(
−(ρ′)2 + cρ2λ1 − ρ2(c+ λ2)λ2

)
g − ρ′f ′ + cρλ1f + ρ(c+ λ2)`.

From the expression of ρ, we have ρ′′ = − 1
ρ3 (H2ρ4−a2) and −(ρ′)2+cρ2λ1−

ρ2(c+ λ2)λ2 = −1 + 2ac 6= 0.
On the other hand, using the expressions of λ1 and λ2, we have ρλ1λ2 =

(H2ρ4 − a2)/ρ3. Therefore, we conclude that f satisfies Equation (78) and

g′′ + (1− 2ac)g = B

−ρ′f ′ + cρλ1f + ρ(c+ λ2)` = B

where B is a real constant, which we may consider, without loss of generality,
to be zero. Hence g satisfies (79) and the functions f(u1), `(u1) must satisfy
(80). Moreover, from Corollary 1.10 c(c − 2H) > 0 and since H > 0, it
follows that c < 0 or c > 2H.

Finally, from (87)-(88) and using the equalities (ρ′)2 + ρ2(λ2)2 = 1 and

ρ′f ′ + c

(
ρH − a

ρ

)
f − ρ(λ2 + c)` = 0,

we conclude that (37) reduces to (82).
We observe that in the open subset of R2 where c+ λ2 does not vanish `

is defined by (80). Moreover, ` can be extended continuously to R2. It is a
straightforward computation to verify that ` satisfies (89). �
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The cmc-surfaces given by (77) are called of Enneper type by Wente
[W2], since one family of curvature lines is spherical. In fact, the curves
X̃(u0

1, u2) are contained on a sphere centered at (0, 0, ϕ(u0
1) − φ(u0

1)) with
radius

√
ρ2 + φ2, where φ = [cρ2(λ1f + `)− f ]/(ρ′`+ λ2ρf ′).

The cmc surfaces described in Proposition 4.1 by X̃ depend on ` which
is well-defined on R2. However, the points where c+ λ2 = 0 may introduce
singularities for the function f which must satisfy (78). In the following
result, we will restrict the range of the parameter c providing a sufficient
condition for the surfaces X̃ to be defined on R2.

Proposition 4.2. Let X̃(u1, u2) be an H-cmc surface locally associated to
a Delaunay surface by a Ribaucour transformation as in Proposition 4.1. If
c satisfies

c <
1
2a

−
√

1− 4aH
2|a|

, or c >
1
2a

+
√

1− 4aH
2|a|

(90)

then X̃ is defined on R2 and it is given by (77), where f(u1) is a solution of
the equation

ρ2(c+ λ2)f ′′ − ρρ′(c+ λ1)f ′ + 2ac(c− 2H)f = 0(91)

g(u2) satisfies (79), `(u1) is given by (80), λ1 and λ2 are given by (81) and
the initial conditions for f and g satisfy (82).

Proof. Since c(c−2H) > 0 we have c 6= H, and the hypothesis of c satisfying
(90), is equivalent to ∣∣∣∣ c−H − 2acH

(c−H)
√

1− 4aH

∣∣∣∣ > 1.

This inequality occurs, if and only if, the function c + λ2 does not vanish
for any real value of u1. Moreover, we observe that whenever c satisfies the
first inequality of (90) then c+ λ2 < 0 and if c satisfies the second one then
c + λ2 > 0. It follows from (80) that the differential equation (78) for the
function f reduces to (91). �

In order to show that the H-cmc surfaces obtained in Proposition 4.2 are
complete, we will need the following result, where we consider an assumption
on the functions f and g which is equivalent to the non-vanishing of S given
by (21) (see Corollary 1.9).

Lemma 4.3. Let f(u1) and g(u2) be solutions of (91) and (79) respectively.
Assume that ρg + f does not vanish, then:
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i) If 1− 2ac < 0 then

f = c1r(u1)eiαu1 + c2s(u1)e−iαu1 ,(92)

g = A cosh(
√

2ac− 1 u2),(93)

where A 6= 0 and α are real numbers, α 6= kH, k ∈ Z \ {0}, c1, c2 ∈ C
and r(u1), s(u1) are complex valued periodic functions of period π/H
or 2π/H.

ii) If 1− 2ac > 0 then

f = c1r(u1)eδu1 + c2s(u1)e−δu1 ,(94)

g = A sin(
√

1− 2ac u2),(95)

where A 6= 0, c1, c2, δ 6= 0 are real numbers, r(u1), s(u1) are real val-
ued periodic functions of period π/H such that for all u1, c1r(u1)c2s(u1)
> 0.

Proof. We start observing that f is a solution of (91), which is of type
f ′′−Λ1f

′−Λ2f = 0, where Λ1 and Λ2 are real periodic functions of u1, with
period π/H and Λ1 is an odd function. Therefore, it follows from Floquet’s
theory [Le] that, given any real initial conditions, the only solution of this
equation is real and it is of the form (92), (94) or of type

f = c1a(u1) + c2(u1a(u1) + b(u1)),(96)

where c1, c2 are complex numbers and r(u1), s(u1) are complex valued peri-
odic functions of period π/H or 2π/H. If f is of type (96), then there exits
(u0

1, u
0
2) which anihilates the function ρg + f , which is a contradiction. It

follows that c2 = 0 and hence f is of type (92) or (94).
Since f and g satisfy (82) in R2, it follows from the expression of ` given

by (80) that f satisfies the equation

(97) (1 + h2
1)(f

′)2 + 2h1(h2 − c)ff ′

+ [(h2 − c)2 − c(c− 2H)]f2 +A2(1− 2ac) = 0,

where

h1 =
ρ′

ρ(c+ λ2)
and h2 − c =

−c(c− 2H)
c+ λ2

.

By considering (97) as a quadratic equation for f ′, its discriminant is given
by

∆ = 4(1− 2ac)
[
c(c− 2H)f2

ρ2(c+ λ2)2
− (1 + h2

1)A
2

]
≥ 0.(98)

Now if 1−2ac < 0, it follows from (98) that f2 ≤ A2
(
ρ2 + 1−2ac

c(c−2H)

)
. Since

the right-hand side of this inequality is a bounded function, we conclude that
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f is bounded, hence it is of the form (92). Moreover, we can show that g is
given by (93).

If 1 − 2ac > 0, then f is of type (94). In fact, otherwise, f is of the
form (92) and it follows from Floquet’s theory that there exists u0

1 such that
f(u0

1) = 0. Since g(0) = 0, it follows that the pair (u0
1, 0) anihilates the

function ρg + f , which contradicts the hypothesis. Therefore, f is of type
(94) and for any integer n,

f
(
u0

1 + n
π

H

)
= c1r(u0

1)e
λu0

1eλn π
H + c2s(u0

1)e
−λu0

1e−λn π
H .(99)

We claim that ∀u1 ∈ R, we have c1r(u1)c2s(u1) > 0. Otherwise, suppose
there exits u0

1 such that r(u0
1)s(u

0
1) = 0, then it follows from (99) that f(u0

1+
nπ/H) tends to zero when n tends to ±∞. This is a contradiction because
(98) implies that f2 ≥ A2

(
ρ2 + 1−2ac

c(c−2H)

)
. Similarly, we get a contradiction if

c1r(u0
1)c2s(u

0
1) < 0, since in this case, it follows from (94) that f(R) = R. �

Proposition 4.4. Any surface of the family X̃ given in Proposition 4.2 is
a complete H-cmc surface. Moreover, if 1 − 2ac > 0 and

√
1− 2ac is an

irreducible rational number, then X̃ is an immersion of a cylinder into R3,
otherwise it is a immersion of R2 into R3.

Proof. The first fundamental form of any surface of the family X̃ is given
by (see Remark 1.11) ds2 = ψ2

1du
2
1 + ψ2

2du
2
2 where

ψi =
a(ρg + f)ai

aρg + ρ2(`−Hf)
a1 = 1, and a2 = ρ.

Moreover, the functions f and ` determined by (91) and (89) satisfy the
following relation identically:

(1− 2ac)A2 + (f ′)2 + 2cf(Hf − `) + `2 = 0.

i) If 1− 2ac > 0, then f and g are given by (94) (95). It follows from the
above equation that f and Hf − ` do not vanish for any u1 ∈ R and there
exists ε > 0 such that |`/f − H| ≥ ε for all u1 ∈ R. Using the arguments
of the proof of Lemma 4.3, by considering Equation (97) as a quadratic
equation for f ′/f , we get that f ′/f is a bounded function and hence `/f is
also a bounded function. Hence,

lim
|u1|→∞

(
ψi −

aaif

ρ2(`−Hf)

)
= 0

uniformly in the variable u2. Now, with arguments similar to those used
in the proof of Proposition 2.5, we get m > 0 such that |ψi| ≥ m for all
(u1, u2) ∈ R2 and hence we conclude that X̃ is complete.

ii) If 1− 2ac < 0, then f and g are given by (92) and (93). Hence

lim
|u2|→∞

|ψi − ai| = 0
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unifomly in u1. Therefore, there exists m0 and L positive real numbers
such that |ψi| ≥ m0 for all (u1, u2) such that |u2| > L. One can show
that for any α, there exist mi > 0 such that |ψi(u1, u2)| ≥ mi > 0 for all
(u1, u2) ∈ R× [−L,L]. We conclude that X̃ is complete. �

We conclude this section by observing that with the same arguments of
the proof of Propositions 2.6 and 2.7, one can show that any H-cmc surface
given in Proposition 4.2 satisfies the following symmetries:

X̃(u1, u2 + θ) = RθX̃(u1, u2) where θ = 2π/
√

1− 2ac,

X̃(u1, u2 + βk) = Sβk
X̃(u1,−u2 + βk) where βk =

(2k + 1)π
2
√

1− 2ac
, k ∈ Z,

whenever 1− 2ac > 0 and

X̃(u1, u2) = S0X̃(u1,−u2)

whenever 1− 2ac < 0.
One can also show that the complete H-cmc surfaces of the family X̃ given

by Proposition 4.1, whenever 1 − 2ac < 0 , are asymptotically close to the
Delaunay surface. In fact, ∀ε > 0 there exists L > 0 such that

|X̃(u1, u2)−X(u1, u2 ± θ)| < ε ∀(u1, u2) ∈ R2 with ± u2 ≥ L,

where θ is such that cos θ = 1− 1/(ac) and sin θ = −
√

2ac− 1/(ac).
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Instituto de Matemática e Estat́ıstica
Universidade Federal de Goiás
74001-970 Goiânia, GO
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