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Let n be any integer with n > 1, and let F ⊆ L be fields
such that [L : F ] = 2, L is Galois over F , and L contains a
primitive nth root of unity ζ. For a cyclic Galois extension
M = L(α1/n) of L of degree n such that M is Galois over F ,
we determine, in terms of the action of Gal(L/F ) on α and
ζ, what group occurs as Gal(M/F ). The general case reduces
to that where n = pe, with p prime. For n = pe, we give an
explicit parametrization of those α that lead to each possible
group Gal(M/F ).

1. Introduction.

Let F ⊆ L be fields with [L : F ] = 2 and L Galois over F , and let n > 1
be a positive integer. Assume L contains a primitive nth root of unity. Let
M be a cyclic Galois field extension of L of degree n. So M = L(α1/n) for
some α ∈ L∗, by Kummer theory. Let Gal(L/F ) = {σ, 1}. It is easy to
verify that M is Galois over F just when σ(α) = αtβn for some β ∈ L∗ with
t2 ≡ 1 mod n (that is, the cyclic group 〈αL∗n〉 ⊆ L∗/L∗n is stable under
the action of Gal(L/F )). The goal of this paper is to describe explicitly in
terms of α, β, and t what group arises for Gal(M/F ).

To do this, we first classify in §2 the possible groups that can arise as
Gal(M/F ). These are the groups of order 2n containing a cyclic subgroup
of order n. There are too many of them for arbitrary n (the number is given
in Proposition 2.7). We show in §3 that the general question of determining
Gal(M/F ) can be reduced to the same question when n is a prime power.
When n = pe with p an odd prime, there are just two groups: Cyclic and
dihedral. When n = 2e with e ≥ 3 there are six groups: One cyclic, four
semidirect products, and a generalized quaternion group. We give in Theo-
rem 3.4 a general description of the group Gal(M/F ) in terms of α, β, and
t. Since we assume that the group µn of nth roots of unity lies in L, but not
necessarily in F , we must take into account the action of Gal(L/F ) on µn.
In order to make the determination of Gal(M/F ) more explicit, we obtain
in §4 precise descriptions of the α satisfying σ(α) = αtβn. This allows us

297

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2003.212-2


298 Y.-S. HWANG, D.B. LEEP, AND A.R. WADSWORTH

in §§5 and 6 to pin down in detail the circumstances under which a given
group arises.

There has been much work over the years on the realization of groups as
Galois groups. This is still a very active topic of research (see, e.g., [V] and
[MM]). For larger groups the question has often been whether the group
can be realized at all over a given field. For small groups, there are criteria
for exactly when the group appears as a Galois extension, see, e.g., [GSS].
For nonsimple groups one approach has been to examine the embedding
problem: Given a Galois field extension L/F , when can we find a field
M ⊇ L Galois over F with Gal(M/F ) a given group that has Gal(L/F ) as
a homomorphic image. Most often in this approach M/L is of prime degree
(as in [K] and [GSS]). The work here can be thought of as analyzing an
extension problem, but now with [L : F ] as small as possible, and [M : L]
arbitrarily large, but M cyclic Galois over L.

In the papers by Damey et. al. [D1], [D2], [DP] and [DM], there is
an examination of when dihedral and quaternion groups of 2-power order
appear as Galois groups; the 2-power case of Proposition 5.2 below appears
as Prop. 1 and Cor. 1 in [D1]. The focus in those papers is primarily on
when a quaternion group can occur as a Galois group, particularly over an
algebraic number field. Also, the paper by Jensen, [J], especially pp. 447-
449, considers all four nonabelian groups of order 2e+1 containing a cyclic
subgroup of order 2e; but, while Jensen is primarily interested in when
the groups of order 2e are realizable over a given base field, we give a full
classification of the fields M ⊇ L that yield these groups as Gal(M/F ),
assuming L contains all 2e th roots of unity.

2. Groups of order 2n that contain a cyclic subgroup of order n.

In this section we classify groups of order 2n that contain a cyclic subgroup
of order n. When n is a power of 2, this classification is well-known. A good
reference for this case is [G], pp. 191-193. The general case of describing
finite metacyclic groups has been considered in [B].

Proposition 2.1. Let G be a group of order 2n that contains a cyclic sub-
group of order n. Then there exist τ, σ ∈ G and nonnegative integers j, l
such that G = 〈τ, σ〉 and:

(1) |τ | = n, σ /∈ 〈τ〉,
(2) στσ−1 = τ j, σ2 = τ l,
(3) j2 ≡ 1 mod n and l(j − 1) ≡ 0 mod n.

Proof. Let τ be an element of order n and let σ ∈ G, but σ /∈ 〈τ〉. Then
G = 〈τ, σ〉 and 〈τ〉 C G. Thus στσ−1 = τ j for some j ≥ 0, and σ2 ∈ 〈τ〉
since G/〈τ〉 has order 2. Let σ2 = τ l, where 0 ≤ l ≤ n− 1. Since

τ = σ2τσ−2 = σ(στσ−1)σ−1 = στ jσ−1 = (στσ−1)j = τ j
2
,
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it follows j2 ≡ 1 mod n. Since

τ l = σ2 = στ lσ−1 = (στσ−1)l = (τ j)l = τ jl,

it follows jl ≡ l mod n and thus l(j − 1) ≡ 0 mod n. �

Definition 2.2. Let (G, j, l) denote a group of order 2n as described in
Proposition 2.1. We always assume that j and l satisfy the conditions in
Proposition 2.1(3).

For each ordered pair (j, l) mod n satisfying Condition (3) of Proposi-
tion 2.1, there does in fact exist a group G as in Proposition 2.1 with such
an ordered pair (j, l). A quick construction of such a group is to take any
field k containing a primitive nth root of unity ζn, and let G be the subgroup
of GL2(k) generated by τ =

(
ζn 0

0 ζj
n

)
and σ =

(
0 1
ζl
n 0

)
.

The groups (G, j, l) are clearly determined up to isomorphism by j and
l mod n, but different values of l can yield isomorphic groups. In the rest of
this section, we will determine the isomorphism classes of the (G, j, l). Let
us note immediately the obvious isomorphisms arising from different choices
of generators of (G, j, l).

Remark 2.3. If for the group (G, j, l) described in Proposition 2.1 we re-
place the generator σ by σ′ = στk, for any integer k, then σ′τ(σ′)−1 = τ j

and (σ′)2 = τ l
′
, where l′ = k(j + 1) + l. Of course also, τ l = τ sn+l for any

integer s. Hence, (G, j, l) ∼= (G, j, l′) whenever l′ = k(j + 1) + sn + l, i.e.,
whenever l′ ≡ l mod gcd(j + 1, n). On the other hand, if we take another
generator τ̃ of 〈τ〉, say τ = (τ̃)u, where gcd(u, n) = 1, then στ̃σ−1 = (τ̃)j

and σ2 = (τ̃)el, where l̃ = ul. So, (G, j, l) ∼= (G, j, l̃). But this is an isomor-
phism we already have, since in fact l̃ ≡ l mod gcd(j + 1, n). To see this
congruence, let d = gcd(j+1, n). Then, d |n | (j−1)l and d | (j+1) | (j+1)l,
so d | 2l. If u is odd, then d | (u − 1)l = l̃ − l. If u is even, then n must be
odd, so d is odd. Then d | 2l implies d | l; likewise, d

∣∣ l̃, so again d
∣∣ (l̃ − l).

Let n = pe00 p
e1
1 · · · pem

m be the prime decomposition of n where 2 = p0 <
p1 < · · · < pm, m ≥ 0, e0 ≥ 0, and ei ≥ 1 for all i ≥ 1. Then, the Chinese
Remainder Theorem shows,

j2 ≡ 1 mod n if and only if

{
j2 ≡ 1 mod 2e0

j2 ≡ 1 mod pei
i , 1 ≤ i ≤ m.

If pi is an odd prime, then j − 1 or j + 1 must be a unit of the ring Z/pei
i Z,

so

j2 ≡ 1 mod pei
i if and only if j ≡ ±1 mod pei

i .
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For p0 = 2, since j − 1 or j + 1 is not a multiple of 4,

j2 ≡ 1 mod 2e0 if and only if


j ≡ 1 mod 2, if e0 = 1,
j ≡ 1, 3 mod 4, if e0 = 2,
j ≡ ±1, 2e0−1 ± 1 mod 2e0 if e0 ≥ 3.

Now, fix j with j2 ≡ 1 mod n. To see how many different groups (G, j, l)
might exist for different choices of l, let A = {l ∈ Z | lj ≡ l mod n } and
B = { l ∈ Z | gcd(j + 1, n) | l }.
Lemma 2.4. With the notation above:

(1) B ⊆ A and
∣∣A/B∣∣ =

{
2, if n is even and j ≡ ±1 mod 2e0,
1, otherwise.

(2) The number of isomorphism classes of groups (G, j, l) with given j (and
n) is at most

∣∣A/B∣∣.
Proof. (1) If l ∈ B, then l ≡ k(j + 1) mod n, for some k ∈ Z. Then,
l(j − 1) ≡ k(j + 1)(j − 1) ≡ 0 mod n, so l ∈ A. Thus, B ⊆ A.

Let d1 = gcd(j − 1, n) and d2 = gcd(j + 1, n). Then l ∈ A ⇔
n
∣∣l(j − 1) ⇔ n/d1

∣∣ l(j − 1)/d1 ⇔ n/d1

∣∣ l. But, l ∈ B just when d2 | l.
So, A/B = (n/d1)Z

/
d2Z, and

∣∣A/B∣∣ = d1d2/n. For pi an odd prime, we
have pei

i

∣∣n ∣∣ (j2 − 1), but pi cannot divide both j − 1 and j + 1. Hence, the
power of pi in one of d1, d2 is pei

i and the power of pi in the other is p0
i .

So, pi - (d1d2/n). Thus, if n is odd, we have d1d2/n = 1. If n is even and
j ≡ ±1 mod 2e0 , then the power of 2 in one of d1, d2 is 2e0 , and the power
of 2 in the other is 2; thus d1d2/n = 2. The only remaining case is e0 ≥ 3
and j ≡ 2e0−1 ± 1. In this case, the power of 2 in one of d1, d2 is 2e0−1, and
in the other is 21; then d1d2/n = 1.

(2) is clear from Proposition 2.1 and Remark 2.3. �

Proposition 2.5. Let G = (G, j, l).
(1) G is abelian if and only if j ≡ 1 mod n. Suppose this occurs.

(a) If n is odd, then G ∼= Z/nZ× Z/2Z ∼= Z/2nZ.
(b) If n is even, then

G ∼=

{
Z/nZ× Z/2Z, if l is even,
Z/2nZ, if l is odd.

(2) Suppose j ≡ −1 mod n.
(a) If n is odd, then l ≡ 0 mod n and G ∼= Dn, the dihedral group of

order 2n.
(b) If n is even, then n/2

∣∣ l and

G ∼=

{
(G,−1, 0) ∼= Dn, if l ≡ 0 mod n,
(G,−1, n/2) = Qn, if l ≡ n/2 mod n,

where Qn is the generalized quaternion group of order 2n.
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Proof. (1) G is abelian just when τ and σ commute, which occurs if and only
if j ≡ 1 mod n. Assume this holds. If n is odd, there is only one abelian
group of order 2n containing a cyclic group of order n. Now, suppose n is
even. If l is even, then Remark 2.3 shows that G ∼= (G, j, 0) ∼= Z/nZ×Z/2Z;
if l is odd, then G ∼= (G, j, 1), which is cyclic, as σ then has order 2n.

(2) Assume j ≡ −1 mod n. The condition lj ≡ l mod n of Proposition 2.1
forces n | 2l. If n | l, then G ∼= (G,−1, 0) ∼= Dn. This always holds if n is odd.
But, if n is even, we have n/2

∣∣ l. So, when n - l, we have l ≡ n/2 mod n,
and Remark 2.3 shows that G ∼= (G,−1, n/2) ∼= Qn. (Our terminology
in calling this a generalized quaternion group follows [CR], p. 23. Unlike
some authors, we do not require a generalized quaternion group to be a
2-group.) �

We are going to show how the study of the groups described in Propo-
sition 2.1 can be reduced to the case where n is a prime power. But let
us first observe the (well-known) classification of these groups in the prime
power situation. If n = pe, where p is an odd prime, then j ≡ ±1 mod n,
so the two possible groups (G, j, l) are described in Proposition 2.5; one is
abelian, the other is dihedral. The classification for n a power of 2 is given
in [G], Th. 4.3, p. 191 and Th. 4.4, p. 193: If n = 2e0 with e0 ≤ 2, then
again j ≡ ±1 mod n, and the possibilities for (G, j, l) are given in Proposi-
tion 2.5. If n = 2e0 with e0 ≥ 3, there are two further groups besides the four
given in Proposition 2.5. There is one group (and only one, by Lemma 2.4)
with j ≡ 2e0−1 + 1 mod 2e0 , which we write (G, 2e0−1 + 1, 0) and is denoted
Me0+1(2) in [G]. There is also exactly one group with j ≡ 2e0−1−1 mod 2e0 ,
which we write (G, 2e0−1−1, 0) and Gorenstein calls the semidihedral group
Se0+1. He proves in [G], Th. 4.3(iii), p. 191 that no two of the four non-
abelian groups with n = 2e0 are isomorphic. This clearly applies to the two
abelian groups, as well.

For any group G = (G, j, l) = 〈τ, σ〉 as in Proposition 2.1, let Hi be the
unique subgroup of 〈τ〉 of order n

/
pei
i , 0 ≤ i ≤ m. Then, each Hi C G

and |G/Hi| = 2pei
i . Furthermore, if we let τ = τHi and σ = σHi, then

G/Hi = 〈τ , σ〉, where 〈τ〉 is a cyclic subgroup of order pei
i , σ τ σ−1 = τ j ,

σ2 = τ l, and σ /∈ 〈τ〉. Thus, G/Hi is a group of the type described in
Proposition 2.1, with n replaced by n′ = pei

i . Note that every element of G
of odd order has trivial image in G/〈τ〉, so must lie in 〈τ〉. Thus, H0 consists
of all the elements of G of odd order.

Theorem 2.6. Suppose (G, 〈τ〉, σ, j, l) and (G′, 〈τ ′〉, σ′, j′, l′) are each groups
of order 2n as in Proposition 2.1 and with all the previous notation. Assume
(j, l) and (j′, l′) satisfy Condition (3) in Proposition 2.1. Let Hi and H ′

i,
0 ≤ i ≤ m, be the subgroups of 〈τ〉 and 〈τ ′〉 defined before. Then the
following statements are equivalent:
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(1) G ∼= G′.
(2) j ≡ j′ mod n and l ≡ l′ mod gcd(j + 1, n).
(3) G/Hi

∼= G′/H ′
i, 0 ≤ i ≤ m.

(4) j ≡ j′ mod n/2e0 and G/H0
∼= G′/H ′

0.

Proof. (2) ⇒ (1): This was done in Remark 2.3.
(1)⇒ (4): Let α: G→ G′ be an isomorphism. SinceH0 (resp.H ′

0) consists
of all the elements of G (resp. G′) of odd order, α(H0) = H ′

0. Therefore,
α induces an isomorphism G/H0

∼= G′/H ′
0. Let h be any generator of

H0, and let h′ = α(h), which generates H ′
0. The conjugacy class of h in

G is {h, hj }, which must be mapped bijectively to the conjugacy class
{h′, (h′)j

′ } of h′ in G′. If these classes contain only one element each,
then j ≡ 1 ≡ j′ mod n/2e0 . If the classes contain two elements each, then
(h′)j

′
= α(hj) = α(h)j = (h′)j , so again j ≡ j′ mod n/2e0 .

(3) ⇔ (4): For i ≥ 1, since
∣∣〈τ〉/Hi

∣∣ is a power of an odd prime, we
have G/Hi is either abelian or dihedral. The first case occurs just when
j ≡ 1 mod pei

i , and the second just when j ≡ −1 mod pei
i . Thus, G/Hi

∼=
G/H ′

i if and only if j ≡ j′ mod pei
i . By the Chinese Remainder Theorem,

this occurs for all i ≥ 1 if and only if j ≡ j′mod n/2e0 .
(3) ⇒ (2): As observed above, G/Hi is a group of type (j, l) with n

replaced by pei
i . For pi odd, we noted in the previous paragraph that

G/Hi
∼= G′/H ′

i implies j ≡ j′ mod pei
i ; then Lemma 2.4 shows that the

conditions lj ≡ l and l′j′ ≡ l′ mod pei
i from Proposition 2.1 imply that

l ≡ l′ mod gcd(j + 1, pei
i ). For i = 0, [G], Th. 4.3(iii), p. 191, together

with Proposition 2.5, shows that G/H0
∼= G′/H ′

0 implies j ≡ j′ mod 2e0
and that if j ≡ ±1, then l and l′ must lie in the same congruence class
modgcd(j + 1, 2e0). (There are just two possible congruence classes, by
Lemma 2.4.) When e0 ≥ 3 and j ≡ 2e0−1 ± 1 mod 2e0 , Lemma 2.4 shows
that the conditions j ≡ j′, lj ≡ l, and l′j′ ≡ l′ mod 2e0 already imply
l ≡ l′ mod gcd(j + 1, 2e0). Thus, the Chinese Remainder Theorem yields
that j ≡ j′ mod n and l ≡ l′ mod gcd(j + 1, n), as desired. �

We can now count the number of isomorphism classes of groups of order
2n containing a cyclic subgroup of order n. Let n = 2e0pe11 . . . pem

m , as usual.
Let G be any such group, let H0 be its unique (cyclic) subgroup of order
n/2e0 , and let S be any 2-Sylow subgroup of G. Since H0 C G,

∣∣H0∩S
∣∣ = 1

(as gcd(|H0|, |S|) = 1), and G = H0S (as |G| = |H0| |S|
/
|H0 ∩ S|), G is the

semidirect product of H0 by S. (We thank R. Guralnick for pointing out this
semidirect product decomposition to us.) So, G is determined by H0, S, and
the map γ: S → Aut(H0), s 7→ conjugation by s. The image of γ consists
of the identity map and the jth power map. Theorem 2.6(4) shows that G
is determined up to isomorphism by the isomorphism class of S (∼= G/H0)
and by j mod n/2e0 . By the results in [G] quoted above, the number of
possible choices of S is 2e0 if 0 ≤ e0 ≤ 2 and is 6 if e0 ≥ 3. The number of
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possible choices of j mod n/2e0 is 2m since we must have j ≡ ±1 mod pei
i for

1 ≤ i ≤ m. Every such choice of S and j yields a semidirect product that is
a group of the desired type. (For, we obtain a cyclic group of order n in the
semidirect product as the direct product of H0 with a cyclic subgroup of S
of order 2e0 lying in ker(γ).) Theorem 2.6 shows that different isomorphism
classes of S or different choices of j mod n/2e0 yield nonisomorphic groups.
Thus, we have proved:

Proposition 2.7. Let n have prime factorization n = 2e0pe11 · · · pem
m . The

number of isomorphism classes of groups G of order 2n containing a cyclic

subgroup of order n is

{
2e0+m, if 0 ≤ e0 ≤ 2,
6 · 2m, if e0 ≥ 3.

3. Galois extensions with group G.

Let F be a field with charF - n and let L/F be a Galois quadratic extension.
That is, if 2 - n and charF = 2, assume that the quadratic extension L/F
is also a separable extension.

Let G be a group of order 2n that contains a cyclic subgroup of order n.
We shall continue to use the notation from Section 2.

In this section, we shall determine when there exists a cyclic extension
M/L of degree n such that M/F is a Galois extension with Gal(M/F ) ∼= G.
For most of this section, we shall assume that L contains a primitive nth

root of unity.

Proposition 3.1. Let G be a group of order 2n as in Proposition 2.1. Let
〈τ〉 be a cyclic subgroup of G of order n and let Hi, 0 ≤ i ≤ m, be the sub-
groups of 〈τ〉 defined in Section 2. Let L/F be a Galois quadratic extension.
Then the following statements are equivalent:

(1) L/F extends to a Galois extension M/F with Gal(M/F ) ∼= G.
(2) For each i, 0 ≤ i ≤ m, L/F extends to a Galois extension Mi/F with

Gal(Mi/F ) ∼= G/Hi and Gal(Mi/L) ∼= 〈τ〉/Hi.

Proof. It is clear that (1) implies (2) by letting Mi be the fixed field of Hi

and recalling that Hi C G.
Now assume (2) holds. Then Mi/L is a cyclic Galois extension with

[Mi : L] = pei
i , since [〈τ〉 : Hi] = pei

i . Let M = M0 · · ·Mm. Then M/L
is a cyclic Galois extension with [M : L] = pe00 · · · pem

m = n and M/F is
a Galois extension since Mi/F is a Galois extension, 0 ≤ i ≤ m. Let
G′ = Gal(M/F ), 〈τ ′〉 = Gal(M/L), and H ′

i = Gal(M/Mi). Then G/Hi
∼=

Gal(Mi/F ) ∼= G′/H ′
i, 0 ≤ i ≤ m. Theorem 2.6 implies G ∼= G′. �

Let ζ denote a primitive nth root of unity. From here on, assume that
ζ ∈ L. Let α ∈ L∗ and let k | n. Let L(α1/k) denote a field obtained by
adjoining to L a root of the equation xk − α = 0. Since charL - k and L
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contains a primitive kth root of unity, it follows L(α1/k) is a splitting field
of xk − α over L and hence L(α1/k)/L is a Galois extension. In particular,
the field L(α1/k) does not depend on which kth root of α is chosen. If
[L(α1/k) : L] = k, then Gal(L(α1/k)/L) ∼= Z/kZ. However, when we write
α1/k, we will assume some specified kth root of α has been selected and fixed
throughout the discussion. Then αs/k will mean (α1/k)s for the given choice
of α1/k.

Lemma 3.2. Let α, β ∈ L. Let r, s be positive integers with gcd(r, s) = 1
and assume rs | n. Then L(α1/r, β1/s) = L(γ1/(rs)) where γ = αsβr.

Proof. We have L(γ1/(rs)) ⊆ L(α1/r, β1/s) since

γ1/(rs) = α1/rβ1/s ∈ L(α1/r, β1/s).

Choose a, b ∈ Z such that ar + bs = 1. Then

α1/r = α(ar+bs)/r = αaαbs/r = αaβ−bαbs/rβb

= αaβ−b(αsβr)b/r = αaβ−bγb/r = αaβ−b(γ1/(rs))bs ∈ L(γ1/(rs)).

Similarly, β1/s ∈ L(γ1/(rs)). �

Let Gal(L/F ) = {1, σ}. Since ζ ∈ L is a primitive nth root of unity, we
have

σ(ζ) = ζr,

where gcd(r, n) = 1. This equation defines r (mod n), which will be a
significant invariant from here on. Note that r2 ≡ 1 mod n since ζ = σ2(ζ) =
σ(ζr) = ζr

2
.

Definition 3.3. If L ⊆ M , we will say that M/F realizes (G, j, l) if M/F
is a Galois extension and Gal(M/F ) = 〈τ, σ〉, where Gal(M/L) = 〈τ〉, σ
denotes an extension of σ ∈ Gal(L/F ) to an automorphism in Gal(M/F ),
στσ−1 = τ j , and σ2 = τ l.

Theorem 3.4. Assume ζ ∈ L. Let M = L(α1/n), where α ∈ L, and assume
[M : L] = n. Then the following statements hold:

(1) M/F is a Galois extension if and only if σ(α) = αtβn, where β ∈ L,
gcd(t, n) = 1. When this occurs, for any t′ ≡ t mod n there is β′ ∈ L
with σ(α) = αt

′
(β′)n.

(2) If M/F is a Galois extension, then there exist integers j, l such that
M/F realizes (G, j, l).

(3) The following statements are equivalent:
(a) M/F realizes (G, j, l).
(b) σ(α) = αtβn, with t ≡ jr mod n and α(t2−1)/nβtσ(β) = ζ l1 where

l1 ≡ l mod gcd(j + 1, n).
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(4) If M/F realizes (G, j, l) and we choose ζ so that τ(α1/n) = ζα1/n and β
so that σ(α1/n) = αt/nβ, then α(t2−1)/nβtσ(β) = ζ l. If we let β′ = ζiβ,
then α(t2−1)/n(β′)tσ(β′) = ζ l+ir(j+1).

Proof. (1)M/F is a Galois extension⇔ (xn−α)(xn−σ(α)) splits completely
inM ⇔M = L(α1/n, σ(α)1/n)⇔ L(α1/n) = L(σ(α)1/n), sinceM = L(α1/n)
and [L(α1/n) : L] = [L(σ(α)1/n) : L], ⇔ σ(α) = αtβn with gcd(t, n) = 1 and
β ∈ L, by Kummer Theory. Finally, if t′ = t + dn and σ(α) = αtβn, then
σ(α) = αt

′
(β′)n where β′ = α−dβ.

(2) Assume M/F is a Galois extension and let G = Gal(M/F ). Since
|G| = [M : F ] = 2n and M/L is a cyclic extension of degree n, it follows
that Gal(M/L) is a cyclic subgroup of G of order n and thus G is a group
as in Proposition 2.1. Let Gal(M/L) = 〈τ〉 and let σ denote an extension of
σ ∈ Gal(L/F ) to an automorphism σ in Gal(M/F ). Then G = 〈τ, σ〉 since
σ|L 6= 1. Since [G : 〈τ〉] = 2, we have στσ−1 ∈ 〈τ〉 and σ2 ∈ 〈τ〉. Thus
στσ−1 = τ j and σ2 = τ l and M/F realizes (G, j, l).

(3) and (4) Assume M/F realizes (G, j, l). Then σ(α) = αtβn with β ∈ L,
from the proof of (1). This equation implies σ(α1/n) = αt/nβω where ω is
an nth root of unity. We may replace βω by β so that we may assume that
σ(α1/n) = αt/nβ. We have τ(α1/n) = ζ ′α1/n, where ζ ′ is a primitive nth

root of unity, since τ has order n and M = L(α1/n) is a cyclic extension of
degree n. We can assume that ζ = ζ ′. We now apply the equation στ = τ jσ
to α1/n.

στ(α1/n) = σ(ζα1/n) = ζrσ(α1/n) = ζrαt/nβ.

τ jσ(α1/n) = τ j(αt/nβ) = τ j(α1/n)tτ j(β) = (ζjα1/n)tβ = ζjtαt/nβ.

Thus ζjt = ζr and jt ≡ r mod n. Since j2 ≡ 1 mod n, it follows t ≡
jr mod n and t2 ≡ j2r2 ≡ 1 mod n.

Next we apply the equation σ2 = τ l to α1/n. Since

σ2(α1/n) = τ l(α1/n) = ζ lα1/n

and

σ2(α1/n) = σ(αt/nβ) = σ(α1/n)tσ(β) = αt
2/nβtσ(β),

it follows α(t2−1)/nβtσ(β) = ζ l. We have now proved the first sentence of
(4). For the rest of (4), observe that if β′ = ζiβ, then

α(t2−1)/n(β′)tσ(β′) =
(
α(t2−1)/nβtσ(β)

)
ζi(t+r) = ζ l+ir(j+1),

since t+ r ≡ jr + r ≡ r(j + 1) mod n.
To show (3)(a) ⇒ (3)(b) we must see what happens if we make different

choices of β and ζ. But, if σ(α1/n) = αt/nβω and τ(α1/n) = ζ ′α1/n, then
there is another generator τ1 of 〈τ〉 and a σ1 = στ i such that σ1(α1/n) =
αt/nβ and τ1(α1/n) = ζα1/n. Then, the calculation made above (using σ1
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and τ1 and noting that σ1(β) = σ(β)) shows that α(t2−1)/nβtσ(β) = ζ l1 ,
where σ2

1 = τ l11 . But, we saw in Remark 2.3 that l1 ≡ l mod gcd(j + 1, n),
so we have (3)(b).

Now assume the equations in (3)(b) hold. ThenM/F is a Galois extension
by (1). Choose a generator τ of Gal(M/L) such that τ(α1/n) = ζα1/n

and choose σ ∈ Gal(M/F ) extending σ ∈ Gal(L/F ) such that σ(α1/n) =
αt/nβ. Then, (2) implies that M/F realizes (G, j′, l′), where στσ−1 = τ j

′
,

so (j′)2 ≡ 1 mod n, and σ2 = τ l
′
. The equation στ(α1/n) = τ j

′
σ(α1/n)

shows that ζj
′t = ζr, so j′t ≡ r ≡ jt mod n. Hence, j′ ≡ j mod n. Also,

the calculation above for σ2(α1/n) shows that α(t2−1)/nβtσ(β) = ζ l
′
. Hence,

l′ ≡ l1 ≡ l mod gcd(j+ 1, n). But then, since M/F realizes (G, j′, l′), it also
realizes (G, j, l) with a different choice of σ, by Remark 2.3. �

4. Calculations in quadratic extensions.

Let L/F be a Galois quadratic extension and assume ζ ∈ L is a primitive
nth root of unity. Thus charF - n. Let σ ∈ Gal(L/F ) with σ 6= 1. Then
σ(ζ) = ζr where r2 ≡ 1 mod n. If charF 6= 2, let L = F (

√
a), a ∈ F .

In this section we study the problem of describing elements α ∈ L∗

with the property σ(α) = αtβn, β ∈ L, for a given integer t satisfying
t2 ≡ 1 mod n. By Theorem 3.4(1), this is equivalent to describing ele-
ments α ∈ L∗ with the property that L(α1/n) is a Galois extension of F .
These results will be applied in Sections 5 and 6 to the problem of con-
structing the Galois extensions discussed in Section 3 with a given group
as described in Proposition 2.1. Keeping in mind the intended applications
in Sections 5 and 6, we shall consider only the cases t ≡ ±1 mod n and
t ≡ ±1, 2e−1 ± 1 mod 2e, e ≥ 3, when n = 2e.

We begin with a lemma to be used in the case t ≡ 1 mod n.

Lemma 4.1.

(1) If δ, δ′ ∈ L∗ and σ(δ)/δ = σ(δ′)/δ′, then δ′ = bδ with b ∈ F .
(2) Suppose γ = σ(δ)/δ with γ, δ ∈ L. Then there exists b ∈ F such that

δ =


b(1 + σ(γ)), if γ 6= −1,
b
√
a, if γ = −1, charF 6= 2,

b if γ = −1, charF = 2.

Proof. The equation in (1) implies σ(δ′/δ) = δ′/δ and thus δ′/δ ∈ F . This
implies (1).

For (2), first assume γ 6= −1. Then 1 + σ(γ) 6= 0. Since γσ(γ) =

NL/F (γ) = 1, it follows σ(δ)/δ = γ =
1 + γ

1 + σ(γ)
=
σ(1 + σ(γ))

1 + σ(γ)
. Now (1)

implies that δ = b(1 + σ(γ)) with b ∈ F . Now assume γ = −1. If charF 6= 2,
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then σ(
√
a)/

√
a = −1, and so (1) implies that δ = b

√
a with b ∈ F . If

charF = 2, then σ(δ)/δ = −1 = 1 and hence δ ∈ F . �

The following proposition covers the case t ≡ 1 mod n:

Proposition 4.2. Let n be a positive integer and let α ∈ L. Then σ(α) =
αβn, β ∈ L, if and only if there exists b ∈ F such that

α =


b(1 + γn), if σ(α)/α 6= −1,
b
√
a, if σ(α)/α = −1, charF 6= 2, and −1 ∈ Ln,

b, if σ(α)/α = −1, charF = 2,

where in the first case above, γ ∈ L and NL/F (γ)n = 1.

Proof. First suppose σ(α) = αβn, β ∈ L. Then βn = σ(α)/α and Lem-
ma 4.1(2) implies there exists b ∈ F such that

α =


b(1 + σ(βn)), if σ(α)/α 6= −1,
b
√
a, if σ(α)/α = −1, charF 6= 2,

b, if σ(α)/α = −1, charF = 2.

If σ(α)/α 6= −1, let γ = σ(β). Then

NL/F (γ)n = NL/F (σ(β)n) = NL/F (βn) = NL/F (σ(α)/α) = 1.

If σ(α)/α = −1 and charF 6= 2, then −1 = βn ∈ L. Therefore the stated
formula for α holds.

Now assume that α is given by the formula in the statement of this Propo-
sition. If α = b(1 + γn) and NL/F (γ)n = 1, then

σ(α)
α

=
b(1 + σ(γ)n)
b(1 + γn)

= σ(γ)n.

Thus σ(α) = αβn, where β = σ(γ). If α = b
√
a and −1 = βn ∈ Ln, then

σ(α)/α = −1 = βn. If α = b, then σ(α) = α · 1n. �

If t ≡ −1 mod n and σ(α) = α−1βn, then NL/F (α) = ασ(α) = βn ∈
F ∩Ln. Thus to treat the case t ≡ −1 mod n, we shall first study F ∩Ln in
Propositions 4.3-4.5. There does not seem to be a good description of F ∩Ln
when L = F (

√
−1) and n = 2e, e ≥ 3, but the result in Proposition 4.5 is

sufficient for our purposes.

Proposition 4.3. If n is odd, then F ∩ Ln = Fn.

Proof. It is clear that Fn ⊆ F ∩Ln. Now let λ ∈ L and suppose λn = b ∈ F .
Then b2 = NL/F (b) = NL/F (λ)n ∈ Fn. Since b2 and bn lie in Fn, it follows
that b ∈ Fn. Thus F ∩ Ln ⊆ Fn. �

Proposition 4.4. Assume n is even and let n = 2em, m odd, e ≥ 1. If
a /∈ −F 2 (i.e., L 6= F (

√
−1)), then F ∩ Ln = Fn ∪ an/2Fn.
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Proof. Recall that if s and t are any two relatively prime integers and A is
any abelian group (written additively) then sA ∩ tA = stA. Consequently,
if E is any field, then Es ∩ Et = Est (by taking A = E∗).

It is clear that Fn ∪ an/2Fn ⊆ F ∩ Ln since an/2 = (
√
a)n. To prove the

other inclusion take any nonzero b ∈ F∩Ln = F∩L2e∩Lm = (F ∩ L2e
) ∩ Fm

(by Proposition 4.3). Then, b = β2e
= σ(β)2

e
for some β ∈ L∗. Let

ω = σ(β)/β. So, ω2e
= 1 and 1 = NL/F (ω) = ωσ(ω). So, σ(ω) = ω−1. If

ω = 1, then β ∈ F , so b ∈ F 2e ∩ Fm = Fn. If ω = −1 then σ(β) = −β,
so β = c

√
a for some c ∈ F . Then, b = β2e ∈ a2e−1

F 2e
= a2e−1mF 2e

,
so b ∈ Fm ∩ a2e−1mF 2e

= a2e−1m(Fm ∩ F 2e
) = an/2Fn. If ω 6= ±1, then

ωk =
√
−1 for some integer k, so σ(

√
−1) = (

√
−1)−1 = −

√
−1. But

then,
√
−1 = d

√
a for some d ∈ F ∗, yielding −a = d−2 ∈ F 2, contrary to

our hypothesis. Thus, in every case that can occur, b ∈ Fn ∪ an/2Fn, as
desired. �

Proposition 4.5. Let L = F (
√
−1) and assume ζ ∈ L is a primitive (2e)th

root of unity, e ≥ 2. Then F ∩ L2e−1
= F 2e−1 ∪ −F 2e−1

.

Proof. The proof is by induction on e. The case e = 2 is well-known to
be true. Now assume e ≥ 3. We have F 2e−1 ∪ −F 2e−1 ⊆ F ∩ L2e−1

, since
−1 = ζ2e−1

. Suppose λ2e−1 ∈ F , with λ ∈ L. Then (λ2e−2
)2 ∈ F and this

implies λ2e−2 ∈ F ∪
√
−1F = F ∪ ζ2e−2

F .
First suppose λ2e−2 ∈ F . Then λ2e−2 ∈ F ∩ L2e−2

= F 2e−2 ∪ −F 2e−2
, by

induction. Thus λ2e−2
= ±b2e−2

, b ∈ F , and this implies λ2e−1
= b2

e−1 ∈
F 2e−1

.
On the other hand, if λ2e−2 ∈ ζ2e−2

F , then (λ/ζ)2
e−2 ∈ F . The argument

in the first part implies (λ/ζ)2
e−1 ∈ F 2e−1

. Thus λ2e−1 ∈ −F 2e−1
, since

−1 = ζ2e−1
. �

Remark 4.6. Under the hypotheses of Proposition 4.5, there does not seem
to be a simple description of F ∩ L2e

. As already noted, for e = 1 we have
F ∩ L2 = F 2 ∪−F 2. For e = 2 it is easy to show F ∩ L4 = F 4 ∪−4F 4. For
e ≥ 3, the descriptions become more awkward.

The next proposition characterizes the condition NL/F (α) ∈ Fn and
NL/F (α) ∈ an/2Fn when n is even. In light of Propositions 4.3 and 4.4,
this covers the case t ≡ −1 mod n, except when L = F (

√
−1) and n is even.

Proposition 4.7. Let α ∈ L, α 6= 0.
(1) NL/F (α) ∈ Fn if and only if there exist b ∈ F and β, γ ∈ L such that

α =

{
bn/2NL/F (γ)

/
γ2, if n is even (e0 ≥ 1),

NL/F (β)(n−1)/2β, if n is odd (e0 = 0).
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(2) NL/F (α) ∈ an/2Fn if and only if there exist b ∈ F and γ, δ ∈ L such
that

α =

{
(b
√
a)n/2NL/F (γ)

/
γ2, if n ≡ 0 mod 4 (e0 ≥ 2),

(b
√
a)n/2δ, with NL/F (δ) = −1, if n ≡ 2 mod 4 (e0 = 1).

Proof. The proofs of each of the cases are very similar and straight-forward.
We will give one of the proofs. Suppose NL/F (α) = an/2bn, with n ≡
2 mod 4. Let δ = α

/
(b
√
a)n/2. So, α = (b

√
a)n/2δ and

NL/F (δ) = NL/F (α
/
(b
√
a)n/2) = an/2bn

/
(bn(−a)n/2) = (−1)n/2 = −1.

The converse is easy as are the other cases. Note that for (1), if NL/F (α) =
bn ∈ Fn, then when n is even we can (by Hilbert 90) choose γ so that
αb−n/2 = σ(γ)/γ; when n is odd, choose β = αb−(n−1)/2. For (2), if
NL/F (α) = an/2bn with n ≡ 0 mod 4, then choose γ so that αa−n/4b−n/2 =
σ(γ)/γ. �

Now we assume n = 2e, with e ≥ 3. If t2 ≡ 1 mod 2e, then

t ∈ {±1, 2e−1 ± 1} mod 2e.

The case t ≡ 1 mod 2e is covered in Proposition 4.2 and the case t ≡ −1 mod
2e is covered in Propositions 4.3-4.7, with a small gap in the case L =
F (
√
−1). These cases do not depend on r, where σ(ζ) = ζr. Since r2 ≡

1 mod n, in general, we have r ∈ {±1, 2e−1±1} mod 2e when n = 2e, e ≥ 3.
The next two results characterize the value of r when t ≡ 2e−1 ± 1 mod 2e,
e ≥ 3.

Proposition 4.8. L 6= F (
√
−1) (i.e.,

√
−1 ∈ F ) if and only if r ≡ 1

mod 2e−1. When this occurs, ζ2 ∈ F ; furthermore, ζ ∈ F if and only if
r ≡ 1 mod 2e.

Proof. Recall that r ≡ ±1 mod 2e−1. If r ≡ −1 mod 2e−1, then σ(ζ2) =
(ζ2)−1, so σ(

√
−1) = (

√
−1)−1 = −

√
−1, as

√
−1 = ±(ζ2)2

e−3
. Hence,√

−1 /∈ F , so L = F (
√
−1). On the other hand, if r ≡ 1 mod 2e−1 then

σ(ζ2) = ζ2, so ζ2 ∈ F . Then,
√
−1 = ±(ζ2)2

e−3 ∈ F , so L 6= F (
√
−1).

Clearly, ζ ∈ F if and only if ζ = σ(ζ) = ζr, if and only if r ≡ 1 mod 2e. �

Proposition 4.9. Assume L = F (
√
−1). Then r ≡ −1 mod 2e−1 and the

following statements hold:
(1) The following statements are equivalent:

(a) r ≡ −1 mod 2e.
(b) NL/F (ζ) = 1.
(c) ζ ∈ F · L2.

(2) The following statements are equivalent:
(a) r ≡ 2e−1 − 1 mod 2e.
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(b) NL/F (ζ) = −1.
(c) ζ /∈ F · L2.

Proof. Since L = F (
√
−1), Proposition 4.8 shows that r ≡ −1 mod 2e−1.

If r ≡ −1 mod 2e, then σ(ζ) = ζ−1. This is equivalent to NL/F (ζ) = 1
and hence ζ ∈ F · L2.

If r ≡ 2e−1−1 mod 2e, then σ(ζ) = ζ2e−1−1 = −ζ−1 and this is equivalent
to NL/F (ζ) = −1. Since −1 /∈ F 2, it follows that ζ /∈ F · L2. �

Proposition 4.10. Assume t ≡ 2e−1 + 1 mod 2e, e ≥ 3, and let α ∈ L,
α 6= 0. Suppose σ(ζ) = ζr. Then σ(α) = α2e−1+1β2e

, β ∈ L, if and only if
there exist γ, η ∈ L∗ with η2 ∈ F such that

α = ϕNL/F (γ)η2
/
γ2e−1

,

where

ϕ =

{
1, if r ≡ 1,−1, or 2e−1 − 1 mod 2e,
1 or ζ, if r ≡ 2e−1 + 1 mod 2e.

Proof. Let k = 2e−1. Let

A = {α ∈ L∗ | σ(α) = αk+1β2k for some β ∈ L}

and let

B = {α ∈ L∗ | α = NL/F (γ)η2
/
γ2e−1

where γ, η ∈ L∗ and η2 ∈ F }.

Clearly A and B are groups.
Let α = ϕNL/F (γ)η2

/
γ2e−1

and let β = γ2e−2/
σ(γ)η. Then αβ2 =

ϕγ/σ(γ). We have σ(ϕ) = ϕ2e−1+1 in all cases since the case r ≡ 2e−1 + 1
mod 2e and ϕ = ζ implies σ(ζ) = ζr = ζ2e−1+1. It now follows that

σ(α)/α = (γ/σ(γ))k(σ(ϕ)/ϕ) = ((αβ2)k/ϕk)(σ(ϕ)/ϕ) = (αβ2)k.(1)

This implies that α ∈ A. The case ϕ = 1 shows that B ⊆ A. If r ≡
k+ 1 mod 2k, then ζ ∈ A, so B ∪ ζB ⊆ A. We must show that A = B ∪ ζB
if r ≡ k + 1 mod 2k and A = B otherwise.

Take any α ∈ A; so σ(α) = αk+1β2k, i.e., σ(α)/α = (αβ2)k. Let ω =
NL/F (αβ2). Then, ωk = NL/F (σ(α)/α) = 1, so, since ω is a power of ζ2, we
have ω ∈ L2 ∩ F = F 2 ∪ aF 2.

Let ε = ωk/2. Then ε2 = ωk = 1 and thus ε = ±1. In either case,
ε = ωk/2 ∈ F 2, since ω ∈ F and k/2 is even. Let δ = αβ2. Then,

σ(αδk/2) = αδkσ(δk/2) = αδk/2(NL/F (δ))k/2 = αδk/2ωk/2 = αδk/2ε.

If ε = 1, then αδk/2 ∈ F . From this we conclude NL/F (αδk/2) ∈ F 2,
NL/F (α) ∈ F 2, NL/F (αβ2) ∈ F 2, and finally ω ∈ F 2.
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If ε = −1, then αδk/2 ∈
√
aF . From this we conclude NL/F (αδk/2) ∈

−aF 2, NL/F (α) ∈ −aF 2, NL/F (αβ2) ∈ −aF 2, and finally ω ∈ −aF 2 = aF 2,
since −1 = ε ∈ F 2.

Case 1. Assume ε = 1. Then NL/F (αβ2) = ω ∈ F 2. Therefore αβ2 = bγ2

for some b ∈ F ∗, γ ∈ L∗. Since, b2NL/F (γ)2 = NL/F (bγ2) = NL/F (αβ2) =
ω, we have bkNL/F (γ)k = ωk/2 = ε = 1. This gives

σ(α)/α = (αβ2)k = (bγ2)k = γ2k
/
NL/F (γ)k = γk

/
σ(γ)k.

Thus, σ(αγk) = αγk and we have αγk = d ∈ F .
Since (αβ2)k = (γ/σ(γ))k, we have αβ2 = ω′γ/σ(γ) = ω′c/σ(γ)2, where

(ω′)k = 1 and c = NL/F (γ). Note that α/d = γ−k ∈ L2 and α/c =
ω′

/
(σ(γ)2β2) ∈ L2; so d/c ∈ L2 ∩ F . Let η2 = d/c. Then, α = cη2/γk ∈ B.

Case 2. Now assume ε = −1. Then ω ∈ aF 2 and −1 ∈ F 2. This implies
r ≡ 1 mod k (see Proposition 4.8). Since ω /∈ F 2, it follows ζ /∈ F and
r 6≡ 1 mod 2k. Hence, r ≡ k + 1 mod 2k. Because L = F (ζ) and ζ2 ∈ F
(see Proposition 4.8), we can take a = ζ2. The congruence condition on r
says that σ(ζ) = ζ1+k, showing that ζ ∈ A. Since σ(α)/α = (αβ2)k and
σ(ζ)/ζ = ζk, we have σ(α/ζ)

/
(α/ζ) = ((α/ζ)β2)k. Also, NL/F ((α/ζ)β2) =

ω(−ζ−2) = −a−1ω ∈ F 2. This shows that α/ζ ∈ A, and that Case 1 above
applies to α/ζ. Hence, α/ζ ∈ B, so α ∈ ζB. Since Case 2 occurs for α only
when r ≡ k + 1 mod 2k, the proof is complete. �

Proposition 4.11. Assume t ≡ 2e−1 − 1 mod 2e, e ≥ 3, and let α ∈ L,
α 6= 0. Let σ(ζ) = ζr. Then σ(α) = α2e−1−1β2e

, β ∈ L, if and only if there
exist c ∈ F , γ ∈ L, with NL/F (γ) = ±c, such that α = θc2

e−2+1
/
γ2 where

θ =


1, if L 6= F (

√
−1),

1, if L = F (
√
−1), r ≡ −1 mod 2e,

1 or ζ, if L = F (
√
−1), r ≡ 2e−1 − 1 mod 2e.

Proof. First assume α = θc2
e−2+1

/
γ2 where NL/F (γ) = ±c and θ = 1 or ζ,

as above. We see that θ2e−1
= NL/F (θ) in all three cases since ζ2e−1

=
ζζ2e−1−1 = NL/F (ζ) in the third case. Let β = γ

/
c2

e−3
. Then αβ2 = θc and

NL/F (α) = NL/F (θ)c2
e−1+2

/
c2 = NL/F (θ)c2

e−1
= θ2e−1

c2
e−1

= (αβ2)2
e−1
.

Thus σ(α) = α2e−1−1β2e
.

Now assume σ(α) = α2e−1−1β2e
, β ∈ L. Then NL/F (α) = (αβ2)2

e−1
.

Since

(αβ2)2
e−1 ∈ F ∩ L2e−1

=

{
F 2e−1 ∪ a2e−2

F 2e−1
, if L 6= F (

√
−1),

F 2e−1 ∪ −F 2e−1
, if L = F (

√
−1),
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by Propositions 4.4 and 4.5, there exists c ∈ F such that αβ2 ∈ {cω,
√
acω,

ζcω} where ω2e−1
= 1. Since ω ∈ L2, by replacing β by βω−1/2 we can

assume

αβ2 =

{
c or

√
ac, if L 6= F (

√
−1),

c or ζc, if L = F (
√
−1),

without affecting the equation σ(α) = α2e−1−1β2e
.

If L 6= F (
√
−1), then −1 ∈ F 2 (since −1 ∈ L2) and

NL/F (α) ∈ F 2e−1 ∪ a2e−2
F 2e−1 ⊆ F 2,

since e ≥ 3. If αβ2 =
√
ac, then NL/F (α) ∈ −aF 2 = aF 2 6= F 2, a contra-

diction. Thus αβ2 = c.
If L = F (

√
−1) and αβ2 = ζc, then

NL/F (α) = (αβ2)2
e−1

= (ζc)2
e−1

= −c2e−1 ∈ −F 2 6= F 2.

Then the equation αβ2 = ζc implies NL/F (ζ) /∈ F 2, and thus NL/F (ζ) = −1
and r ≡ 2e−1 − 1 mod 2e by Proposition 4.9.

We conclude αβ2 = θc, where

θ =


1, if L 6= F (

√
−1),

1, if L = F (
√
−1), r ≡ −1 mod 2e,

1 or ζ, if L = F (
√
−1), r ≡ 2e−1 − 1 mod 2e.

Let γ = c2
e−3
β. Then

α = θc/β2 = θc2
e−2+1

/(
c2

e−2
β2

)
= θc2

e−2+1
/
γ2.

Since NL/F (α) = (αβ2)2
e−1

= θ2e−1
c2

e−1
and θ2e−1

= NL/F (θ) in all cases,
we have

NL/F (γ2) = c2
e−1
NL/F (β2) = c2

e−1
NL/F (θc/α) =

c2
e−1
θ2e−1

NL/F (c)
NL/F (α)

= c2.

Thus NL/F (γ) = ±c. �

5. Explicit constructions of Galois extensions M/F .

Proposition 3.1 and Lemma 3.2 let us reduce the problem of describing
explicit constructions of Galois extensions M/F as in Section 3 to the case
n = pe, where p is a prime number. In this section, we treat the case when
p is an odd prime. The case p = 2 will be handled in Section 6. Recall that
r mod n is defined by σ(ζ) = ζr, where ζ is a primitive nth root of unity.
Since j2 ≡ r2 ≡ 1 mod pe, it follows that if p is odd, then j ≡ ±1 mod pe

and r ≡ ±1 mod pe. Since it is no extra trouble, instead of considering only
the case n = pe with p odd, we will consider the more general case where
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n is arbitrary and j ≡ ±1 mod n and r ≡ ±1 mod n. Of course the case
r ≡ 1 mod n occurs if and only if ζ ∈ F . Recall from Proposition 2.5 that
when j ≡ 1 mod n, either G ∼= Z/2nZ or G ∼= Z/nZ × Z/2Z, and when
j ≡ −1 mod n, either G ∼= Dn or G ∼= Q2n.

We saw in Theorem 3.4(3) that when M = L(α1/n) realizes (G, j, l), then
σ(α) = αtβn, where t ≡ jr mod n. So, t ≡ ±1 mod n. By Theorem 3.4(1),
we can assume that t = ±1. To be able to handle the two possible values
of t at the same time, and to bring out the similarities in the two cases, we
consider a modified group action. It will be convenient to use the language
of group cohomology, though everything in this section can be derived easily
without mentioning cohomology.

Let C = Gal(L/F ) = {1, σ}. Let t = ±1. For any multiplicative group Q
on which C acts, we have a “twisted” t-action of C on Q defined by

σ ∗ q = (σ · q)t.
(Here · denotes the original action and ∗ denotes the t-action.) Of course,
when t = 1 the t-action coincides with the original action. Let µn = 〈ζ〉
denote the group of nth roots of unity in L. The short exact sequences

1 → L∗n → L∗ → L∗/L∗n → 1 and 1 → µn → L∗ → L∗n → 1

are compatible with the usual Galois action of Gal(L/F ), but also with the
t-action. They lead to connecting homomorphisms in cohomology (using the
t-action):

f : H0(C,L∗/L∗n) → H1(C,L∗n) and g : H1(C,L∗n) → H2(C, µn).

We describe the maps f and g: First, H0(C,L∗/L∗n) consists of the
elements [α] = αL∗n ∈ L∗/L∗n stable under the t-action of C, i.e., those [α]
such that σ ∗ [α] = [α], i.e.,

σ ∗ α = αγn for γ ∈ L∗, i.e., σ(α) = αtβn, where β = γt.

The connecting map f takes the class of the 0-cocycle [α] to the class of the
1-cocycle cγn : C → L∗n mapping 1 7→ 1 and σ 7→ γn. Let Nt denote the
“t-norm,” given by

Nt(x) = xσ ∗ x = xσ(x)t.
Note that by applying Nt to the equation σ∗α = αγn we find that Nt(γn) =
1. Let

ω = Nt(γ) = γ σ(γ)t = βtσ(β) ∈ µn.
The map g takes the class of cγn to the class of the 2-cocycle hω: C × C → µn
given by hω(σ, σ) = Nt(γ) = ω and hω(1, 1) = hω(σ, 1) = hω(1, σ) = 1.
Thus, g ◦ f [α] = [hω] ∈ H2(C, µn).

Now, the t-action of C on µn is determined by σ ∗ ζ = σ(ζ)t = ζrt =
ζj , where j = rt. The group extension of C by µn determined by the 2-
cocycle hω is the group G = µnx1 ∪ µnxσ, with the multiplication given
by (cf. [R], p. 154) (ζixρ)(ζkxψ) = ζi(ρ ∗ ζk)hω(ρ, ψ)xρψ. If ω = ζ l, then
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G is the group of order 2n generated by ζ, xσ with the relations ζn = 1,
xσζx

−1
σ = σ ∗ ζ = ζj , and x2

σ = ζ l. That is, G ∼= (G, j, l). Observe also
that for this j and l, we have (G, j, l) ∼= Gal(L(α1/n)/F ), by Theorem 3.4(3)
(assuming [L(α1/n) : L] = n). Now, G is the trivial group extension (i.e.,
a semidirect product, i.e., Z/nZ × Z/2Z when j ≡ 1 mod n and Dn when
j ≡ −1 mod n) just when [hω] = 0 ∈ H2(C, µn). This occurs just when
ω is the t-norm of an element of µn (cf. [R], Th. 10.35, p. 297), i.e., just
when ω = ζ l ∈ 〈Nt(ζ)〉 = 〈ζj+1〉. Note in any case that since ω = Nt(γ),
ω = σ ∗ ω = ωj . When j ≡ −1 mod n this says that ω = ±1, and G is
the trivial extension just when ω = 1. When j ≡ 1 mod n, G is the trivial
extension just when ω ∈ 〈ζ2〉. When n is odd, we have H2(C, µn) = 0 as
gcd(|C|, |µn|) = 1, so then G is always the trivial extension.

When t = 1 we can say a little more. Then, the t-action is the usual C-
action. Since H1(C,L∗) = 0 (Hilbert 90), the exact sequence H1(C,L∗) →
H1(C,L∗n)

g→ H2(C, µn) shows that the map g is injective. But, we also

have the exact sequence H0(C,L∗) → H1(C,L∗/L∗n)
f→ H1(C,L∗n). Thus,

[α] ∈ H0(C,L∗/L∗n) determines the trivial group extension ⇔ g ◦ f [α] = 0
in H2(C, µn) ⇔ f [α] = 0 ⇔ [α] ∈ im

(
H0(C,L∗) → H0(C,L∗/L∗n)

)
=

F ∗L∗n/L∗n ⇔ α ∈ F ∗L∗n. When n is odd, this always holds because then
H2(C, µn) = 0.

The following propositions summarize what the preceding discussion has
shown.

Proposition 5.1. Assume that M/F is a Galois extension that realizes
(G, j, l). Thus σ(α) = αtβn, with α, β ∈ L. Assume j ≡ 1 mod n and
r ≡ ±1 mod n. Then, t ≡ r mod n. Assume t = ±1 (and adjust β
accordingly). Then, βtσ(β) is an nth root of unity. Furthermore:

(1) The following statements are equivalent:
(a) Gal(M/F ) ∼= Z/2nZ.
(b) The order of βtσ(β) is divisible by 2e0.
(c) βtσ(β) ∈ ζ〈ζ2〉.
(d) n is odd or l is odd.
If n is odd, then (a)-(d) always hold. If n is even, then (a)-(d) are
equivalent to the following statement:
(e) (βtσ(β))n/2 = −1.

(2) The following statements are equivalent:
(a) Gal(M/F ) ∼= Z/nZ× Z/2Z.
(b) If n is even, then the order of βtσ(β) is not divisible by 2e0.
(c) βtσ(β) ∈ 〈ζ2〉.
(d) n is odd or l is even.
If r ≡ 1 mod n (i.e., ζ ∈ F ), so t = 1, then (a)-(d) are equivalent to
the following statement:
(e) α ∈ F · Ln.
If n is odd, then (a)-(e) always hold.
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Proposition 5.2. Assume M/F is a Galois extension that realizes (G, j, l)
with j ≡ −1 mod n and r ≡ 1 mod n. Then, t ≡ −1 mod n, and we assume
t = −1. Suppose σ(α) = αtβn with β ∈ L.

(1) The following statements are equivalent:
(a) Gal(M/F ) ∼= Dn.
(b) l ≡ 0 mod n.
(c) NL/F (α) ∈ Fn.
(d) β ∈ F .
If n is odd, then (a)-(d) always hold.

(2) Assume n is even (and hence charF 6= 2). Let L = F (
√
a). Then

β ∈ F ∪
√
aF and NL/F (α) ∈ Fn ∪ an/2Fn. In addition, the following

statements are equivalent:
(a) Gal(M/F ) ∼= Q2n.
(b) l ≡ n/2 mod n.
(c) NL/F (α) ∈ an/2Fn.
(d) β ∈

√
aF .

Proof. In addition to the observations preceding Proposition 5.1, note the
following: Because t = −1, we have σ(α) = α−1βn, so NL/F (α) = βn. Since
j ≡ −1 mod n, β/σ(β) = Nt(β) ∈ {±1} ∩ µn. So σ(β) = ±β. The Galois
group is Dn just when σ(β) = β, i.e., β ∈ F ; then NL/F (α) = βn ∈ Fn.
We have Gal(M/F ) ∼= Q2n just when σ(β) = −β, i.e., β ∈

√
aF ; then n is

necessarily even since −1 ∈ µn, and NL/F (α) ∈ an/2Fn 6= Fn. �

Proposition 5.3. Assume M/F is a Galois extension that realizes (G, j, l)
with j ≡ −1 mod n and r ≡ −1 mod n. Then, we may assume t = 1.
Suppose σ(α) = αtβn with β ∈ L.

(1) The following statements are equivalent:
(a) Gal(M/F ) ∼= Dn.
(b) l ≡ 0 mod n.
(c) NL/F (β) = 1.
(d) α ∈ F · Ln.
If n is odd, then (a)-(d) always hold.

(2) The following statements are equivalent:
(a) Gal(M/F ) ∼= Q2n.
(b) l ≡ n/2 mod n.
(c) NL/F (β) = −1.

6. The case when n = 2e with e ≥ 3.

We now study the problem of constructing Galois extensions M/F , which
were considered in Section 3, when n = 2e with e ≥ 1. We have L = F (

√
a),

a ∈ F , since charF 6= 2. We continue to assume that ζ ∈ L is a primitive
(2e)th root of unity and that σ(ζ) = ζr. We shall assume e ≥ 3 since the
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cases when e ≤ 2 are covered in Propositions 5.1-5.3 when j ≡ ±1 mod n
and r ≡ ±1 mod n. If M/F is a Galois extension that realizes (G, j, l)
with n = 2e and e ≥ 3, then by Theorem 3.4(3), σ(α) = αtβn with
β ∈ L, t ≡ jr mod 2e and t, j, r ∈ {1,−1, 2e−1 + 1, 2e−1 − 1} mod 2e. By
Theorem 3.4(1), we may assume that t ∈ {1,−1, 2e−1 + 1, 2e−1 − 1}. If
j ≡ 2e−1 + 1 or 2e−1 − 1 mod 2e, then the group Gal(M/F ) is uniquely de-
termined up to isomorphism, by Lemma 2.4. Therefore, we shall focus only
on values of t and r that give j ≡ 1 or − 1 mod 2e. So, if t ∈ {1,−1},
then r ≡ 1 or −1 mod 2e since t ≡ jr mod 2e. These cases have al-
ready been discussed in §5. Thus, we can assume in this section that
t ∈ {2e−1 + 1, 2e−1 − 1}. The interesting cases are when r ≡ 2e−1 + 1 or
2e−1 − 1 mod 2e.

Proposition 6.1. Suppose M = L(α1/2e
) is a Galois extension of F of

degree 2e+1 (e ≥ 3) that realizes (G, j, l) with t = 2e−1 + 1, i.e., σ(α) =
α2e−1+1β2e

for some β ∈ L. So, α = ϕNL/F (γ)η2
/
γ2e−1

, where γ ∈ L∗,
η ∈ F ∪

√
aF and

ϕ =

{
1, if r ≡ 1,−1, or 2e−1 − 1 mod 2e,
1 or ζ, if r ≡ 2e−1 + 1 mod 2e.

(1) Suppose r ≡ 2e−1 + 1 mod 2e (so j ≡ 1 mod 2e). Then,
(a) Gal(M/F ) ∼= Z/2e+1Z if and only if ϕ = ζ, if and only if NL/F (α) ∈

aF 2.
(b) Gal(M/F ) ∼= Z/2eZ × Z/2Z if and only if ϕ = 1, if and only if

NL/F (α) ∈ F 2.
(2) Suppose r ≡ 2e−1 − 1 mod 2e (so j ≡ −1 mod 2e). Then,

(a) Gal(M/F ) ∼= D2e if and only if η ∈ F .
(b) Gal(M/F ) ∼= Q2e+1 if and only if η ∈

√
aF .

Proof. The description of α is given in Proposition 4.10. We have t2−1
2e =

2e−2 + 1 and α = ϕNL/F (γ)η2
/
γ2e−1

. Equation (1) in the proof of Proposi-
tion 4.10 shows that σ(α)/α=(α(β′)2)2

e−1
, where β′=γ2e−2

/(σ(γ)η). Thus,
we may let β = β′ here. Let ρ = α(t2−1)/2e

βtσ(β). By Theorem 3.4(3),
ρ = ζ l1 , where l1 ≡ l mod gcd(j + 1, 2e). Now, αβ2 = ϕγ/σ(γ), which yields

ρ = (αβ2)2
e−2

αNL/F (β) = ϕ2e−2+1η/σ(η).

Note that since η2 ∈ F , we have η/σ(η) = ±1 ∈ 〈ζ2〉. Also, the formula for
α shows that NL/F (α) ∈ NL/F (ϕ)F 2.

For (1), suppose r ≡ 2e−1 + 1 mod 2e. Then, as t ≡ jr mod 2e, we have
j ≡ 1 mod 2e. So, ρ = ϕ2e−2+1η/σ(η) ∈ ϕ〈ζ2〉. We have Gal(M/F ) ∼=
Z/2eZ× Z/2Z just when l is even, which (since ϕ = 1 or ζ) occurs just
when ϕ = 1. In this case, NL/F (α) ∈ F 2. The only other possibility
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is that Gal(M/F ) ∼= Z/2e+1Z, which occurs just when l is odd, so just
when ϕ = ζ. Since σ(ζ) = −ζ and −1 ∈ F 2 by Proposition 4.8, we have
ζ2F 2 = aF 2 = −aF 2. Thus, when ϕ = ζ we have NL/F (α) ∈ NL/F (ϕ)F 2 =
−ζ2F 2 = aF 2 6= F 2.

For (2), suppose r ≡ 2e−1 − 1 mod 2e. Then, j ≡ −1 mod 2e and ϕ = 1,
so ρ = η/σ(η) = ±1. We have Gal(M/F ) ∼= D2e just when l ≡ 0 mod 2e,
which occurs just when ρ = 1; this occurs just when σ(η) = η, i.e., η ∈ F .
The only other possibility is that Gal(M/F ) ∼= Q2e+1 , which occurs just
when l ≡ 2e−1 mod 2e. This holds just when ρ = −1, i.e., σ(η) = −η, i.e.,
η ∈

√
aF . �

Proposition 6.2. Suppose M = L(α1/2e
) is a Galois extension of F of

degree 2e+1 (e ≥ 3) that realizes (G, j, l) with t = 2e−1 − 1, i.e., σ(α) =
α2e−1−1β2e

. So, α = θc2
e−2+1

/
γ2 where γ ∈ L∗, NL/F (γ) = ±c, and

θ =

{
1, if r ≡ 1,−1, or 2e−1 + 1 mod 2e,
1 or ζ, if r ≡ 2e−1 − 1 mod 2e.

(1) Suppose r ≡ 2e−1 − 1 mod 2e (so j ≡ 1 mod 2e). Then,
(a) Gal(M/F ) ∼= Z/2e+1Z if and only if θ = ζ, if and only if NL/F (α) ∈

−F 2.
(b) Gal(M/F ) ∼= Z/2eZ × Z/2Z if and only if θ = 1, if and only if

NL/F (α) ∈ F 2.
(2) Suppose r ≡ 2e−1 + 1 mod 2e (so j ≡ −1 mod 2e). Then,

(a) Gal(M/F ) ∼= D2e if and only if NL/F (γ) = c.
(b) Gal(M/F ) ∼= Q2e+1 if and only if NL/F (γ) = −c.

Proof. The proof is very similar to the proof of Proposition 6.1. The de-
scription of α is given in Proposition 4.11. Since α = θc2

e−2+1
/
γ2, the first

paragraph of the proof of Proposition 4.11 shows that we can take β =
γ
/
c2

e−3
. Let ρ = α(t2−1)/2e

βtσ(β) = ζ l1 , where l1 ≡ l mod gcd(j + 1, 2e).
Since (t2 − 1)/2e = 2e−2 − 1 and αβ2 = θc, we have

ρ = (αβ2)2
e−2

σ(β)/(αβ) = θ2e−2−1NL/F (γ)/c.

The rest of the proof is left to the reader. �

In Propositions 6.1 and 6.2 it was assumed that [L(α1/2e
) : L] = 2e. The

next three results will allow us to identify when this occurs.

Lemma 6.3. If r ≡ 2e−1 ± 1 mod 2e, e ≥ 3, and c ∈ F ∗, then ζc /∈ L2.

Proof. First assume that r ≡ 2e−1 + 1 mod 2e. If ζc ∈ L2, then NL/F (ζ) ∈
F 2, but we saw in the proof of Proposition 6.1 that NL/F (ζ) ∈ aF 2 6= F 2.
Hence, ζc /∈ L2.
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Now assume that r ≡ 2e−1 − 1 mod 2e. Proposition 4.8 implies that
L = F (

√
−1). Now Proposition 4.9(2) implies that ζ /∈ F · L2 and thus

ζc /∈ L2. �

Corollary 6.4. Let α = ϕNL/F (γ)η2
/
γ2e−1

as in Propositions 4.10 and 6.1.
Then [L(α1/2e

) : L] = 2e if and only if α /∈ L2, which holds if and only if
ϕ = ζ or NL/F (γ) /∈ F ∩ L2 = F 2 ∪ aF 2.

Proof. Since −1 ∈ L2, it is standard that [L(α1/2e
) : L] = 2e if and only if

α /∈ L2, see, e.g., [L], Theorem 9.1, p. 297. The formula for α shows that
this is equivalent to: ϕNL/F (γ) /∈ L2. This holds if ϕ = ζ by Lemma 6.3,
since then r ≡ 2e−1 + 1 mod 2e; if ϕ = 1, this holds just when NL/F (γ) /∈
L2 ∩ F . �

Corollary 6.5. Let α = θc2
e−2+1/γ2 as in Propositions 4.11 and 6.2. Then,

[L(α1/2e
) : L] = 2e if and only if α /∈ L2, which holds if and only if θ = ζ or

c /∈ F ∩ L2 = F 2 ∪ aF 2.

Proof. The formula for α shows that α /∈ L2 just when θc /∈ L2. The rest of
the proof is analogous to the proof of Corollary 6.4. �
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