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Let n be any integer with n > 1, and let FF C L be fields
such that [L : F] = 2, L is Galois over F, and L contains a
primitive n* root of unity ¢. For a cyclic Galois extension
M = L(a'/™) of L of degree n such that M is Galois over F,
we determine, in terms of the action of Gal(L/F) on « and
¢, what group occurs as Gal(M/F'). The general case reduces
to that where n = p®, with p prime. For n = p®, we give an
explicit parametrization of those a that lead to each possible
group Gal(M/F).

1. Introduction.

Let F' C L be fields with [L : F] = 2 and L Galois over F, and let n > 1
be a positive integer. Assume L contains a primitive n‘”* root of unity. Let
M be a cyclic Galois field extension of L of degree n. So M = L(a'/™) for
some o € L*, by Kummer theory. Let Gal(L/F) = {o,1}. It is easy to
verify that M is Galois over F' just when o(a) = a!3" for some 3 € L* with
t> = 1 mod n (that is, the cyclic group (aL*") C L*/L*" is stable under
the action of Gal(L/F)). The goal of this paper is to describe explicitly in
terms of «, (3, and ¢t what group arises for Gal(M/F').

To do this, we first classify in §2 the possible groups that can arise as
Gal(M/F). These are the groups of order 2n containing a cyclic subgroup
of order n. There are too many of them for arbitrary n (the number is given
in Proposition 2.7). We show in §3 that the general question of determining
Gal(M/F) can be reduced to the same question when n is a prime power.
When n = p® with p an odd prime, there are just two groups: Cyclic and
dihedral. When n = 2° with e > 3 there are six groups: One cyclic, four
semidirect products, and a generalized quaternion group. We give in Theo-
rem 3.4 a general description of the group Gal(M/F) in terms of «, (3, and
t. Since we assume that the group u, of nt* roots of unity lies in L, but not
necessarily in F', we must take into account the action of Gal(L/F) on p,.
In order to make the determination of Gal(M/F) more explicit, we obtain
in §4 precise descriptions of the « satisfying o(a) = o!". This allows us
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in §85 and 6 to pin down in detail the circumstances under which a given
group arises.

There has been much work over the years on the realization of groups as
Galois groups. This is still a very active topic of research (see, e.g., [V] and
[MM]). For larger groups the question has often been whether the group
can be realized at all over a given field. For small groups, there are criteria
for exactly when the group appears as a Galois extension, see, e.g., [GSS].
For nonsimple groups one approach has been to examine the embedding
problem: Given a Galois field extension L/F, when can we find a field
M D L Galois over F' with Gal(M/F') a given group that has Gal(L/F) as
a homomorphic image. Most often in this approach M/L is of prime degree
(as in [K] and [GSS]). The work here can be thought of as analyzing an
extension problem, but now with [L : F| as small as possible, and [M : L]
arbitrarily large, but M cyclic Galois over L.

In the papers by Damey et. al. [Dy], [D2], [DP] and [DM], there is
an examination of when dihedral and quaternion groups of 2-power order
appear as Galois groups; the 2-power case of Proposition 5.2 below appears
as Prop. 1 and Cor. 1 in [D;]. The focus in those papers is primarily on
when a quaternion group can occur as a Galois group, particularly over an
algebraic number field. Also, the paper by Jensen, [J], especially pp. 447-
449, considers all four nonabelian groups of order 2¢*! containing a cyclic
subgroup of order 2¢; but, while Jensen is primarily interested in when
the groups of order 2¢ are realizable over a given base field, we give a full
classification of the fields M DO L that yield these groups as Gal(M/F),
assuming L contains all 2" roots of unity.

2. Groups of order 2n that contain a cyclic subgroup of order n.

In this section we classify groups of order 2n that contain a cyclic subgroup
of order n. When n is a power of 2, this classification is well-known. A good
reference for this case is [G], pp. 191-193. The general case of describing
finite metacyclic groups has been considered in [B].

Proposition 2.1. Let G be a group of order 2n that contains a cyclic sub-
group of order n. Then there exist 7,0 € G and nonnegative integers j,l
such that G = (1,0) and:

(1) |r| =n, o ¢ (1),

(2) oo™t =17, 0% =1,

(3) j2=1modn and I(j — 1) = 0 mod n.

Proof. Let 7 be an element of order n and let o € G, but o ¢ (7). Then
G = (r,0) and (1) <« G. Thus o0~ ! = 77 for some j > 0, and 02 € (1)
since G/(r) has order 2. Let 02 = 7!, where 0 <1 <n — 1. Since

2ro—2 = (o107 1) = 7%

T=0°T0 L

=o(oro HNo =071l
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it follows j2 = 1 mod n. Since

=02 =0orlot = (o107 N = (7)) = 77,

it follows jI =l mod n and thus I(j — 1) = 0 mod n. O

Definition 2.2. Let (G,j,l) denote a group of order 2n as described in
Proposition 2.1. We always assume that j and [ satisfy the conditions in
Proposition 2.1(3).

For each ordered pair (j,!) mod n satisfying Condition (3) of Proposi-
tion 2.1, there does in fact exist a group G as in Proposition 2.1 with such
an ordered pair (j,1). A quick construction of such a group is to take any
field k containing a primitive n‘* root of unity ¢,, and let G’ be the subgroup

of GLy(k) generated by 7 = (Cg 27- ) and o = (Col (1)>

The groups (G, j,1) are clearly determined up to isomorphism by j and
I mod n, but different values of [ can yield isomorphic groups. In the rest of
this section, we will determine the isomorphism classes of the (G, j,1). Let
us note immediately the obvious isomorphisms arising from different choices

of generators of (G, 7,1).

Remark 2.3. If for the group (G, j,1) described in Proposition 2.1 we re-
place the generator o by o/ = o7*, for any integer k, then o'7(¢’)~! = 77
and (0)? = 7V, where ' = k(j + 1) + [. Of course also, 7' = 75"t for any
integer s. Hence, (G, j,1) & (G, j,l') whenever I' = k(j + 1) + sn + [, ie.,
whenever ' = [ mod ged(j + 1,n). On the other hand, if we take another
generator 7 of (), say 7 = (7)%, where gcd(u,n) = 1, then 070! = (7)/
and 02 = (7)!, where [ = ul. So, (G,j,1) = (G, ,1). But this is an isomor-
phism we already have, since in fact [ = [ mod ged(j 4+ 1,n). To see this
congruence, let d = ged(j+1,n). Then, d|n|(j—1)land d|(j+1)|(j+1)I,
sod |2 If uis odd, then d|(u— 1)l = [ — L. If u is even, then n must be
odd, so d is odd. Then d |2l implies d|; likewise, d |1, so again d | (I=1).

Let n = pi°pi* - - p&» be the prime decomposition of n where 2 = py <
P <o < pm,m>0,e >0,and e; > 1 for all ¢ > 1. Then, the Chinese
Remainder Theorem shows,

72 = 1 mod 2

2 _ . .
= 1 mod n if and only if
J ! Y {nglmodp?, 1<i<m.

If p; is an odd prime, then j — 1 or j + 1 must be a unit of the ring Z/p;*Z,
o)

j% =1 mod p{* if and only if j = +1 mod pf".
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For pg = 2, since j — 1 or j + 1 is not a multiple of 4,
j =1mod 2, ifeg =1,
42 = 1 mod 2% if and only if { j = 1,3 mod 4, if eg = 2,
j==+1,2°0"1 £ 1mod 2% if ¢y > 3.

Now, fix j with j2 = 1 mod n. To see how many different groups (G, 7,1)
might exist for different choices of [, let A = {l € Z|lj =l modn} and
B={leZ| ged(j +1,n)|l}.

Lemma 2.4. With the notation above:

: , . .
(1) BCAand |A/B| =% nis cvenand j= £l mod 2%,
1, otherwise.

(2) The number of isomorphism classes of groups (G, j,1) with given j (and

n) is at most |A/B].

Proof. (1) If | € B, then | = k(j + 1) mod n, for some k € Z. Then,
I(j—1)=k(j+1)(j—1)=0modn,sol e A. Thus, B C A.

Let di = ged(j — 1,n) and dy = ged(y + 1,n). Then | € A &
n|l(j = 1) & n/di|1(j —1)/dy < n/di|l. But, | € B just when ds|l.
So, A/B = (n/d\)Z/dsZ, and |A/B| = dida/n. For p; an odd prime, we
n | (72 — 1), but p; cannot divide both j — 1 and j + 1. Hence, the
power of p; in one of di,dy is p;' and the power of p; in the other is p?.
So, pi 1 (did2/n). Thus, if n is odd, we have dida/n = 1. If n is even and
j = £1 mod 2°, then the power of 2 in one of dy,dy is 2°°, and the power
of 2 in the other is 2; thus dida/n = 2. The only remaining case is eg > 3
and j = 2°0~1 4+ 1. In this case, the power of 2 in one of dy,dy is 207!, and
in the other is 2'; then dydy/n = 1.

(2) is clear from Proposition 2.1 and Remark 2.3. O

Proposition 2.5. Let G = (G, j,1).
(1) G is abelian if and only if 7 = 1 mod n. Suppose this occurs.
(a) If n is odd, then G = Z/nZ X /27 = 7/2nZ.
(b) If n is even, then

~ {Z/nZ X Z/27, ifl is even,

have pf

- | Z/2nZ, if 1 is odd.

(2) Suppose j = —1 mod n.
(a) If n is odd, then | = 0 mod n and G = D, the dihedral group of
order 2mn.
(b) If n is even, then n/2 |l and

G~ (Ga_LO) gDny lflEOmod n,
" (G, -1,1/2) = Qn, ifl=n/2mod n,

where Q,, is the generalized quaternion group of order 2n.
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Proof. (1) G is abelian just when 7 and o commute, which occurs if and only
if 7 = 1 mod n. Assume this holds. If n is odd, there is only one abelian
group of order 2n containing a cyclic group of order n. Now, suppose n is
even. If [ is even, then Remark 2.3 shows that G = (G, 5,0) = Z/nZ x Z/2Z;
if [ is odd, then G = (G, j, 1), which is cyclic, as o then has order 2n.

(2) Assume j = —1 mod n. The condition Ij = [ mod n of Proposition 2.1
forcesn|2l. If n|l, then G = (G, —1,0) = D,,. This always holds if n is odd.
But, if n is even, we have n/2|l. So, when n { [, we have | = n/2 mod n,
and Remark 2.3 shows that G = (G,—1,n/2) = @,. (Our terminology
in calling this a generalized quaternion group follows [CRJ, p. 23. Unlike
some authors, we do not require a generalized quaternion group to be a
2-group.) O

We are going to show how the study of the groups described in Propo-
sition 2.1 can be reduced to the case where n is a prime power. But let
us first observe the (well-known) classification of these groups in the prime
power situation. If n = p®, where p is an odd prime, then j = +1 mod n,
so the two possible groups (G, j,1) are described in Proposition 2.5; one is
abelian, the other is dihedral. The classification for n a power of 2 is given
in [G], Th. 4.3, p. 191 and Th. 4.4, p. 193: If n = 2 with ey < 2, then
again j = +1 mod n, and the possibilities for (G, j,[) are given in Proposi-
tion 2.5. If n = 2°0 with eg > 3, there are two further groups besides the four
given in Proposition 2.5. There is one group (and only one, by Lemma 2.4)
with j = 2°0~! 4 1 mod 2¢, which we write (G, 2°~! 4+ 1,0) and is denoted
M, +1(2) in [G]. There is also exactly one group with j = 2¢0~1 —1 mod 2,
which we write (G,2%~! —1,0) and Gorenstein calls the semidihedral group
Seq+1. He proves in [G], Th. 4.3(iii), p. 191 that no two of the four non-
abelian groups with n = 2°° are isomorphic. This clearly applies to the two
abelian groups, as well.

For any group G = (G, j,1) = (7,0) as in Proposition 2.1, let H; be the
unique subgroup of (1) of order n/pfi, 0 < i< m. Then, each H; < G
and |G/H;| = 2p;". Furthermore, if we let 7 = 7H; and & = 0H;, then
G/H; = (7,5), where (7) is a cyclic subgroup of order p{*, 775 ' = 7/,
72 =7, and 7 ¢ (7). Thus, G/H; is a group of the type described in
Proposition 2.1, with n replaced by n’ = p;*. Note that every element of G
of odd order has trivial image in G/(7), so must lie in (7). Thus, Hy consists
of all the elements of G of odd order.

Theorem 2.6. Suppose (G, (1), 0,j,1) and (G, (7"),c", j',1') are each groups
of order 2n as in Proposition 2.1 and with all the previous notation. Assume
(3,0) and (3',1') satisfy Condition (3) in Proposition 2.1. Let H; and H],
0 < i < m, be the subgroups of (t) and (7') defined before. Then the
following statements are equivalent:
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- Q@

>~

(

(2) 4 modn and I =1’ mod ged(j + 1,n).
( G/H G'/H!, 0 <i<m.

(4) j = j' mod n/2% and G/Hy = G'/Hj.

Proof. (2) = (1): This was done in Remark 2.3.

(1) = (4): Let oo G — G’ be an isomorphism. Since Hy (resp. H|)) consists
of all the elements of G (resp. G') of odd order, a(Hy) = H{. Therefore,
« induces an isomorphism G/Hy = G'/H|. Let h be any generator of
Hy, and let ' = a(h), which generates H{. The conjugacy class of h in
G is {h, b/}, which must be mapped bijectively to the conjugacy class
{W, (W)} of W in G'. If these classes contain only one element each,
then j = 1 = j/ mod n/2%. If the classes contain two elements each, then
(W) = a(h?) = a(h)? = (K')?, so again j = j' mod n,/2°.

(3) & (4): For i > 1, since ‘<T>/Hz‘ is a power of an odd prime, we
have G/H; is either abelian or dihedral. The first case occurs just when
J = 1 mod p{*, and the second just when j = —1 mod p;*. Thus, G/H; =
G/H] if and only if j = j' mod p;*. By the Chinese Remainder Theorem,
this occurs for all 4 > 1 if and only if j = j'mod n/2°.

(3) = (2): As observed above, G/H; is a group of type (j,l) with n
replaced by pi’. For p; odd, we noted in the previous paragraph that
G/H; = G'/H| implies j = j' mod p;*; then Lemma 2.4 shows that the
conditions {j = [ and I'j’ = I’ mod p;* from Proposition 2.1 imply that
| = U'mod ged(j + 1,p;*). For i = 0, [G], Th. 4.3(iii), p. 191, together
with Proposition 2.5, shows that G/Hy = G'/H, implies j = j’ mod 2
and that if j = 41, then [ and [’ must lie in the same congruence class
modged(j + 1,2°°). (There are just two possible congruence classes, by
Lemma 2.4.) When ey > 3 and j = 2°~! £ 1 mod 2%, Lemma 2.4 shows
that the conditions 7 = 5/, Ij = [, and I'j/ = I’ mod 2 already imply
[ = I’ mod ged(j + 1,2%). Thus, the Chinese Remainder Theorem yields
that j = j' mod n and [ =1’ mod ged(j + 1,n), as desired. O

1)
2)
3)
4)

We can now count the number of isomorphism classes of groups of order
2n containing a cyclic subgroup of order n. Let n = 2°0p{' ... p&m . as usual.
Let G be any such group, let Hy be its unique (cyclic) subgroup of order
n/2°, and let S be any 2-Sylow subgroup of G. Since Hy < G, }HOOS} =1
(as ged(|Hol, |S]) = 1), and G = HoS (as |G| = |Ho||S|/|HoN S|), G is the
semidirect product of Hy by S. (We thank R. Guralnick for pointing out this
semidirect product decomposition to us.) So, G is determined by Hy, S, and
the map v: S — Aut(Hy), s — conjugation by s. The image of v consists
of the identity map and the j* power map. Theorem 2.6(4) shows that G
is determined up to isomorphism by the isomorphism class of S (= G/Hy)
and by j mod n/2°. By the results in [G] quoted above, the number of
possible choices of S is 2% if 0 < ey < 2 and is 6 if ¢g > 3. The number of
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possible choices of j mod n/2% is 2" since we must have j = £1 mod p;* for
1 < i < m. Every such choice of S and j yields a semidirect product that is
a group of the desired type. (For, we obtain a cyclic group of order n in the
semidirect product as the direct product of Hy with a cyclic subgroup of S
of order 2 lying in ker(y).) Theorem 2.6 shows that different isomorphism
classes of S or different choices of j mod n/2% yield nonisomorphic groups.
Thus, we have proved:

Proposition 2.7. Let n have prime factorization n = 2°0p{* ---p¢m. The

number of isomorphism classes of groups G of order 2n containing a cyclic

| 2e0tm s if 0 < e < 2,

subgroup of order n is ,
6-2"™, ifeg > 3.

3. Galois extensions with group G.

Let F be a field with char F' { n and let L/F be a Galois quadratic extension.
That is, if 2 4 n and char F' = 2, assume that the quadratic extension L/F
is also a separable extension.

Let G be a group of order 2n that contains a cyclic subgroup of order n.
We shall continue to use the notation from Section 2.

In this section, we shall determine when there exists a cyclic extension
M/ L of degree n such that M/F is a Galois extension with Gal(M/F) = G.
For most of this section, we shall assume that L contains a primitive n'”
root of unity.

Proposition 3.1. Let G be a group of order 2n as in Proposition 2.1. Let
(1) be a cyclic subgroup of G of order n and let H;, 0 < i < m, be the sub-
groups of (T) defined in Section 2. Let L/F be a Galois quadratic extension.
Then the following statements are equivalent:

(1) L/F extends to a Galois extension M/F with Gal(M/F) = G.
(2) For each i, 0 <i<m, L/F extends to a Galois extension M;/F with
Gal(M;/F) =2 G/H; and Gal(M;/L) = (T)/H,.

Proof. 1t is clear that (1) implies (2) by letting M; be the fixed field of H;
and recalling that H; < G.

Now assume (2) holds. Then M;/L is a cyclic Galois extension with
[M; : L] = pi*, since [(1) : H;] = p5*. Let M = My---My,. Then M/L
is a cyclic Galois extension with [M : L] = pg®---pGr = n and M/F is
a Galois extension since M;/F is a Galois extension, 0 < i < m. Let

G' = Gal(M/F), (') = Gal(M/L), and H, = Gal(M/M;). Then G/H; =
Gal(M;/F) = G'/H[, 0 <i < m. Theorem 2.6 implies G = G'. O

Let ¢ denote a primitive n'® root of unity. From here on, assume that
¢ € L. Let « € L* and let k | n. Let L(a!/*) denote a field obtained by
adjoining to L a root of the equation z¥ — o = 0. Since char L { k and L
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contains a primitive k" root of unity, it follows L(a!/*) is a splitting field
of 2% — a over L and hence L(a'/*)/L is a Galois extension. In particular,
the field L(a'/*) does not depend on which k™ root of a is chosen. If
[L(a!/*) : L] = k, then Gal(L(a'/*)/L) = Z/kZ. However, when we write
al/k we will assume some specified k' root of o has been selected and fixed
throughout the discussion. Then o*/* will mean (a'/*)* for the given choice
of al/k,

Lemma 3.2. Let a,3 € L. Let r,s be positive integers with ged(r,s) =1
and assume rs | n. Then L(a'/", 3Y%) = L(x"/("9)) where v = o*3".

Proof. We have L(~'/("9)) C L(a'/", 8'/%) since
,yl/(rs) — al/rﬁl/s e L(Oél/T,,Bl/s).
Choose a, b € Z such that ar + bs = 1. Then

al/r _ a(a'r’-l—bs)/r — aaabs/r _ aaﬁ—babs/rﬁb
= aa/B*b(as/BT)b/T _ CtaIbe,yb/r _ aaﬂfb(,yl/(rs))bs c L(’yl/(rs)),
Similarly, /¢ € L('/(9). 0

Let Gal(L/F) = {1,0}. Since ¢ € L is a primitive n'” root of unity, we
have

a(¢) =¢",
where ged(r,n) = 1. This equation defines r (mod n), which will be a
significant invariant from here on. Note that 72 = 1 mod n since ¢ = 0%(¢) =
(¢ = ¢
Definition 3.3. If L C M, we will say that M/F realizes (G, j, 1) ift M/F
is a Galois extension and Gal(M/F) = (r,0), where Gal(M/L) = (1), o
denotes an extension of o € Gal(L/F) to an automorphism in Gal(M/F),
oro~ ! =17, and 0% = 7\,
Theorem 3.4. Assume( € L. Let M = L(a'/™), where a € L, and assume
[M : L] =n. Then the following statements hold:
(1) M/F is a Galois extension if and only if o(a) = o'B", where 3 € L,
ged(t,n) = 1. When this occurs, for any t' =t mod n there is f' € L
with o(a) = ot (8/)".
(2) If M/F is a Galois extension, then there exist integers j,l such that
M/F realizes (G, j,1).
(3) The following statements are equivalent:
(a) M/F realizes (G, 3,1).
(b) o(a) = a'B", with t = jr mod n and o~V/"Bls(3) = (1 where
Iy =1 modged(j + 1,n).
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(4) If M/ F realizes (G, j,1) and we choose ¢ so that T(a'/™) = ¢a/™ and 8
so that o(a'/™) = a¥/"3, then a(tQ_l)/”ﬂta(ﬁ) =l Ifwelet 3 = ('8,
then o= /n(ﬁ) o(B) = ¢HirGi+1),

Proof. (1) M/F is a Galois extension < (2" —a) (2" —o(«)) splits completely
in M < M= L(a'/",0(a)"/") & L(a'/™) = L(o(a)/™), since M = L(a'/™)
and [L(a'/™) : L) = [L(o(a)"/™) : L], & o(a) = o?B" with ged(t,n) = 1 and
B € L, by Kummer Theory. Finally, if # = t 4+ dn and o(a) = o!", then
o(a) = o' (8))" where 3/ = a~%3.

(2) Assume M/F is a Galois extension and let G = Gal(M/F). Since
|G| = [M : F] = 2n and M/L is a cyclic extension of degree n, it follows
that Gal(M/L) is a cyclic subgroup of G of order n and thus G is a group
as in Proposition 2.1. Let Gal(M/L) = (7) and let o denote an extension of
o € Gal(L/F) to an automorphism o in Gal(M/F). Then G = (7, 0) since
o|lp # 1. Since [G : <T>] = 2, we have o701 € (r) and 02 € (). Thus
oro~t =7J and 0% = 7! and M/F realizes (G, j,1).

(3) and (4) Assume M/ F realizes (G, j,1). Then o(a) = o!3" with 8 € L,
from the proof of (1). This equation implies o(a'/") = ot/ Bw where w is
an n'* root of unity. We may replace Sw by 3 so that we may assume that
o(at/™) = at/™3. We have 7(a'/?) = ('a!/", where ¢/ is a primitive n
root of unity, since 7 has order n and M = L(a'/™) is a cyclic extension of
degre/e n. We can assume that ¢ = ¢’. We now apply the equation o7 = 770
to al/m,

CrOét/nﬁ.
Tja(al/”) _ Tj(ozt/nﬁ) _ 7.]( 1/n) ( ) = 1/n) 8= C]t t/nﬁ

Thus (/! = ¢" and jt = rmodn. Since j2 = 1mod n, it follows t =
jr mod n and t? = j?r? = 1 mod n.
Next we apply the equation o2 = 7! to a

0'2(041/”) _ 7_l(oél/n) Cl 1/n

or(a!/") = o(¢a'") = (To (") =
(¢’

1/n Since

and
o*(a!") = o(a!/"B) = o (V") o(B) = o "B (B),

it follows a(*~1)/ "Bto(B) = ¢'. We have now proved the first sentence of
(4). For the rest of (4), observe that if 3 = ('3, then

QOB o (B) = (¥ TD/m Bl (8)) ¢ = (TG,
since t +r =jr+r =r(j+ 1) mod n.

To show (3)(a) = (3)(b) we must see what happens if we make different
choices of 8 and ¢. But, if o(a'/") = a¥/"Bw and 7(a!/?) = ¢('al/™, then
there is another generator 7 of (r) and a 01 = o7’ such that o;(a!/") =
a!/"B and 1 (a/™) = Cal/™. Then, the calculation made above (using o}
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and 71 and noting that o1(8) = o(3)) shows that o*~V/ngig(3) = (1,
where 0% = 7'{1. But, we saw in Remark 2.3 that I; = [ mod ged(j + 1,n),
so we have (3)(b).

Now assume the equations in (3)(b) hold. Then M/F is a Galois extension
by (1). Choose a generator 7 of Gal(M/L) such that 7(a'/?) = ¢al/™
and choose o € Gal(M/F) extending o € Gal(L/F) such that o(a'/™) =
al/™3. Then, (2) implies that M/F realizes (G,j',1'), where oro~! = 77,
so (j)2 = 1mod n, and 02 = 7. The equation o7(a'/™) = 77 o(al/™)
shows that ¢/t = ¢", so j't = r = jt mod n. Hence, j/ = j mod n. Also,
the calculation above for 02(a!/™) shows that a*~1/"gta(8) = ¢!, Hence,
=1 =1l mod ged(j+ 1,n). But then, since M/F realizes (G, j',l'), it also
realizes (G, j,1) with a different choice of o, by Remark 2.3. O

4. Calculations in quadratic extensions.

Let L/F be a Galois quadratic extension and assume ¢ € L is a primitive
n'" root of unity. Thus char F' { n. Let o € Gal(L/F) with ¢ # 1. Then
o(¢) = ¢" where r> = 1 mod n. If char F # 2, let L = F(\/a), a € F.

In this section we study the problem of describing elements o € L*
with the property o(a) = o!8", B € L, for a given integer ¢ satisfying
t> = 1 modn. By Theorem 3.4(1), this is equivalent to describing ele-
ments a € L* with the property that L(a'/™) is a Galois extension of F.
These results will be applied in Sections 5 and 6 to the problem of con-
structing the Galois extensions discussed in Section 3 with a given group
as described in Proposition 2.1. Keeping in mind the intended applications
in Sections 5 and 6, we shall consider only the cases t = 4+1 mod n and
t =41, 21 + 1 mod 2° e > 3, when n = 2°.

We begin with a lemma to be used in the case ¢ = 1 mod n.

Lemma 4.1.

(1) If 6,0 € L* and 0(8)/6 = o(8")/d’, then &' = bd with b € F.
(2) Suppose v = o(8)/6 with ~v,5 € L. Then there exists b € F such that

b(1+o(v), ify#-1,
0 =14 by/a, if v =—1, char F # 2,
b if y=—1, char FF = 2.

Proof. The equation in (1) implies o(¢6'/d) = ¢’/ and thus §'/0 € F. This
implies (1).
For (2), first assume v # —1. Then 1+ o(y) # 0. Since vo(y) =

NL/F(’y) = 1, it follows ¢(0)/0 =~ = 1 }:‘;(77) = 0(11:;(%)). Now (1)

implies that 6 = b(1 + o()) with b € F. Now assume v = —1. If char F # 2,
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then o(y/a)/y/a = —1, and so (1) implies that 6 = by/a with b € F. If
char F' = 2, then ¢(d)/0 = —1 =1 and hence 0 € F'. O

The following proposition covers the case t = 1 mod n:

Proposition 4.2. Let n be a positive integer and let o« € L. Then o(a) =
af”, B € L, if and only if there exists b € F' such that

b1+7m), if ola)/a £ —1,
a =< by/a, if o(a)/ao = —1, char F # 2, and —1 € L",
b, if o(a)/a = —1, char F = 2,
where in the first case above, v € L and Np/p(v)" = 1.
Proof. First suppose o(a) = af", B € L. Then " = o(a)/a and Lem-
ma 4.1(2) implies there exists b € F' such that
b1+ o(8"), if o)/ £ 1,
a = by/a, if o(a)/a = —1, char F # 2,
b, if o(a)/a = —1, char F' = 2.
If o(a)/a # —1, let v = o(3). Then
Npp(v)" = Npjp(o(B)") = Npjp(B8") = Npjp(o(a)/a) = 1.
If o(a)/a = —1 and char F' # 2, then —1 = " € L. Therefore the stated
formula for a holds.

Now assume that « is given by the formula in the statement of this Propo-
sition. If a = b(1+1") and Np/p(7)" = 1, then

o(a) _b(1+o()")

Thus o(a) = af", where 8 = (). If @« = by/a and —1 = " € L", then
ola)/a=—-1=p" If a =b, then o(a) = a - 1™ O

If t = —1modn and o(a) = o', then Ny p(a) = ac(a) = B" €
FN L™ Thus to treat the case t = —1 mod n, we shall first study F NL" in
Propositions 4.3-4.5. There does not seem to be a good description of F'NL"
when L = F(y/—1) and n = 2¢, e > 3, but the result in Proposition 4.5 is
sufficient for our purposes.

Proposition 4.3. Ifn is odd, then FN L™ = F".

Proof. 1t is clear that F™ C FNL"™. Now let A € L and suppose A\ =b € F.
Then b*> = Np,/p(b) = Ny ;p(A)" € F™. Since b* and b" lie in F", it follows
that b € F™. Thus FN L™ C F™. O

Proposition 4.4. Assume n is even and let n = 2°m, m odd, e > 1. If
a¢ —F? (i.e., L # F(v/=1)), then FN L" = F" U a™?F™,
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Proof. Recall that if s and ¢ are any two relatively prime integers and A is
any abelian group (written additively) then sA NtA = stA. Consequently,
if E is any field, then E¥ N E' = E%t (by taking A = E*).

It is clear that F U a™2F™ C F N L" since a™? = (y/a)". To prove the
other inclusion take any nonzero b € FNL" = FNL> ' NL™ = (F N L*) N F™
(by Proposition 4.3). Then, b = 3%° = o(B)? for some 8 € L*. Let
w = 0(B)/B. So, w* =1and 1= Ny /p(w) =wo(w). So, o(w) =w . If
w=1,then B € F,sobec F*NF™ = F". If w= —1 then 0(3) = -,
so B = cy/a for some ¢ € F. Then, b = % ¢ a2 F? = g2 Imp?°
sobe Fmna? 'mF2 = @2 'm(Fm A F2) = ¢"/2F". If w # +1, then
wk = /=1 for some integer k, so o(v/—1) = (v—1)"' = —y/—1. But
then, /=1 = dy/a for some d € F*, yielding —a = d~2 € F?, contrary to
our hypothesis. Thus, in every case that can occur, b € F™ U a"2F" as
desired. (]

Proposition 4.5. Let L = F(y/—1) and assume ¢ € L is a primitive (2¢)"
root of unity, e > 2. Then FN L2 = F>* ' U—F".

Proof. The proof is by induction on e. The case e = 2 is well-known to
be true. Now assume e > 3. We have F2° ' U —F2 ' C Fn L2671, since
—1=¢2"". Suppose A\ € F, with A\ € L. Then ()\26_2)2 € F and this
implies A2 € FU/—1F = FU(*°F.

First suppose A2 ° € F. Then A2 > € FNL =F U—F2"" by
indu(lztion. Thus \2°° = £b%°, b € F, and this implies A2 = b €
P

On the other hand, if A2~ € ¢2°°F, then (A\/¢)%*” € F. The argument
in the first part implies (\/¢)% € F2'. Thus A2 € —F2"' since
—1 =2 O

26—2 25—2

Remark 4.6. Under the hypotheses of Proposition 4.5, there does not seem
to be a simple description of F'N L?°. As already noted, for e = 1 we have
FNL?>=F?U—F? Fore=2itis easy to show FNL* = F*U—4F*. For
e > 3, the descriptions become more awkward.

The next proposition characterizes the condition Np/p(a) € F™ and
Npp(a) € a™?F" when n is even. In light of Propositions 4.3 and 4.4,
this covers the case t = —1 mod n, except when L = F(y/—1) and n is even.

Proposition 4.7. Let a € L, a # 0.

(1) Npyp(a) € F™ if and only if there exist b € F and (3,7 € L such that
B b"/2NL/F(7)/72, if n is even (eg > 1),
A\ N B YR8, if nis odd (eg = 0).
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(2) Npyp(a) € a"2F" if and only if there exist b € F and 4,6 € L such
that

(by/a) ”/QNL/F /7 , if n=0mod 4 (ey > 2),
(by/a@)"/?8, with Npp(6) = —1, ifn=2mod4 (e = 1).

Proof. The proofs of each of the cases are very similar and straight-forward.
We will give one of the proofs. Suppose N /p(a) = a2, with n =

2mod 4. Let § = a/(by/a)"/%. So, a = (by/a)"/%§ and
Npyp(8) = Niyp(a/(bv/a)*?) = a"/20" /(6" (=a)"/?) = (=1)"/* = —1.

The converse is easy as are the other cases. Note that for (1), if Ny /p(a) =
b"™ € F", then when n is even we can (by Hilbert 90) choose v so that
ab=™? = o(v)/vy; when n is odd, choose 3 = ab~("~D/2_ For (2), if
Npjp(a) = a™2b" with n = 0 mod 4, then choose ~ so that aa™"/4p="/2 =
o(y)/v- O

Now we assume n = 2¢, with e > 3. If > = 1 mod 2¢, then
t e {£1,2°7 + 1} mod 2°.

The case t = 1 mod 2° is covered in Proposition 4.2 and the case t = —1 mod
2¢ is covered in Propositions 4.3-4.7, with a small gap in the case L =
F(v/—=T1). These cases do not depend on r, where o(¢) = ¢". Since r? =
1 mod n, in general, we have r € {£1, 2°"1 41} mod 2¢ when n = 2¢, e > 3.
The next two results characterize the value of r when t = 2°7! + 1 mod 2¢,
e > 3.

Proposition 4.8. L # F(y/—1) (i.e., V=1 € F) if and only if r=1
mod 2¢7'. When this occurs, (> € F; furthermore, ( € F if and only if
r =1 mod 2°.

Proof. Recall that r = 41 mod 27!, If » = —1 mod 27!, then o(¢?) =
()7L, s0 o(v/=1) = (V=1)"' = —y/=1, as v/—1 = +(¢2)>°. Hence,
V—=1¢ F,so L = F(y/-1). On the other hand, if r = 1 mod 2°~! then
o(C?) = (2, 50 (2 € F. Then, vV—1 = £(¢3)* " € F, so L # F(v/-1).
Clearly, ¢ € F if and only if ( = o(¢) = (", if and only if r = 1 mod 2¢. O
Proposition 4.9. Assume L = F(y/=1). Then r = —1 mod 27! and the
following statements hold:
(1) The following statements are equivalent:
(a) r = —1mod 2°.
(b) Npp(¢) =1.
(c) Ce F- L2
(2) The following statements are equivalent:
(a) 7 =21 —1mod 2°.
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(b) Npp(Q) =—1.
(c) ¢ F- L2
Proof. Since L = F(y/—1), Proposition 4.8 shows that 7 = —1 mod 2¢~!.
If » = —1mod 2¢, then o(¢) = ¢(~!. This is equivalent to Npr(Q) =1
and hence ¢ € F - L2,
If r = 271 —1 mod 2¢, then (¢) = ¢~ = —¢~! and this is equivalent
to Np/p(¢) = —1. Since —1 ¢ F?, it follows that ¢ ¢ F - L*. O

Proposition 4.10. Assume t = 271 + 1 mod 2¢, e > 3, and let a € L,
a # 0. Suppose o(¢) = (". Then o(a) = a2€71+1ﬂ26, B € L, if and only if
there exist v,n € L* with n? € F such that
e—1
a =Ny r()n° /7%,
where

RS ifr=1,-1, or 271 — 1 mod 2¢,
T N1 orc, ifr=2"41mod2°

Proof. Let k = 2°7!. Let
A={aeL*|ola)=a*"1s% for some 5 € L}
and let
B={aeL"|a=Nyr(v) 2/7 1vvhere’y,neL*and772€F}.
Clearly A and B are groups.
Let a = oNp /p(y 2/’y ' and let 6 = /0 y)n. Then af? =

¢y/o(y). We have a( ) = ¢ Tl in all cases since the case r = 2671 41
mod 2¢ and ¢ = ¢ implies (¢) = ¢ = ¢2° L. It now follows that

(1) ola)/a= (/e (o(p)/e) = (aB%)* /") (o(p)/¢) = (af?)".
This implies that « € A. The case ¢ = 1 shows that B C A. If r =
k+ 1 mod 2k, then ( € A, so BU(B C A. We must show that A = BU(B
if r =k + 1 mod 2k and A = B otherwise.

Take any a € A; so o(a) = oF1p% e, o(a)/a = (aB?)*. Let w =
NL/F(aﬁ2). Then, w* = Ny r(o(a)/a) =1, so, since w is a power of ¢2, we
have w € L?NF = F? UaF?.

Let € = w*/2. Then €2 = w* = 1 and thus e = +1. In either case,
e =wh'? € F? since w € F and k/2 is even. Let 6 = a8%. Then,

o(ad?’?) = adbo(8F/2) = ad™*(Ny p(0))F/? = ad™Pwk/? = ™.

If € = 1, then a6*/? € F. From this we conclude NL/F(a5k/2) € F%
Npp(a) € F?, Npjp(af?) € F?, and finally w € F2.
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If ¢ = —1, then ad*/? € \/aF. From this we conclude NL/F(oa(Sk/Q) €
—aF?, Npp(a) € —aF?, NL/F(OzﬁQ) € —aF?, and finally w € —aF? = aF?,
since —1 =€ € F2.

Case 1. Assume € = 1. Then NL/F(aBQ) = w € F?. Therefore a3? = by?
for some b € F*, v € L*. Since, I)QNL/F(’}/)2 = NL/F(b’y2) = NL/F(OzﬂQ) =

k/2 — ¢ = 1. This gives

o(a)/a = (B = (0y*)* =+ /Ny p(7)F =" [o(7)*

Thus, o(ay*) = ay* and we have ay* =d € F.
Since (a3?)* = (7/0(7))’“, we have af3? = w'y/o(y) = w'e/o(y)?, where

w, we have kaL/F('y)k =w

(W) =1 and ¢ = Np/p(v). Note that o/d = v * € L? and a/c =
w'[(o(7)?B%) € L* sod/c€ L*NF. Let n* = d/c. Then a=cn?/y* € B.
Case 2. Now assume € = —1. Then w € aF? and —1 € F?. This implies

r =1 mod k (see Proposition 4.8). Since w ¢ F?, it follows ¢ ¢ F and
r # 1 mod 2k. Hence, » = k + 1 mod 2k. Because L = F(¢) and (? € F
(see Proposition 4.8), we can take a = (2. The congruence condition on r
says that o(¢) = ¢'**, showing that ( € A. Since o(a)/a = (af?)* and
o(0)/C = ¢*, we have o(/C)/(a/C) = ((a/)F)F. Also, Nyp((a/C)5) =
w(—("?) = —a~'w € F?. This shows that a/¢ € A, and that Case 1 above
applies to a/¢. Hence, «/( € B, so a € (B. Since Case 2 occurs for « only
when r = k£ + 1 mod 2k, the proof is complete. O

Proposition 4.11. Assume t = 271 — 1mod 2¢, e > 3, and let o € L,
a#0. Let 0(¢) =(¢". Then o(a) = 27182 e L, if and only if there
exist c € I, v € L, with N p(v) = *c, such that a = 9026_2“/72 where

L, if L#F(v-1),
0=11, if L=F(y/—1), r = —1 mod 2¢,
1Lor¢, ifL=F(/-1),r=2"1—1mod 2°.

Proof. First assume o = 9025_2“/72 where Np,/p(v) = +c and § =1 or (,
as above. We see that 627 = N p(0) in all three cases since T =
< g = Np,r(¢) in the third case. Let 8 = 7/02673. Then a3? = fc and

Nyyp(a) = Npyp(0) #2 ) = Npyyp(0) = 6% = (ap?)* .

Thus o(a) = o2 —142°.

Now assume o(a) = a2 7182° 3 € L. Then Npjp(a) = (0452)25_1-
Since
erfl Ua2672F2671, lf L # F( /7_1)’

2 2671 2671
€ Fﬂ L - e— e—
(a5%) {F2 "U-FET, i L= F(yOO),
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by Propositions 4.4 and 4.5, there exists ¢ € F such that a3? € {cw, \/acw,

2e—1 —1/2

Ccw} where w = 1. Since w € L2, by replacing 8 by fw

assulne

we can

cor e, if L=F(/-1),

without affecting the equation o(a) = a2€71_1ﬂ26.
If L # F(v/—1), then —1 € F? (since —1 € L?) and

Nyp(a) e F*7 ua® "F* ' C P2

since e > 3. If a3? = \/ac, then Npp(a) € —aF? = aF? # F?, a contra-
diction. Thus a3? = c.
If L =F(y/~1) and af? = (c, then

26—1

Np/p(a) = (af)* 7 = (Co)* =—c e —F*#F%
Then the equation 5% = (¢ implies Npr(C) ¢ F?, and thus Npp(C) = -1
and 7 = 27! — 1 mod 2¢ by Proposition 4.9.
We conclude a3? = fc, where
1, if L # F(v—1),
=<1, if L=F(/-1),r=—1mod 2°,
lor¢, if L=F(y/—1),r=2"1—1mod 2°.

Let v = ¢ 3. Then
o= 96/,82 _ 962672—%1/(62572/62) _ 962672—%1/"}/2.

Since Ni,p(a) = (B> =622 and 62 = N p(0) in all cases,
we have

of? = {c or yac, if L # F(y/-1),

267192&71]\7 (C)
N 2) = 27'N 6% = &N Oc/a) = ¢ LI _ 2,
n/r(77) /F(37) /r(0c/a) Ny (@)

Thus N p(v) = £e. O

5. Explicit constructions of Galois extensions M /F'.

Proposition 3.1 and Lemma 3.2 let us reduce the problem of describing
explicit constructions of Galois extensions M/F as in Section 3 to the case
n = p°, where p is a prime number. In this section, we treat the case when
p is an odd prime. The case p = 2 will be handled in Section 6. Recall that
r mod n is defined by o(¢) = ¢", where ( is a primitive n'” root of unity.
Since j? = r? = 1 mod p?, it follows that if p is odd, then j = 41 mod p®
and r = £1 mod p°. Since it is no extra trouble, instead of considering only
the case n = p°® with p odd, we will consider the more general case where
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n is arbitrary and j = £1 mod n and r = +1 mod n. Of course the case
r = 1 mod n occurs if and only if ( € F'. Recall from Proposition 2.5 that
when j = 1 mod n, either G = Z/2nZ or G = Z/nZ x Z/27Z, and when
j = —1mod n, either G = D, or G = Q2.

We saw in Theorem 3.4(3) that when M = L(a'/") realizes (G, j,1), then
o(a) = a'B", where t = jr mod n. So, t = £1 mod n. By Theorem 3.4(1),
we can assume that ¢ = +1. To be able to handle the two possible values
of ¢ at the same time, and to bring out the similarities in the two cases, we
consider a modified group action. It will be convenient to use the language
of group cohomology, though everything in this section can be derived easily
without mentioning cohomology.

Let C = Gal(L/F) = {1,0}. Let t = £1. For any multiplicative group @
on which C acts, we have a “twisted” t-action of C' on @) defined by

oxq=(0-q).
(Here - denotes the original action and * denotes the ¢-action.) Of course,
when ¢t = 1 the t-action coincides with the original action. Let u, = ()
denote the group of n” roots of unity in L. The short exact sequences

1-L"—>L"—-L/L'" -1 and 1—>p, —>L" - L" —1

are compatible with the usual Galois action of Gal(L/F'), but also with the
t-action. They lead to connecting homomorphisms in cohomology (using the
t-action):

f:HY(C,L*/L*") — HY(C,L*™) and g: HY(C,L*™) — H?*(C, ).

We describe the maps f and g: First, H°(C,L*/L*") consists of the
elements [a] = aL* € L*/L*" stable under the t-action of C, i.e., those [a]
such that o * [a] = [a], i.e.,

oxa=ay"forye L*, ie., o(a)=a'p" where=+"

The connecting map f takes the class of the O-cocycle [a] to the class of the
1-cocycle ¢yn: € — L™ mapping 1 — 1 and o +— 7". Let N; denote the
“t-norm,” given by
Ny(x) =x0o*x =x0(x)
Note that by applying N; to the equation o*a = ay™ we find that Ny(7™) =
1. Let
w=Ni(7) =70(7)" = 5'0(B) € pn.

The map g takes the class of cy» to the class of the 2-cocycle hy,: C' x C' — py,
given by hy(o,0) = Ni(y) = w and hy(1,1) = hy(o,1) = h,(1l,0) = 1.
Thus, go fla] = [ho] € H2(07 fn)-

Now, the t-action of C' on p, is determined by o * { = o({)! = (" =
¢/, where j = rt. The group extension of C' by u, determined by the 2-
cocycle h,, is the group & = p,x; U ppx,, with the multiplication given

by (ct. [R], p. 154) (('ap)(C5y) = C(p * CVhu(py ¥)pse T w = (', then
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& is the group of order 2n generated by (, x, with the relations (" = 1,
ro.Cr;l =% = ¢, and 22 = ¢!. That is, & = (G, 4,1). Observe also
that for this j and I, we have (G, 7,1) = Gal(L(«'/")/F), by Theorem 3.4(3)
(assuming [L(a'/™) : L] = n). Now, & is the trivial group extension (i.e.,
a semidirect product, i.e., Z/nZ x Z/2Z when j = 1 mod n and D,, when
j = —1modn) just when [h,] = 0 € H?(C,u,). This occurs just when
w is the t-norm of an element of u, (cf. [R], Th. 10.35, p. 297), i.e., just
when w = ¢! € (N;(¢)) = (¢7H1). Note in any case that since w = N;(7),
w=o0*w=w. When j = —1 mod n this says that w = 1, and & is
the trivial extension just when w = 1. When j = 1 mod n, & is the trivial
extension just when w € (¢?). When n is odd, we have H?(C, u,) = 0 as
ged(|C), |un|) = 1, so then & is always the trivial extension.

When ¢t = 1 we can say a little more. Then, the t-action is the usual C-
action. Since H'(C,L*) = 0 (Hilbert 90), the exact sequence H'(C, L*) —

H(C,L*") EN H?(C, uy,) shows that the map g is injective. But, we also

have the exact sequence H°(C, L*) — H!(C, L*/L*") ER H(C, L*™). Thus,
[a] € HY(C, L*/L*") determines the trivial group extension < go fla] =0
in H*(C,pn) < flo] =0 & [o] € im(HY(C,L*) — HY(C,L*/L*™)) =
F*L* /L <« « € F*L*. When n is odd, this always holds because then
H?(C, ) = 0.

The following propositions summarize what the preceding discussion has
shown.

Proposition 5.1. Assume that M/F is a Galois extension that realizes
(G,4,1). Thus o(a) = o'", with a,3 € L. Assume 7 = 1 modn and
r = +1modn. Then, t = rmodn. Assume t = +1 (and adjust (
accordingly). Then, Blo(B) is an n' root of unity. Furthermore:

(1) The following statements are equivalent:
(a) Gal(M/F) = Z/2nZ.
(b) The order of Bto(B3) is divisible by 2°°.
(0) Alo(8) € C(C?).
(d) n is odd orl is odd.
If n is odd, then (a)-(d) always hold. If n is even, then (a)-(d) are
equivalent to the following statement:
() (o (B)"/2 = 1.
(2) The following statements are equivalent:
(a) Gal(M/F) = Z/nZ x 7./27.
(b) If n is even, then the order of Blo(3) is not divisible by 2°°.
&) Bo(B) € (c2).
(d) n is odd orl is even.
If r=1modn (i.e., ( € F), sot =1, then (a)-(d) are equivalent to
the following statement:
() o€ F-L".
If n is odd, then (a)-(e) always hold.



GALOIS GROUPS OF ORDER 2n 315

Proposition 5.2. Assume M/F is a Galois extension that realizes (G, 7,1)
with j = —1 mod n and r =1 mod n. Then, t = —1 mod n, and we assume
t = —1. Suppose o(a) = o™ with 3 € L.

(1) The following statements are equivalent:

(a) Gal(M/F)= D

(b) 1 =0 mod n.

(C) NL/F(a) S

(d) peF.

If n is odd, then (a)-(d) always hold.

(2) Assume n is even (and hence char F # 2). Let L = F(\/a). Then
B e FUyaF and Np/p(a) € F"U a™2F™ . In addition, the following
statements are equivalent:

(a) Gal(M/F) = Qap.
(b) I =n/2 mod n.
(¢) Npp(a) € a™?F".

(d) B €+/aF.
Proof. In addition to the observations preceding Proposition 5.1, note the
following: Because t = —1, we have (o) = a~'3", so Ny /p(a) = ". Since

j=—1modn, /c(B) = Ni(B) € {£1} N py. So o(B) = £6. The Galois
group is D, just when o(3) = §, i.e., 8 € F; then Ny p(a) = " € F™.
We have Gal(M/F) = Qay, just when o(3) = —f3, i.e., f € y/aF; then n is
necessarily even since —1 € pp, and N p(a) € a"/2Em 4 F O

Proposition 5.3. Assume M/F is a Galois extension that realizes (G, j,1)
with j = —1modn and r = —1 modn. Then, we may assume t = 1.
Suppose o(a) = '™ with 3 € L.
(1) The following statements are equivalent:
(a) Gal(M/F)= D
(b) { =0 mod n.
(¢) Npyp(B) =1.
(d) o€ F-L".
If n is odd, then (a)-(d) always hold.
(2) The following statements are equivalent:
(a) Gal(M/F) = Qap,.
(b) I =n/2 mod n.
(¢) Npyp(B)=—1.

6. The case when n = 2¢ with e > 3.

We now study the problem of constructing Galois extensions M /F, which
were considered in Section 3, when n = 2¢ with e > 1. We have L = F(\/a),
a € F, since char F' # 2. We continue to assume that ( € L is a primitive
(2¢)" root of unity and that o(¢) = ¢". We shall assume e > 3 since the
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cases when e < 2 are covered in Propositions 5.1-5.3 when j = +1 mod n
and 7 = £1modn. If M/F is a Galois extension that realizes (G, 7,1)
with n = 2° and e > 3, then by Theorem 3.4(3), o(a) = o!f" with
B € L, t=jrmod?2¢ and t,j,r € {1,—-1,2¢71 +1,2¢"1 — 1} mod 2¢. By
Theorem 3.4(1), we may assume that ¢t € {1,—1,2¢71 +1,2¢7t — 1}
j=2"14+1o0r 2! — 1 mod 2, then the group Gal(M/F) is uniquely de-
termined up to isomorphism, by Lemma 2.4. Therefore, we shall focus only
on values of ¢ and r that give j = 1 or — 1 mod 2°. So, if t € {1,—1},
then » = 1 or —1 mod 2°¢ since ¢ = jr mod 2°. These cases have al-
ready been discussed in §5. Thus, we can assume in this section that
t € {271 +1,2°71 —1}. The interesting cases are when r =2¢"! 41 or
2¢71 — 1 mod 2°.

Proposition 6.1. Suppose M = L(a'/?) is a Galois extension of F of
degree 2°1 (e > 3) that realizes (G,7j,1) with t = 2° 1+ 1, ie., ola) =
a2€71+1ﬁ2 for some 3 € L. So, a = N /p(vy 2/7 , where v € L*,
ne€ FUyaF and

1, ifr=1,-1, or 2°°' — 1 mod 2°,
T 1 or¢, ifr=2141mod 2¢.

(1) Suppose r = 2671 + 1 mod 2¢ (so j = 1 mod 2¢). Then,
(a) Gal(M/F) = Z/2° 7 if and only if ¢ = ¢, if and only if Npyp(a) €
aF?.
(b) Gal(M/F) = Z/2°Z x ZJ2Z if and only if ¢ = 1, if and only if
NL/F(OZ) S F2.
(2) Suppose r = 2671 — 1 mod 2¢ (so j = —1 mod 2¢). Then,
(a) Gal(M/F) = Dae if and only if n € F.
(b) Gal(M/F) = Qqet1 if and only if n € \/aF.
Proof. The description of « is given in Proposition 4.10. We have t22;1 =
2¢°72 4 1 and a = ©Np/r(7) n?/v* . Equation (1) in the proof of Proposi-
tion 4.10 shows that o(«)/a=(a(f') )267 where 8'=+2""/(o(+)n). Thus,
we may let 3 = 8 here. Let p = o(*~D/2°8ls(p). By Theorem 3.4(3),
p = ¢, where I; =1 mod ged(j + 1,2°). Now, a3? = ¢y/0(v), which yields

p= () aNyp(8) = &> /o).
Note that since n? € F, we have n/o(n) = £1 € (¢?). Also, the formula for
o shows that Ny, p(a) € Npjp(p)F2.

For (1), suppose r = 27! + 1 mod 2°. Then, as t = jr mod 2¢, we have
j=1mod2¢. So, p = ©* tly/o(n) € ©(¢2). We have Gal(M/F) =
Z)2°7 x 7ZJ2Z just when [ is even, which (since ¢ = 1 or () occurs just
when ¢ = 1. In this case, Ny p(a) € F?. The only other possibility
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is that Gal(M/F) = 7/2°"'Z, which occurs just when [ is odd, so just
when ¢ = (. Since 0(¢) = —¢ and —1 € F? by Proposition 4.8, we have
(?F? = aF? = —aF?. Thus, when ¢ =  we have Npr(a) € ]\f,;/F(ng)F2 =
—(?F* =aF? # F2.

For (2), suppose 7 = 27! — 1 mod 2¢. Then, j = —1 mod 2¢ and ¢ = 1,
so p =n/o(n) = £1. We have Gal(M/F) = Dse just when [ = 0 mod 2°,
which occurs just when p = 1; this occurs just when o(n) =7, i.e., n € F.
The only other possibility is that Gal(M/F) = Qge+1, which occurs just
when [ = 27! mod 2°. This holds just when p = —1, i.e., o(n) = —n, ie.,
n € VaF. O

Proposition 6.2. Suppose M = L(a'/?%) is a Galois extension of F of
degree 2°T1 (e > 3) that realizes (G,j,1) with t = 2°71 — 1, ie., o(a) =
a2 182 G0 = 0026_2“/72 where v € L*, N /p(vy) = £c¢, and

o 1, ifr=1,-1, or2°~! + 1 mod 2¢,
“J1lor¢, ifr=2°1—1mod 2°.

(1) Suppose r = 26~ — 1 mod 2¢ (so j = 1 mod 2¢). Then,
(a) Gal(M/F) = 7/2¢\Z if and only if 0 = ¢, if and only if Npjp(a) €
—F2
(b) Gal(M/F) = 7Z/2°7Z x Z/2Z if and only if 6 = 1, if and only if
NL/F(Oé) S F2.
(2) Suppose r = 271 4+ 1 mod 2¢ (so j = —1 mod 2¢). Then,
(a) Gal(M/F) = Dae if and only if Np,p(7y) = c.
(b) Gal(M/F) = Qge+1 if and only if Np,p(v) = —c.
Proof. The proof is very similar to the proof of Proposition 6.1. The de-
scription of « is given in Proposition 4.11. Since o = 902672+1/72, the first
paragraph of the proof of Proposition 4.11 shows that we can take § =
'7/02673. Let p= a(tz_l)/zeﬁta(ﬁ) = ¢l where I; =1 mod ged(j + 1,2°).
Since (12 —1)/2¢ =272 — 1 and o3? = fc, we have

2872 e—2
p=(aB%)" a(B)/(aB) =0>""'Npp(v)/c
The rest of the proof is left to the reader. O

In Propositions 6.1 and 6.2 it was assumed that [L(a!/?") : L] = 2¢. The
next three results will allow us to identify when this occurs.

Lemma 6.3. Ifr =271 4+ 1 mod 2¢, e > 3, and c € F*, then (c ¢ L*.

Proof. First assume that » = 27! 4+ 1 mod 2¢. If (¢ € L?, then Npr(Q) €
F?, but we saw in the proof of Proposition 6.1 that Npr(Q) € aF? # 2,
Hence, (c ¢ L.
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Now assume that » = 27! — 1 mod 2¢. Proposition 4.8 implies that
L = F(y/—1). Now Proposition 4.9(2) implies that ¢ ¢ F - L? and thus
Cc¢ L2 O

Corollary 6.4. Leta = gDNL/F('y)nQ/'yZ%I as in Propositions 4.10 and 6.1.
Then [L(a/?%) : L] = 2¢ if and only if o ¢ L?, which holds if and only if
¢=Cor Npyp(y) ¢ FNL? = F?UaF?,

Proof. Since —1 € L?, it is standard that [L(a!/?%) : L] = 2¢ if and only if
a ¢ L?, see, e.g., [L], Theorem 9.1, p. 297. The formula for o shows that
this is equivalent to: Nz /p(7) ¢ L?. This holds if ¢ = ¢ by Lemma 6.3,
since then r = 27! + 1 mod 2°; if ¢ = 1, this holds just when Npp(v) ¢
L>NF. O

Corollary 6.5. Leta = 902672‘*'1/72 as in Propositions 4.11 and 6.2. Then,
[L(aY?%) : L] = 2° if and only if a ¢ L?, which holds if and only if 6 = ¢ or
c¢ FNL:=F?UaF?

Proof. The formula for o shows that o ¢ L? just when 0c ¢ L% The rest of
the proof is analogous to the proof of Corollary 6.4. O
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