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Valério Ramos Batista

Volume 212 No. 2 December 2003



PACIFIC JOURNAL OF MATHEMATICS
Vol. 212, No. 2, 2003

A FAMILY OF TRIPLY PERIODIC COSTA SURFACES
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We derive global Weierstrass representations for complete
minimal surfaces obtained by substituting the ends of the
Costa surface by symmetry curves.

1. Introduction.

Among all known complete embedded minimal surfaces in R3 the triply pe-
riodic ones form the richest class of examples regarding variety of genus and
symmetry group. For instance, the gyroid can be pointed out as a complete
minimal surface containing neither straight lines nor reflectional symmetry
curves. Another curiosity is the associate family from the Schwarz P-Surface
till its conjugate, the D-Surface, which has the gyroid as an intermediate
embedded member (see [4], p. 25). Another associate family with such a
behaviour is unknown outside the triply periodic class.

The variety of triply periodic minimal surfaces has been known much
earlier than most of the non-triply periodic examples, even if the existence
proof of the formers took longer to be concluded. The first five examples
came out in 1890 due to a work of H.A. Schwarz and his students [18]. This
work inspired A.H. Schoen [17] who presented 17 other such surfaces in 1970.
Later in 1989 H. Karcher [9] proved the existence of these triply periodic
examples and found many others with the conjugate surface method.

In this paper we enrich this class, not only by presenting a new family
of triply periodic minimal surfaces in R3, but also with a full study of this
family which includes uniqueness and limits. Such a thorough study is rare
to be found among other triply periodic examples. Moreover, in this new
family the boundary contour of the conjugate surfaces patch does not project
onto any convex domain. Hence, the classical Plateau approach fails for
these particular surfaces and they are perhaps the simplest such examples.

In order to find new surfaces one can make use of already known examples
like the Costa surface, which gave rise to the “Mk-Costa-Hoffman-Meeks”
families [7], later generalised by D. Hoffman and H. Karcher [5]. In this
present paper, once more the Costa surface turns out to be a source of new
results.
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2. Background.

In this section we state some well-known theorems on minimal surfaces. For
details we refer the reader to [9], [12] and [14]. In this paper all surfaces
are required to be regular.

Theorem 2.1 (Weierstrass representation). Let S be a minimal surface in
R3 and R the underlying Riemann surface of S. Let dh be a meromorphic
1-form on R and g : R → Ĉ := C ∪ ∞ a meromorphic function. Then
X : R → R3 given by

X(p) :=
1
2
Re

∫ p(
g − g−1, i(g + g−1), 2

)
dh

is a conformal regular minimal immersion provided the poles and zeros of g
coincide with the zeros of dh. Conversely, every regular conformal minimal
immersion X : R → R3 can be expressed in this form for some meromorphic
function g and meromorphic 1-form dh.

Definition 2.2. The pair (g, dh) is the Weierstrass data on R of the mini-
mal immersion X : R → X(R) = S ⊂ R3.

Definition 2.3. A complete, orientable minimal surface S is algebraic if it
admits a Weierstrass representation such that R = R − {p1, . . . , pr}, where
R is compact and both g and dh extend meromorphically to R.

Definition 2.4. An end of S is the image of a punctured neighbourhood
Vp of a point p ∈ {p1, . . . , pr} such that ({p1, . . . , pr}−p)∩V p = ∅. The end
is embedded if this image is embedded for a sufficiently small neighbourhood
of p.

Theorem 2.5. Let S be an algebraic minimal surface whose genus of R is
k and the number of ends is r (all of them embedded). Then

deg(g) = k + r − 1.

Theorem 2.6. Let S be a complete minimal surface in R3. Then S is
algebraic if, and only if, it can be obtained from a piece St of finite total
curvature by applying a finitely generated translation group Gt of R3.

From now on we consider only algebraic surfaces. The function g is the
stereographic projection of the Gauß map N : R → S2 of the minimal
immersion X. This minimal immersion is well-defined in R3/Gt, but is
allowed to be a multivalued function in R3. The function g is a covering
map of Ĉ, and hence the total curvature of St is −4πdeg(g).

3. The Costa surface.

We describe the Costa surface, which is the starting point of our construc-
tions. Details are found in [3] and [6].
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Theorem 3.1 (The Costa surface). Let R be the square torus whose alge-
braic equation is

℘′2 = ℘(1− ℘)(1 + ℘).

For some positive µ, define g = µ℘′ and dh = ℘d℘/℘′. Then there exists
a unique positive value of µ such that (g, dh) is the Weierstrass pair on
R = R− ℘−1({−1, 1,∞}) of a complete minimal embedding of R in R3.

The next picture represents the image of the minimal embedding referred
to by the previous theorem.

x 

1 

2 

3 

x 

x 

(a) (b)

Figure 1. (a) The Costa surface; (b) the fundamental piece
P of a triply periodic Costa surface.

After a suitable rigid motion in R3 we can position the Costa surface in
such a way that it will have the following symmetries:

σ1 := (x1, x2, x3) → (−x1, x2, x3);

σ2 := (x1, x2, x3) → (x1,−x2, x3);

σ3 := (x1, x2, x3) → (x2, x1,−x3) and

σ4 := (x1, x2, x3) → −(x2, x1, x3).

Notice that σ2 = σ3 ◦ σ1 ◦ σ3 and σ4 = σ1 ◦ σ3 ◦ σ1. We call G the group
of symmetries of the Costa surface. In our case,

G = 〈σ1, σ3〉.

We remark that the Costa surface is invariant under a 180◦-rotation
around the x3-axis. This rotation can be given by σ1 ◦ σ2.
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4. Construction of the triply periodic Costa surfaces.

We begin by considering the possibility of existence of triply periodic min-
imal surfaces in R3 fully generated by a fundamental piece P which looks
like a Costa surface with its planar end replaced by symmetry curves (see
Figure 1(a)). We called G the symmetry group of the Costa surface, which
is isomorphic to the symmetry group of P .

The main goal of this paper is then to prove the following:

Theorem 4.1. There exists a one-parameter family of complete embedded
triply periodic minimal surfaces in R3 such that, for any member of this
family the following hold:

(a) The quotient by its translation group has genus 5.
(b) The whole surface is generated by a fundamental piece P , which is a

surface with border in R3. The border consists of four planar curves
of vertical reflectional symmetry and two planar curves of horizontal
reflectional symmetry. The fundamental piece has a symmetry group
isomorphic to G, where G is the symmetry group of the Costa surface.

(c) By successive reflections in the border of P one obtains the triply pe-
riodic surface.

Figure 2. The triply periodic Costa surface for λ = 0.5 (see below).

5. The symmetries of the surface and the elliptic Z-function.

From this point on we shall make use of heuristic arguments which will
just help us in the formal demonstration of Theorem 4.1. Let us con-
sider the surface represented in Figure 2. The quotient by its translation
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group generates a compact Riemann surface of genus 5 that we call S (see
Figure 3(a)). Let ρ be the quotient of S by its 180◦-rotational symmetry
around the x3-axis. Then, the Euler-Poincaré characteristic of ρ(S) is given

by χ(ρ(S)) = χ(S)
2 + 4 = 0. Because of this, ρ(S) is a torus that we call T .

This torus must be rectangular because of the following argument. The hor-
izontal reflectional symmetries of S are induced by ρ in T . These turn out
to be reflectional symmetries of T as well, and there are two curves which
remain invariant under any of these symmetries. Then, the fixed-point set
has two components and this only happens for the rectangular torus.

The surface S has two other 180◦-rotational symmetries, namely the ones
around the x1- and x2-axes. The torus T has these two symmetries as well.
Let ρ̃ be the 180◦-rotational symmetry around the x1-axis. The quotient of
T by ρ̃ is conformally S2. After we fix an identification of S2 with Ĉ, we
finally obtain an elliptic function Z : T → S2. In the following we are going
to use the same notation as in [1], pp. 170-171, to facilitate comparisons.
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Figure 3. (a) Half of S; (b) the torus T = ρ(S).

Consider Figure 3(b) and the points of the torus T represented there.
These points correspond to special points of S, represented on Figure 3(a)
(they were given the same names). Let Z : T → S2 be the elliptic function
with Z(A) = ∞, Z(M1) = Z(M2) = −1 and Z(B) = 0 (this function is the
same defined in [1], p. 171). The points e1 and e2 correspond to the ones in
[1], p. 170, but in our case they will not lead to ends of the minimal surface.

On the surface S, the unitary normal vector at e1, e2, v1, v2 is vertical.
That is, g + g−1 = ∞. The other points at which g + g−1 = ∞ are labelled
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as e1l, e1f , e2l, e2f (“l” and “f” mean “lateral” and “front”). In [1], p. 170,
one sees that the vertical points of the saddles, namely v1 and v2, do not
coincide in general with the middle points M1 and M2 between A and B,
represented in Figure 4. But, in our case, the vertical reflectional symmetries
of S imply M2 = v2 and M1 = v1.

Next we are going to summarize the important properties of the function
Z (see Figure 4).
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Figure 4. The torus T with values of Z at special points on it.

The function Z is real on the bold lines (and nowhere else), and |Z| = 1
on the dashed lines (and nowhere else). It has exactly four branch points,
marked with × on Figure 4. Two of them are A and B, where Z assumes the
values ∞ and 0, respectively. At the centre Z takes a value λ ∈ (0, 1) and
at the other branch point it takes the value λ−1. Let x = Z(e1l) = Z(e2l),
then λ < x < 1. Now we write the most important values of Z together:

Z(e1) = Z(e2) = 1,

Z(v1) = Z(v2) = −1,

Z(e1l) = Z(e2l) = x, and

Z(e1f ) = Z(e2f ) = x−1.

6. The z-function on S and the Gauss map in terms of z.

In this section we start by studying the necessary conditions for the existence
of a minimal surface like in Figure 2. They will lead to an algebraic equation
for the compact Riemann surface S, together with Weierstrass data on it.
From this point on, our problem will be concrete. We shall have to prove
that the algebraic equation really corresponds to S in terms of its genus and
symmetries. Afterwards, we shall have to prove that the Weierstrass data
really lead to a minimal embedding of S in R3 with the desired properties:
Symmetry curves, periodicity, etc.

Let us call S the surface represented in Figure 2 and suppose that it is
a minimal immersion of S in R3. In this case, we make use of the previous
section and consider the functions ρ : S → T and Z : T → C. Let us define
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z := Z ◦ ρ. Both functions Z and ρ have degree 2, then z is a function on S
of degree 4 (see Figure 5(a)).
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Figure 5. (a) Values of z at special points; (b) the corre-
sponding values of g at these points; (c) the corresponding
values of Z on T .

We are supposing that S is a minimal immersion of S in R3. In this
case, the Gauss map on S must lead to a meromorphic function g on S, as
Figure 5(b) suggests. We are going to define multiplicity as the branch order
plus one. Then, the expected correspondence between the values of z and g
(including their multiplicities) is indicated in Figures 5(a) and 5(b). Notice
that Figure 5 shows the particular case in which g takes the values ±i and
±1 with multiplicity 3 at the points z = 0. For this special case we expect
the surface to have a four-fold symmetry saddle at these points.

In the general case, we need to introduce a new parameter. Consider
y ∈ (−1, λ) such that z = y implies g(z) = ±i with multiplicity 1. For
y = 0 the multiplicity is 3 (see Figure 5). The 180◦-rotational symmetries
correspond to the map Z → 1/Z. Because of this, one has that z = 1/y
implies g = ±1. Based on what Figure 5 suggests and on this last remark
we obtain the following relation between g and z:(

g +
1
g

)2

=
cz(z − y)2(z − λ−1)

(z2 − 1)(z − x)(z − x−1)
,(1)

where c is a real positive constant. Notice that the functions g and z at both
sides of (1) have the same poles and zeros, including their multiplicities,
while c, x, y and λ are free parameters.

Now we have a concrete problem: We must show that (1) really represents
the surface S in terms of its genus and symmetries. This will be true if
the variables c, x, y and λ satisfy certain conditions which are going to be
presented soon. During our demonstration of this fact we deduce that c = 4.
This is consistent with the expected position of the unitary normal vector
at z = ∞ (see Figure 5(a)), which must correspond to g = ±1.



354 VALÉRIO RAMOS BATISTA

Now we show that the function g on S, defined by (1) represents the
Gauss map on the symmetry lines of the surface S. First of all, for the
180◦-rotational symmetries of S, which correspond to |z| ≡ 1 on S, we want
g2 to be pure imaginary. Define X := x + x−1. Then (1) leads to:

g2 + g−2 =
c(z − y)2(1− λ−1z−1)− 2(z − z−1)(z −X + z−1)

(z − z−1)(z −X + z−1)
.(2)

On the right-hand side of (2) the denominator is pure imaginary. For
g2 + g−2 (and consequently g2) to be pure imaginary as well we must have

Im{c(z − y)2(1− λ−1z−1)} = Im{2(z − z−1)(z −X + z−1)}.(3)

For z = eit, t ∈ R, (3) leads to:

c(2 cos t− 2y − λ−1 + λ−1y2) = 4(2 cos t−X).

This is possible if, and only if c = 4 and

X =
1 + (2λ− y)y

λ
, where X := x + x−1.(4)

Recall that the variables x, y and λ must satisfy the following inequalities
(see Figure 5(a)):

−1 < y < λ < x < 1 and 0 < λ.(5)

We can always choose y and λ with −1 < y < λ < 1 and 0 < λ to get
the value x from (4). Nevertheless, the condition x < 1 will not always be
satisfied, unless y > 2λ− 1 (we prove this assertion later). This will reduce
the domain of y. In fact,

y > 2λ− 1 implies X > 2, which implies 0 < x < 1.(6)

The remaining condition from (5), namely λ < x, is always valid for
0 < x < 1 as a consequence of (4).

At this point we have shown that, under conditions (4) and y > 2λ − 1,
the phase of the function g in (1) is constant and equals ±π/4 or ±3π/4
on the symmetry lines of the Riemann surface S which we want to be the
straight lines on the minimal surface S. Now we are going to prove that the
180◦-rotations around the straight lines lead to the expected change of the
unitary normal vector. From Figures 5(a) and 5(b), these rotations suggest
that, for example, g = 1 is mapped to g = ±i. Let us now verify this fact.

An important consequence of (4) is that it implies:

4z(z − y)2(z − λ−1)− 4(z2 − 1)(z − x)(z − x−1) = 4(1− yz)2(1− λ−1z).
(7)

With (2), (7) and the algebraic equality

(g + g−1)2 − 4 = (g − g−1)2,
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one obtains: (
g − 1

g

)2

=
4(1− yz)2(1− λ−1z)
(z2 − 1)(z2 −Xz + 1)

.(8)

The 180◦-rotational symmetries around the straight lines of the surface S
are represented by means of the map z → 1/z on S (notice that the points
|z| = 1 remain fixed). If we calculate g(1/z) from (8), we obtain:(

g − 1
g

)2∣∣∣∣
1/z

= −
(

g +
1
g

)2∣∣∣∣
z

,

or equivalently, g(1/z) = ±ig(z). This means: The 180◦-rotations of S lead
to the following maps for the function g: either g → ig or g → −ig. The
fixed-point set of the former is given by {(z, g) : |z| = 1 and g = ei π

4 |g|}.
For the latter, the fixed-point set is {(z, g) : |z| = 1 and g = e−i π

4 |g|}.
Both maps correspond to an inversion of the surface orientation.

Now we prove that the compact Riemann surface (8) has genus 5. From
(1) and (8) we have that each value z ∈ {−1, 1, x, x−1, λ, λ−1, 0,∞} repre-
sents 2 different branch points of order 1 (multiplicity 2) on the compact
Riemann surface. The function g is a four-sheet-covering and because of
this, from the Riemann-Hurwitz formula the genus of S is:

8 · 2 · (2− 1)
2

− 4 + 1 = 5.

We still must show the following:

Proposition 6.1. Given λ and y in the interval (−1, 1) such that y > 2λ−
1, if x and c are determined by (4) then x < 1.

Proof. This is a consequence of the equivalence of the following statements:

(a) y > 2λ− 1;
(b) (1− λ)2 > (λ− y)2;
(c) 2λ < 1 + (2λ− y)y;
(d) X > 2.

�

At this point we have proved that the correspondence between z and g,
given by (1) or (8), is consistent for the straight lines. Now we focus our
attention on the remaining symmetry lines. Let us call r2 the left-hand side
of (1). Then, for every complex value r and some branch of the square root
one has:

g−1 + g = r implies g =
r ±

√
r2 − 4
2

.
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Therefore, from (1) and based on Figure 5 we can briefly verify the values
of g on the planar symmetry curves as follows:

1 −1 < z < 0 r ∈ iR g ∈ iR

2 −∞ < z < −1 r ∈ (2,∞) g ∈ R

3 λ−1 < z < ∞ r ∈ (0, 2) |g| = 1

4 x−1 < z < λ−1 r ∈ iR g ∈ iR

5 1 < z < x−1 r ∈ R g ∈ R

6 x < z < 1 r ∈ iR g ∈ iR

7 λ < z < x r ∈ (2,∞) g ∈ R

8 0 < z < λ r ∈ (0, 2) |g| = 1

(9)

We have just proved that the values of g on all symmetry curves of the
Riemann surface S are consistent with the expected unitary normal vector
on the minimal surface S in R3.

7. The height differential dh in terms of z.

Now we need an expression for the differential form dh. The surface has no
ends and because of this dh is holomorphic. Its zeros are exactly the ones
where g = 0 or g = ∞ and all have multiplicity 1 (i.e., branch order 0). If
we consider the differential form dz, then it would be sufficient to divide it
by a function on the surface whose zeros were simple at z ∈ {0, λ, λ−1} and
with a unique pole (of multiplicity 3) at z = ∞. This function will turn out
to be the pull-back by ρ of another function, that we call V , on the torus T .

Since 0, λ, λ−1 and ∞ are the only branch values of Z, all of them of
order one, then the torus T can be algebraically described by the equation
V 2 = Z(Z − λ)(Z − λ−1), and V ◦ ρ has exactly the zeros and poles on S
with the desired multiplicities. We can define v := V ◦ ρ. This means that
v is a well-defined square root of the function z(z − λ−1)(1 − λ−1z) on S.
Another way to see this is to observe that (1) and (8) imply:

z(z − λ−1)(1− λ−1z) =
(z2 − 1)2(z2 −Xz + 1)2

16(z − y)2(yz − 1)2

(
g +

1
g

)2(
g − 1

g

)2

.

Then, we can define√
z(z − λ−1)(1− λ−1z) := v =

(z2 − 1)(z2 −Xz + 1)
4(z − y)(yz − 1)

(
g +

1
g

)(
g − 1

g

)
.

Finally, we need to find a proportional constant to determine dh by means
of dz

v . On the straight lines of the surface, where |z| ≡ 1, the coordinate
x3 = Re

∫
dh must be constant. Then Re{dh} is zero there. Because of this
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we choose the proportional constant to be 1, namely

dh =
dz

v
=

dz√
z(z − λ−1)(1− λ−1z)

=
λ

1
2 z−1dz√

λ + λ−1 − z − z−1
.(10)

At this point we have reached concrete Weierstrass data (g, dh) on S,
defined by (8) and (10), with x, y and λ satisfying (4) for y in the interval
(2λ−1, λ). Now our task will be the demonstration of the following: Let S be
the minimal immersion of S by these Weierstrass data. Then S leads to the
desired surface represented in Figure 2. In other words, we need to show that
S really has all the symmetry curves and lines of our initial assumptions and
S has no other periods except the ones indicated in Figure 2. This second
task will be discussed in the next section. Now we analyse the symmetries
of S.

From (9) and (10) we see that all z-curves listed in (9) are geodesics
because g(z) is contained either in a meridian or in the equator of S2 and
dh(ż) is contained in a meridian of S2. Moreover, these geodesics are planar

because dg(ż)
g(z) ·dh(ż) ∈ R. The expected straight lines of the surface, where

|z| ≡ 1, come from (4) together with y ∈ (2λ−1, λ). We have already proved
that (4) leads to g/|g| = e±iπ/4 on the straight lines. This means, |z| ≡ 1

implies dg(ż)
g(z) · dh(ż) ∈ iR. Therefore, S has all desired symmetries.

8. Solution of the period problems.

The quotient of the triply periodic minimal surface by its translation group
leads to a compact surface S. The left half of S is shown in Figure 6(a). The
fundamental domain for the full symmetry group of the minimal surface is
the shaded region represented on Figure 6(a).
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Figure 6. (a) The left half of S; (b) its image under ρ.

We just need to analyse the period vector given by Re
∮

(φ1, φ2, φ3) on
the curves of the homology of S. Let us consider the curves (1) to (8) from
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Table (9) as closed curves. The curve (1) crosses the planar geodesics (2)
and (8), which are in orthogonal planes. Therefore, the period on (1) is zero.
The curve (3) crosses the planar geodesics (2) and (4). Thus, the period on
(3) is zero. The same conclusion is valid for (4), which crosses (3) and (5).
The straight lines on S bring (1), (3) and (4) respectively to (2), (8) and
(7). Then, the periods on these three last curves is zero as well.

Nevertheless, (5) crosses orthogonally (4) and (6), which stay in planes
parallel to x1 = 0. Hence, (5) has a period exactly in the x1-direction.
Due to the straight lines on S, which interchange (5) and (6), the period
on (6) is exactly in the x2-direction. Now consider Figure 3(b) and the line
segment which contains A and B represented there. Its inverse image by
ρ is a closed curve on S which crosses (3) and (8) orthogonally. Since (3)
and (8) are parallel to x3 = 0, the period on the curve will be exactly in
the x3-direction. A simple calculation can show us that the periods we are
mentioning in this paragraph are not zero. But, if we show that they are
the only periods of S, then the half-space theorem automatically guarantees
that none of them is zero (see [5], p. 29).

Due to the straight lines on S, there remains just one curve of S on
which we must analyse the period vector Re

∮
(φ1, φ2, φ3). This curve we

call γ and it is represented on Figure 6(a). The curve γ can be explicitly
given by z ◦ γ(s) = s,−1 < s < λ. From Figure 6(a), we see that γ crosses
orthogonally the geodesics (1) and (7), which lie in planes parallel to x2 = 0.
Therefore, our task is reduced to the solution of the following equality:

Re
∫

γ
φ2 = Re

∫
γ

i

2
(g + g−1)dh = 0.(11)

To interpret (11) geometrically, consider the bold curves in Figure 6(a).
They are supposed to belong to the same plane, and this condition is repre-
sented by (11). The integrand φ2 has two free parameters, namely λ and y.
If we fix the parameter λ, we can vary the y-parameter and try to make (11)
valid. In other words, we then get the two bold curves in the same plane.
Otherwise, they remain in distinct parallel planes.

Now observe Figure 6(b). We define Γ := ρ ◦ γ. Hence, Z ◦ Γ(s) =
z ◦γ(s) = s. We need to calculate the integrand from (11) on γ(s). To make
this task easier, we split up both the curves γ and Γ into two pieces, one for
−1 < s < 0 and the other for 0 < s < λ. The branches of the square root
need to be chosen in accordance with Figures 6(a) and 6(b). Herewith we
recall that the torus T can be algebraically described by

V 2 = Z(Z − λ)(Z − λ−1).(12)

Let us define γ1(s) = γ(s),Γ1(s) = Γ(s) for −1 < s < 0 and γ2(s) =
γ(s),Γ2(s) = Γ(s) for 0 < s < λ. For the stretch −1 < s < 0 we take
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s(t) = −t, 0 < t < 1. Then, for γ1 and Γ1 we have:(
1
g

+ g

)2∣∣∣∣
γ1(s(t))

=
−4t(t + y)2(t + λ−1)

(1− t2)(t + x)(t + x−1)
< 0, 0 < t < 1(13)

V 2(Γ1(s(t))) = t2(−(t + t−1)− (λ + λ−1)) < 0.

We need to choose the square roots with signs compatible with the choice
of the integration path represented on Figures 6(a) and 6(b). From now on
consider positive the square root of positive reals. Now observe the following:

−1 =
d

dt
(Z(s(t))) = Z ′(Γ1(t)) · Γ′1(t).

This means that Z ′(Γ1(t)) ·Γ′1(t) is real. From Figure 6(b) and Equations
(13), our choice leads to iΓ′1(t) > 0. Hence, one has iZ ′(Γ1(t)) > 0, namely,
Z ′(t) = −i

√
t(t + λ)(t + λ−1).

Then dh = −idt
Z ′(t)

> 0, 0 < t < 1, which is in accordance with our choice

indicated in Figures 6(a) and 6(b). Of course, this means that the 3rd

coordinate of our minimal surfaces (x3 = Re
∫

dh) is increasing along this
path, which goes from z = −1 until z = 0 (see Figure 6(a)). But there are
two different positions at which z = 0 (at the back and at the front of the
half piece). The one we want is at the front, as represented in Figure 6(a).
There we see that on γ1 the unitary normal vector on the surface leads to
−ig < 0. Then we choose our square root for g−1 + g at (13) in such a way
that −i(g−1 + g) ◦ γ1 > 0. Hence:

φ2(γ1(s(t))) =
−(t + y)dt√

(1− t2)(t + x)(t + x−1)(t + λ)
.(14)

For γ2 and Γ2 we take s(t) = t, 0 < t < λ. Therefore:(
1
g

+ g

)2∣∣∣∣
γ2(s(t))

=
4t(t− y)2(λ−1 − t)

(1− t2)(x− t)(x−1 − t)
> 0.

Based on (12) and Figure 6(b) we have that Γ′2(t) > 0 and d
dt

(Z(t)) = 1
imply Z ′(Γ2(t)) > 0. With an analogous argument as before we choose
g−1 + g < 0. Hence:

φ2(γ(t)) =
(t− y)dt√

(1− t2)(x− t)(x−1 − t)(λ− t)
.(15)

At this point we are ready to write down (11) as an equality between two
real integrals. But first we recall (see (4)):

(−2λ + y)y = 1− (x + x−1)λ implies y = λ−
√

(x− λ)(x−1 − λ).

We shall see that the period problem can be solved for every λ in the
interval (0; 0.6 + ε), where ε > 0. Moreover, we shall see that the solution
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is unique for every fixed λ in this interval. The theoretical value of ε is
not known yet, but numerical computations reach the approximate value of
ε = 0.05. Remember that y ∈ (2λ− 1, λ) for (5) to be valid. The following
proposition is proved in [16], p. 3:

Proposition 8.1. For a certain positive ε < 0.4 one has that every λ ∈
(0; 0.6 + ε) admits a unique yλ ∈ (2λ − 1, λ) such that, if Xλ is the corre-
sponding value of x = x(λ, y) from (4), then

∫ 1
0 φ2(γ1(t))+

∫ λ
0 φ2(γ2(t)) = 0.

Or equivalently, from (14) and (15):∫ 1

0

(t + yλ)dt√
(1− t2)(t2 + Xλt + 1)(t + λ)

=
∫ λ

0

(t− yλ)dt√
(1− t2)(t2 −Xλt + 1)(λ− t)

.

In fact, it is possible to show that the period problem is unsolvable for
λ > 0.8, hence ε < 0.2. Furthermore, one can prove the following: If ε0

is the biggest value of ε, then the period problem is unsolvable for every
λ > 0.6 + ε0. In other words, the family of these triply periodic Costa
surfaces is unique in the sense that there are no other subintervals of (0,1),
except (0; 0.6 + ε0), in which one can find such surfaces. These results can
be found in [16].

9. Embeddedness of the triply periodic Costa surfaces.

This section is strongly based on the ideas used in [9], pp. 60-62, where the
author shows a demonstration for the embeddedness of the Costa surface in
R3. We remark that now we have an explicit definition of S (given by g and
dh on S in (1)), and S is represented in Figure 2 with no other periods but
the ones suggested by the picture. In this section, we would like to verify if
S is embedded in R3. As we have already defined before, S is the quotient of
S by its translation group. Half of S is again reproduced in Figure 7(a). The
shaded region indicated in this picture represents the fundamental domain
of the surface, namely (x1, x2, x3) = Re

∫
φ1,2,3 : {z ∈ C : |z| < 1 and

Im(z) > 0} → R3.
Now define A := {z ∈ C : |z| < 1 and Im(z) > 0}. By using the fact

that g is an open map of degree 4, which corresponds to the unitary normal
vector on the surface, it is then easy to verify the consistency of Figure 8.
Since g(A) is contained in a half-sphere, there is a direction in which the
orthogonal projection of the fundamental domain is an immersion. In our
case, we even have infinitely many such directions, but the most convenient
is ~x2. Therefore, (x1, x3) : A → R2 is an immersion. This is the first
important argument for the demonstration of the embeddedness.

The orthogonal projection of g(A) in the plane x2 = 0 is represented on
Figure 7(b). We want to prove that Figure 7(b) is consistent, namely, that
the image curve of z(t) = t, λ < t < x, under the minimal immersion is
well represented in Figure 7(b). Firstly, it has no intersections with the
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Figure 7. (a) The left half of S; (b) the orthogonal projec-
tion of the fundamental domain on x2 = 0.
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Figure 8. (a) The half-circle A; (b) the corresponding image g(A).

x3-axis because (x1, x3) : A → R2 is an immersion, hence open, and A is
precompact. Secondly, the curve is convex because g varies monotonely on
it.

Simple calculations show that the other curves of the contour of (x1,x3)(A)
are monotone as well. Since (x1, x3) is an immersion which fulfils the in-
side of this contour, and (x1, x3)(A) is simply connected, it follows that
(x1, x2, x3) : A → R3 is a graph. In particular, it is an embedding. One
easily shows that the fundamental domain is inside a prism in R3. Together
with a 180◦-rotation around the straight line segment (x1, x3)(∂A \R), one
gets an embedded piece of surface which is again inside a prism in R3 and
whose border, now consisting only of reflectional symmetry curves, is con-
tained in the border of the prism. By successive reflections in the border one
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obtains the whole triply periodic surface without self-intersections. Hence,
it is an embedding because the immersion is proper.

Our next section will be devoted to the study of some limits of the triply
periodic Costa surfaces.

10. Limits of the triply periodic Costa surfaces family.

In this section we are going to analyse what happens at the extremes of the
triply periodic Costa surfaces family. In [16] we show the existence of a
positive ε0 < 0.2 such that the family exists only for λ ∈ (0; 0.6 + ε0). Let
us define λ0 = 0.6 + ε0. We are going to show the following: If we fix the
diameter of the closed curve (1) from Table (9), the convergence λ → λ0

implies that the triply periodic Costa surfaces converge to the M3-Callahan-
Hoffman-Meeks’ surface in compact subsets of R3. If we fix the length of the
straight line segments on S which correspond to |z| ≡ 1, the convergence
λ → 0 implies that the triply periodic Costa surfaces converge to a pair of
doubly periodic Scherk’s surfaces in compact subsets of R3.

Let us first analyse the case λ → λ0. As demonstrated in [16], pp. 11-12,
the functions

I1(λ, y) =
∫ 1

0

(t + y)dt√
(1− t2)(t2 + Xt + 1)(t + λ)

and

I2(λ, y) =
∫ λ

0

(t− y)dt√
(1− t2)(t2 −Xt + 1)(λ− t)

are increasing and decreasing with y, respectively. As a matter of fact, it is
a little bit more, namely: ∂I1

∂y
> 0 and ∂I2

∂y
< 0. Although we had restricted

the y-domain to (2λ − 1, λ), the functions I1 and I2 are defined for every
(λ, y) ∈ (0, 1)× (0, 1). Of course, in this case we do not consider the variable

x with x + x−1 = X, but just X = 1 + (2λ− y)y
λ

, which can assume any
positive value.

Now consider the function F := (I1 − I2) : (0, 1) × (0, 1) → R. By
Proposition 8.1, for every λ ∈ (0, λ0) there exists a unique value yλ = y(λ)
in the interval (2λ − 1, λ) such that F (λ, y(λ)) = 0. From the fact that
∂I1
∂y

> 0 and ∂I2
∂y

< 0, we have ∂F
∂y > 0. Then, the implicit function theorem

guarantees that the function yλ = y(λ) is differentiable. We can apply
this theorem for F at (λ0, 2λ0 − 1). Let us define Ij := Ij(λ, 2λ − 1), j =
1, 2. From [16], pp. 15-16, we have that I1(λ0) = I2(λ0). Therefore, F
(λ0, 2λ0− 1) = I1(λ0)− I2(λ0) = 0. By the implicit function theorem, there
is a neighbourhood of λ0 in which one can define y = y(λ), such that F
(λ, y(λ)) = 0 for every λ in this neighbourhood. Due to the uniqueness of
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yλ, we conclude that:

lim
λ→λ0

y(λ) = 2λ0 − 1.(16)

Because of (4) and (16), we conclude that λ → λ0 implies x → 1. Now
consider the algebraic Equation (1) of the compact Riemann surface S, which
associates the Gauss map g on S and the meromorphic function z:(

g +
1
g

)2

=
4z(z − y)2(z − λ−1)

(z2 − 1)(z − x)(z − x−1)
.(17)

Let us take a compact set K ⊂ A = {z ∈ C : |z| ≤ 1 and Im(z) ≥ 0}.
This set is contained in the upper half of the unitary disk in C, where we can
consider z as a variable on it, g and dh/dz as functions of z. We are going
to fix the diameter of the closed curve (1) from Table (9), whose length is
given by

d(λ) = 2
∫

z(t)
dh(ż(t)), z(t) = t,−1 < t < 0.

Therefore, we are going to work with the Weierstrass data (g, d−1dh)
on the compact set K ⊂ C. Choose any point p0 ∈ K \ {1} and for ev-
ery p ∈ K \ {1} an integrable curve in K \ {1} connecting p0 and p. Of
course, the integrands φj , j ∈ {1, 2, 3} have singularities at z ∈ {−1, 0, λ},
but the changes of variable z → 1 + z2, z → z2 and z → z2 − λ can
be used to make them bounded in K. Hence, the coordinate functions
(x1, x2, x3)λ(p) = Re

∫ p
p0

(φ1, φ2, φ3) are uniformly bounded in R3, for ev-
ery λ in a neighbourhood of λ0. We can fix this neighbourhood to be
(1
2 , λ0). Then, the coordinates are inside a compact subset of R3, for ev-

ery λ ∈ (1
2 , λ0).

Moreover, a simple calculation shows that the convergence of the coordi-
nate functions (x1, x2, x3)λ → (x1, x2, x3)λ0 is uniform on K. Let us then
analyse the special case λ = λ0, y = 2λ0 − 1 and x = 1 for (1). In this case
we have: (

g +
1
g

)2

=
4z(z − 2λ0 + 1)2(z − λ−1

0 )
(z + 1)(z − 1)3

.(18)

By the Riemann-Hurwitz formula, Equation (18) represents a compact
Riemann surface of genus 3, which we call Sλ0 . Table (9) remains valid
for Sλ0 (of course, the stretches x < z < 1 and 1 < z < x−1 must not be
considered). This means, except for these stretches, all the other symmetries
of the triply periodic Costa surfaces are symmetries of Sλ0 as well. In
particular, Sλ0 has a 180◦-rotational symmetry around the x3-axis. The left
half of Sλ0 is represented in Figure 9(a) (compare Figure 9 with Figure 5).
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Figure 9. (a) The left half of Sλ0 with z = x = 1 at infinity;
(b) the torus T = ρ(Sλ0).

If ρ is the projection of Sλ0 by the 180◦-rotational symmetry around the
x3-axis, then the Euler-Poincaré characteristic of ρ(Sλ0) is given by

χ(ρ(Sλ0)) =
χ(Sλ0)

2
+ 2 = 0.

Then ρ(Sλ0) is a torus that we call T as well. The surface Sλ0 has
reflectional symmetries whose fixed point set consists of two components.
After the projection ρ, the torus T will also have these symmetries, with
the fixed point set consisting of two components. Therefore, T must be a
rectangular torus.

Some special values of z = Z ◦ ρ are represented on Figure 9(a), together
with their multiplicity. Now, the Gauss map g and the differential holomor-
phic form:

dh =
dz

v
=

dz√
z(z − λ−1

0 )(1− λ−1
0 z)

,(19)

constitute a Weierstrass pair (g, dh) on Sλ0 . At the point z = 1, on the one
hand we have g = 0 or g = ∞ (both of multiplicity 3). On the other hand,
dh = 0 at this point. This characterizes a planar end. In Section 9 we saw
that every member of the triply periodic Costa surfaces family is embedded
in R3. In the same way as in Section 9, one can prove that the minimal
immersion of Sλ0 \ z−1({1}) in R3, defined by (g, dh), is embedded as well.
The fact that this embeddedness leads to the M3-Callahan-Hoffman-Meeks’
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surface comes from the following proposition, which is due to Francisco
Mart́ın and Domingo Rodŕıges (see [11]):

Proposition 10.1. Let M be a properly embedded minimal surface in R3

satisfying the following:

1. M has an infinite number of annular ends;
2. M is invariant under a cyclic group of translations τ ;
3. M/τ has genus k ≥ 2 and 2 ends;
4. |Iso(M/T )| ≥ 4(k + 1).

Then, k is odd and M is the Mk-Callahan-Hoffman-Meeks’ surface.

Now we are going analyse the consistence of our results with [2]. The
numeric value of λ0 for our surface Sλ0 is approximately 0.65 (see Figure 12).
In [2], the period problem is solved with means of another parameter whose
value is approximately 0.4. We want to relate these two parameters and
verify if their relation is consistent with these values.

Consider Figure 10(a) which represents the left half of M3 divided by its
vertical translation τ . The surface M3 is invariant under the 180◦- rotational
symmetry around the x3-axis, and because of the same arguments used for
ρ(Sλ0), this torus is rectangular. We are going to represent this torus by T .
Since M3 has two other 180◦-rotational symmetries, namely the ones around
the x1- and x2-axes, the torus T has these two symmetries as well. Let ρ̃ be
its 180◦-rotational symmetry around the x1-axis. The quotient of T by ρ̃ is
conformally S2. After we fix an identification of S2 with Ĉ, this will define
an elliptic function U : T → S2.
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Figure 10. (a) The left half of M3/τ ; (b) the torus T = ρ(Sλ0).
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Consider Figure 10(b) and the points of the torus T represented there.
These points correspond to special points of M3/τ , represented on Fig-
ure 10(a) (they were given the same names). Let U : T → S2 be the
elliptic function with U(A) = U(B) = 1 and U(v1) = 1/U(v2) = α, where α
is a real value in (0, 1) (these functions are the same functions z defined in
[2], p. 501).

Next we are going to summarize some important properties of the function
U (see Figure 11).

    =A( )U 1

B( ) U      =1

2eU     =)( −α

U     =)( e1 −1/α

2
v

v
1

A

( ) U

( ) U C

D

     =-1

     =-1

( )U     =1/α

( )U     = αv

v
1

2

Figure 11. The torus T with values of U at special points on it.

The function U is real on the bold lines (and nowhere else), and |U | = 1
on the dashed lines (and nowhere else). It has exactly four branch points,
marked with × on Figure 11. At the points C(centre) and D, U takes the
value -1. At the other branch points e1 and e2, it takes the values -α−1 and
-α, respectively. Now we write the most important values of U together:

U(A) = U(B) = 1,

U(C) = U(D) = −1,

U(v2) = 1/U(v1) = α, and

U(e2) = 1/U(e1) = −α.

On the surface M3/τ , the unitary normal vector at e1, e2, v1, v2 is vertical,
that is, g(v2) = g(e2) = 0 and g(v1) = g(e1) = ∞. From Theorem 2.5 we
have

deg(g) = 3 + 2− 1 = 4.

Let us define the function u := U ◦ ρ on M3/τ . The most important
values of u on M3/τ are indicated on Figure 10(a). Based on Figure 10(a),
the following is the relation which must hold between the Gauss map and
u:

g4 ∼ (u− α)(u + 1/α)3

(u− 1/α)(u + α)3
.(20)

This algebraic equation is the same as in [2], p. 502 (our parameter α and
our function u are represented there by “λ” and “z”, respectively). Since
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inversion through |u| = 1 is an isometry for M3, the proportional constant
at (20) must be α2 (this is the same argument from [2], p. 503).

By the same reasons explained for T , the torus T can be algebraically
described by

U ′2 = (U2 − α2)(U2 − 1/α2).

Since M3/τ has just two ends, both planar, the height-differential dh for
the Weierstrass pair (g, dh) on M3/τ must be:

dh ∼ du

U ′ ◦ ρ
.(21)

On the straight lines of the surface, Re
∫

dh must be constant. On these
lines, U ′ is imaginary and u is real. Because of this, we choose the propor-
tional constant in (21) to be 1.

At this point, we would like to comment that there is a unique α ∈ (0, 1)
which solves the period problem for M3. This fact is not proved in [2], but
in [11].

Remark. The tori T and T are biholomorphic if their cross ratios are equal.
In other words, if there is a Möbius transformation w : S2 → S2 such that
Z = w ◦ U . On the one hand, an algebraic equation for T is

V 2 = Z(Z − λ0)(Z − λ−1
0 ).

Therefore, the cross ratio of T is

λ−1
0 −∞

λ−1
0 − 0

· λ0 − 0
λ0 −∞

= λ2
0.

On the other hand, the cross ratio of T is

1/α + 1/α

1/α + α
· α + α

α + 1/α
=

4α2

(1 + α2)
.

Because of this, the variables λ0 and α must fulfil the following condition:

λ0 =
2α

1 + α2
.(22)

From Proposition 10.1, Equations (18) and (19) lead to the M3-Callahan-
Hoffman-Meeks’ surface. Therefore, (22) holds. In [2], p. 503, there is a
graph which indicates that α ∼= 0.4. This implies that λ0

∼= 0.65 and vice
versa, which is consistent with Figure 12.

Now we are going to analyse the case λ → 0. This is the last task of this
section. From [16], p. 3, we have

lim
λ→0

I1(λ, λ) = lim
λ→0

I2(λ, λ) = 0.(23)
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Figure 12. Numeric values for I1 and I2.

From [16], p. 13, one concludes that

lim
λ→0

I1(λ, 2λ− 1) = −∞ and lim
λ→0

I2(λ, 2λ− 1) = 0.(24)

We have proved in [16], pp. 11-12, that I1(λ, y) is increasing while I2(λ, y)
is decreasing with y. From (23) and (24) we conclude that

lim
λ→0

y(λ) = 0.(25)

From (4) and (25) it follows that λ → 0 implies X →∞ and consequently
x → 0. We want to write down (1) for the special case λ = x = y = 0. From
(4) and (25) one easily sees that λ → 0 implies x−1λ → 0. Because of this,
the case λ → 0 for (1) leads to(

g +
1
g

)2

=
4z2

z2 − 1
,(26)

which we rewrite, for instance, as

g2 =
z + 1
z − 1

.(27)

Of course, we are again considering z as a variable on the compact set
K with g and dh/dz as functions of z. We are going to fix the length of
the straight line segment on S which corresponds to the image in R3 of the
curve z(t) = eit, t ∈ [0, π]. This length is given by

l(λ) =
√

2 ·
∣∣∣∣∫ 1

0
φ1(z(t))

∣∣∣∣ ,
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and it is easy to see that L0 := lim
λ→0

l(λ)
λ

is positive and finite. Recalling (1)

and (10), we are going to work with the Weierstrass data
(

g, L0
l(λ)dh

)
on

the compact set K ⊂ C. From (10) we have that the differential λ−1dh for
λ → 0 is:

dh =
dz

z
.(28)

Choose any point p0 ∈ K \ R+ and for every p ∈ K \ R+ an integrable
curve in K \ R+ connecting p0 and p. Then, the coordinate functions
(x1, x2, x3)λ(p) = Re

∫ p
p0

(φ1, φ2, φ3) are uniformly bounded in R3, for ev-
ery λ in a neighbourhood of 0. We can fix this neighbourhood to be (0, 1

2).
Then, the coordinates are inside a compact subset of R3, for every λ ∈ (0, 1

2).
A simple calculation shows that the convergence (x1, x2, x3)λ → (x1, x2, x3)0
is uniform on K.

Applying the Möbius transformation z = w + 1
w − 1 we get

g2 = w and dh =
−2dw

w2 − 1
=

−4dg/g

g2 − g−2
,(29)

which are the the Weierstrass data on the sphere g2 = w for the doubly
periodic Scherk’s surface. This concludes our last section.
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