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Let X be a smooth complex threefold and C a linear chain
of n smooth rational curves in X, each intersecting the canon-
ical sheaf KX trivially, and each having length 1, where the
length is Kollár’s invariant. Formal criteria will be given to
determine when C contracts, when C deforms, and when C
neither contracts or deforms in X̂, the formal completion of
X. It is shown precisely, using the curve C, its components,
and their defining ideals, how the behavior of C coincides with
the deformation theory of the compound An singularity.

1. Introduction.

Let C =
n⋃

i=1

Ci be a linear chain of n smooth rational curves Ci of length

1 in a smooth complex threefold X. Furthermore, assume KX · Ci = 0 for
each i and that each Ci has a rational formal neighborhood in X.

The main purpose of this paper is to describe explicitly the deformations
of C in X̂, the formal completion of X. Formal criteria will be given to
determine when C contracts formally and when C deforms formally in X̂.
Before contraction criteria can be stated it is important to make clear what
is meant by a formal contraction and a formal deformation. In particular,
the definitions of formal cDV modification and formal cDV contraction will
be made precise. These definitions are motivated by the deformations of
DuVal singularities and by the formal constructions that were utilized by
Reid [14] and Jiménez [6] in determining contraction criteria for a single
smooth rational curve; Reid considered length 1 curves and Jiménez curves
of length greater than 1.

Assume f : X → Y of C =
n⋃

i=1

Ci is an analytic contraction with f(C) = q

so that f : X\C → Y \q is an isomorphism. Let mq,Y be the maximal ideal
at the point q ∈ Y .
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Definition 1.1 ([3, Kollár, p. 95]). Let f : X → Y contract C to the point
q ∈ Y . The length of the component Ci is the length of the scheme with
structure sheaf OX/f−1(mq,Y ) at a generic point of Ci.

Now C is a closed subscheme of X and q is a closed subscheme of Y , and,
therefore, X̂ is supported on C and Ŷ is supported on q. Reid [14] has shown
that q is a compound DuVal (cDV) singularity, that is, a general hyperplane
section Y0 of q has a DuVal singularity at q. Therefore, q is a singularity of
type cAn (n ≥ 1), cDn (n ≥ 4), cE6, cE7, or cE8. Furthermore, the induced
map on surfaces X0 = f∗Y0 → Y0 is a factor of the minimal resolution of
q ∈ Y0.

Definition 1.2. A formal cDV modification consists of a map f̂ : X̂ →
Ŷ of formal threefolds, with X̂ supported on a curve C and Ŷ supported
on a point q, such that a general section s ∈ mq, the maximal ideal at q,
defines a formal DuVal surface singularity, while f̂−1(s) defines a formal
partial resolution.

The formal length of Ci is analogous to Definition 1.1 with f̂ a formal
cDV modification. Certainly what is preferred is that a formal cDV modi-
fication is equivalent to a formal modification as defined by Artin [2, Defn.
1.7], because Artin shows in [2, Thrm. 3.1] and [1, Thrm. 6.2] that the
existence of a formal modification implies C contracts or deforms in the an-
alytic category. At the end of this section, after more evidence is acquired,
it will be conjectured that these two definitions are equivalent, at least for
the curve considered in this paper.

From the definition of a formal cDV modification and the semi-universal
property of deformations of DuVal singularities and their simultaneous par-
tial resolutions, a formal cDV contraction can be defined. This theory has
been described by Tyurina [15], Kas [7], Pinkham [13], Reid [14], as well as
Katz and Morrison [8]. All of the works cited are in the analytic category,
so for ease in referring to these, the general brief discussion following and
the defining equations given explicitly in Section 2.2 for the An singularity,
which mainly follows the notation in [8], will be in the analytic category.
However, by taking formal completions of these spaces, analogous results
are obtained in the formal category for formal DuVal singularities. When
necessary for clarity, these formal completions will be described in more
detail.

Let (π,Y,Σ) and (σ,X , T ) be the semi-universal families of the deforma-
tions of Y0 and the partial resolution X0, respectively. It is known, see [15],
that from the defining equation for the singular space Y0 the threefold Y
can be viewed as the total space of a one-parameter family {Yt}. There-
fore, there is a map h : ∆t → Σ that classifies Y . The space X, then,
can be viewed as the corresponding one-parameter family {Xt} described
by g : ∆t → T in the diagram below.
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Figure 1.

More precisely, X = g∗(X ) and Y = h∗(Y). The curve C is the exceptional
set in X that lies over the discriminant in the base space T . Determining if
C contracts or components of C deform is accomplished by looking at the
discriminant locus of T and observing when g factors through.

If f̂ : X̂ → Ŷ is a formal cDV modification, then {s = t} gives a one-
parameter family of hypersurfaces defining a formal deformation of the sin-
gular space, Ŷ0, given by s = 0. Therefore, the inverse image of this family
under f̂ is a formal partial resolution of singularities. The semi-universal
property of deformations of DuVal singularities and their partial resolutions
shows that f̂ : X̂ → Ŷ is isomorphic to the induced map g∗(X̂ ) → h∗(Ŷ),
where X̂ and Ŷ are the semi-universal families of the formal deformation of
X̂0 and Ŷ0, respectively. Taking formal completions of the spaces ∆t and T
we have the following situation:

Definition 1.3. f̂ : X̂ → Ŷ is a formal cDV contraction if f̂ : X̂ → Ŷ
is a formal cDV modification such that the general section s ∈ mq defines
a map ĝ : ∆̂t → T̂ which does not factor through the inclusion of the
discriminant locus in T̂ .

With these definitions of formal cDV modification and formal cDV con-
traction, formal results have been established that are analogous to Artin’s
results in the analytic case.

Proposition 1.4. If f̂ : X̂ → Ŷ is a formal cDV modification, then f̂ is
either a formal cDV contraction, or some component of C has a formal
deformation.

Proof. As C lies over the discriminant locus, the components of C that
deform can be determined from its locally closed subsets. Over each subset
is a flat family of deformations of some corresponding subset of C. So,
if ĝ factors through, then pulling back the flat family to X̂ is the formal
deformation of this component of C.
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If ĝ does not factor through the discriminant locus, then by definition f̂
is a formal cDV contraction. �

Conjecture 1.5. If f̂ : X̂ → Ŷ is a formal cDV modification, then f̂ is a
formal modification in the sense of Artin [2, Defn. 1.7].

With these definitions established, contraction criteria can be established.
To know which cDV deformation space to utilize it must first be known which
cDV singularity results if C contracts. This analytic result is immediate from
the construction of the formal cAn modification f̂ in Section 3, which utilizes
the conormal sheaf on C and its restrictions to the components Ci.

Theorem 1.6. If f : X → Y is an analytic contraction map with f(C) = q

and C =
n⋃

i=1

Ci with all components having length 1, then a general hyper-

plane section of q has an An type singularity at q.

Section 4, then, explicitly determines when C deforms formally in X̂ and
when a formal cDV contraction exists. More precisely, a method similar to
Reid’s “Pagoda” construction in [14] shows that the contractibility of C can
be detected in its higher order neighborhoods. The construction results in
a sequence of defining ideals

Km ⊂ Km−1 ⊂ · · · ⊂ K2 ⊂ K1 = I
where I is the reduced ideal sheaf of C in X and

0 −→ OC −→ Ki/IKi −→ ω∗C −→ 0

is exact for each m ≤ i ≤ 1 with ω∗C the dual of the dualizing sheaf on C.
This sequence of ideals can be extended if and only if the the exact sequence
splits. Comparing the construction of this sequence of ideals defining C with
the semi-universal deformation of the An singularity at q, the following two
theorems are proved:

Theorem 1.7. C deforms formally in X if and only if there exists an in-
finite chain of subsheaves · · · ⊂ Km+1 ⊂ Km ⊂ · · · ⊂ K2 ⊂ I such that
Km/Km+1

∼= OC and Km+1/IKm
∼= ω∗C , where ω∗C is the dual of the dualiz-

ing sheaf.

Theorem 1.8. A formal cAn contraction of C exists if and only if there is
no infinite chain of subsheaves · · · ⊂ Km+1 ⊂ Km ⊂ · · · K2 ⊂ ID satisfying
Km/Km+1

∼= OD and Km+1/IKm
∼= ω∗D for any D =

⋃k
j=i Cj (1 ≤ i ≤ k ≤

n), where ID is the ideal sheaf of D in X and ω∗D is the dual of the dualizing
sheaf.

Some immediate consequences of these theorems and the construction
involved is that not all chains of (1, 1) curves will contract, though each
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component could be contracted separately (see Example 4.13). Also, unlike
the single component case, it is not true that a chain of length 1 curves will
either contract or deform.

2. Preliminaries: Length and equations for deformations of An

singularities.

In Section 2.1, we briefly discuss the significant role that the length of the
components of C plays in determining the higher order neighborhoods of C.
Section 2.2 gives a more precise discussion of the semi-universal deformations
of An singularities and their simultaneous resolutions than in Section 1. See
Figure 1 in Section 1 in reference to the maps and spaces discussed. Again,
the notation utilized here is most similar to that in [8].

2.1. Length. Let Ii/Ii
2 be the conormal sheaf of Ci in X, which is locally

free of rank two, so Ii/Ii
2 ∼= OCi(a)⊕OCi(b) for integers a and b. It will be

written that Ci is a curve of type (a, b). The assumption that KX · Ci = 0
implies, by adjunction, that a + b = 2, and the assumption that C has a
rational formal neighborhood in X, H1(X̂,OX̂) = 0, implies each Ci is a
curve of type (1, 1), (0, 2) or (−1, 3). It is known, see [3, page 95], that since
each component has length 1, they are all curves of type (1, 1) or (0, 2). As
in the work of Jiménez in [6], it is because of the existence of a projection
to O(−1) that the (−1, 3) curve has length greater than 1.

As the methods in this paper are for a curve C with multiple components,
it is necessary to confirm that the existence of Oi(−1) factors has a similar
effect on the length of each component curve Ci. Assume there is a finite
sequence of defining ideals I = J 1 ⊃ · · · ⊃ J k with J l/J l+1

∼= Om(l)(−1)
for all 1 ≤ l ≤ k − 1 and some m(l) ∈ {1, 2, . . . , n}, and assume that the
sequence cannot be extended to J k+1. If J k/J 2

k is generated by global
sections and these can be lifted to global sections of Ĵ k, then, as in [6],
they define a formal cDV modification f̂ : X̂ → Ŷ with f̂−1(mq) = Ĵ k. The
significance of all quotients being Om(l)(−1) for some m(l) is that H0(J k) =
H0(I). By definition, the formal length of a component Ci is the length of
OX̂/Ĵ k at a generic point of Ci. Let p ∈ Ci with p 6∈ Cj for j 6= i be
a generic point. We have J l = J l+1 unless J l/J l+1

∼= Oi(−1). In this
case, then, there is a longest subsequence I = J l1 ⊃ · · · ⊃ J lj such that
J lt/J lt+1

∼= Oi(−1) for 1 ≤ t ≤ j − l. The length of Ci is the length of
OX/J lj , which is lj . In conclusion, this means that if we have a sequence
I = J 1 ⊃ · · · ⊃ J l and there is an ideal J l+1 ⊂ J l such that J l/J l+1

∼=
Oi(−1), then the formal length of the component Ci increases by 1.

2.2. Equations for deformations of An singularities. We are inter-
ested in the case where Y0 is a singular surface having an An singularity.
Near the singularity with coordinates {x, y, z}, Y0 is the hypersurface in



382 TOM ZERGER

C3(x, y, z) defined by the equation −xy + zn+1. The analytic space Y is
defined as the hypersurface in C3(x, y, z)×Cn(σ1, . . . , σn) defined by

−xy + zn+1 + σ1z
n−1 + · · ·σn−1z + σn = 0.

The base space is Σ = Cn(σ1, . . . , σn) and the map π : Y → Σ is the map
induced by projection.

The resolution corresponding to the semi-universal family can also be
explicitly described. Let T be the hyperplane in Cn+1(t1, . . . , tn+1) defined
by
∑n+1

i=1 ti = 0. The map on the base spaces, φ : T → Σ, is defined by
σi = the (i + 1)st symmetric polynomial in the ti. Notice that by definition
σ0 =

∑n+1
i=1 ti = 0. The smooth deformation σ : V → T induced by φ is

defined in C3(x, y, z)×Cn+1(t1, . . . , tn+1) by the equations
n+1∑
i=1

ti = 0, −xy +
n+1∏
i=1

(z + ti) = 0.

Now, define a mapping V → (P1)n by

(x, y, z, t1, . . . , tn+1) →

x,

i∏
j=1

(z + tj)


i

for i = 1, . . . , n. The analytic space X , then, is defined to be the closure of
the graph of this map, and the mapping σ : X → T is defined by projec-
tion. If (uk, vk) are the homogeneous coordinates on the kth P1 from the
resolution, then the equations defining X are

−xy +
n+1∏
i=1

(z + ti) = 0,

xvj = uj

j∏
i=1

(z + ti) (1 ≤ j ≤ n),

j∏
i=k+1

(z + ti)ujvk = ukvj (1 ≤ k < j ≤ n).

From these equations it has been shown that C is the exceptional set of the
fiber of X over (t1, t2, . . . , tn+1) = ~0 and the component Ci is defined by
x = y = z = 0, uj = 0 for j < i and vk = 0 for k > i. Furthermore, the
curve Ci + Ci+1 + · · ·+ Cj deforms when ti = tj+1.

Since X is being viewed as the space of a one-parameter family of defor-
mations of a resolution of an An singularity, X is recovered, as described by
Pinkham in [13], from g : ∆t → T . The coordinates ti of T , then, can be
expressed as functions of t vanishing at t = 0. Let gi(t) = ti under this pa-
rameterization, where the gi are holomorphic functions on a neighborhood
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of 0 ∈ C. These functions have a power series expansion near t = 0. Let

gi(t) =
∞∑

j=1

aijt
j (1 ≤ i ≤ n + 1).(1)

Note that for our situation, we can only assume that the gi are formal
functions. Pulling back X via g, X can now be described from the equations
defining the resolution with coordinates {x, y, z, (ui, vi), t}. In particular, we
will be interested in defining X near an intersection point of two components,
Ci and Ci+1 with 1 ≤ i ≤ n−1. Now Ci

∼= P1(ui, vi), Ci+1
∼= P1(ui+1, vi+1)

and X is defined near this point of intersection by the transition functions on
the coordinate patches (ui−1, vi, t), (ui, vi+1, t) and (ui+1, vi+2, t), with the
intersection point being in the coordinate patch (ui, vi+1, t). These transition
functions are:

ui−1 = u2
i vi+1 + ui(gi(t)− gi+1(t))(2)

vi = 1/ui

t = t

ui+1 = 1/vi+1

vi+2 = v2
i+1ui + vi+1(gi+2(t)− gi+1(t))

t = t

with the convention that if i = 1 then ui−1 = x, and if i = n − 1 then
vi+2 = y.

Since the deformation of ∪k
i=jCi occurs when tj = tk+1, the deformation of

this curve is determined by whether it coincides with the discriminant locus
of g in T , which is gj(t) = gk+1(t). In particular, the whole curve C deforms
when g1(t) = gn+1(t). By viewing these functions as formal functions, we
have:

Theorem 2.1. C =
n⋃

i=1

Ci deforms formally in X̂ if and only if g1(t) =

gn+1(t).

Theorem 2.2. C =
n⋃

i=1

Ci can be contracted via a formal cDV contraction

if and only if gi(t) 6= gj(t) for any 1 ≤ i < j ≤ n + 1.

These results and the transition functions defining X, Equation (2), will
be utilized in Section 4.

3. The singularity q.

As mentioned above, in this case it is necessarily assumed that Ii/Ii
2 = (1, 1)

or (0, 2) for all i. We will identify the rational double point by investigating
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the general section of Î, which is obtained by lifting it from the globally
generated conormal sheaf, I/I2, on C.

The exact sequence of sheaves obtained by restricting the conormal sheaf
of C to the component Ci,

0 −→ IiI/I2 −→ I/I2 −→ I/IiI −→ 0,

and its long exact cohomology sequence allow us to determine this global
information.

The defining ideal sheaves for the component curves can be defined in local
coordinates {x, y, z} at the point of intersection p = (0, 0, 0) of Ci and Cj

by Ii = (x, z), Ij = (y, z) and I = (xy, z). Then I/I2|Ci = I/IiI is locally
free of rank 2 on Ci, generated by {xy, z} at a point of intersection, Ii/Ii

2

and Ij/Ij
2 are generated by {x, z} and {y, z}, respectively, and IiI/I2 is

locally free of rank 2 on ∪j 6=iCj . The map on generators of the inclusion map
I/IiI ↪→ Ii/Ii

2 at a point of intersection is given by xy 7→ y ·x, z 7→ z, with
y a local coordinate on Ci. The determinant of this map, then, vanishes to
order one at each point of intersection. Since Ii/Ii

2 has degree two, I/IiI
has degree 0 if there are two points of intersection and degree 1 if there is
just one. We have,

I/IiI =
{

(0,0), (-1,1), or (-2,2) if 2 ≤ i ≤ n− 1
(0,1) or (-1,2) if i = 1 or n.

But, since each component has a rational formal neighborhood there can be
no O(−2) factors and since it is assumed that each component has length
1, there can be no O(−1) factors, as discussed in Section 2.1. Therefore, it
is necessary that I/IiI = (0, 0) for 2 ≤ i ≤ n− 1 and (0, 1) for i = 1, n.

The exact sequence, from the normalization of C, is

0 −→ I/I2 −→
n⊕

i=1

I/I2|Ci −→
⊕

p∈Ci∩Cj

I/I2|p −→ 0.

That is, the middle term in the sequence is π∗π
∗F , where π : C̃ → C

is the normalization of C such that C̃ is the disjoint union of the smooth
component curves. Therefore, the first map is an isomorphism away from the
intersection points and the second map is defined by (si) 7→ ⊕p∈Ci∩Cj ((si)p−
(sj)p).
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Since all of the rank 2 sheaves I/I2|Ci
∼= I/IiI are all (0, 0) or (0, 1), the

group H1
(⊕n

i=1 I/I2|Ci

)
is the trivial group and

0 → H0
(
I/I2

)
→ H0

(
n⊕

i=1

I/I2|Ci

)

→ H0

 ⊕
p∈Ci∩Cj

I/I2|p

→ H1
(
I/I2

)
→ 0,

is the resulting cohomology exact sequence.
Now, I/I2|p is a two dimensional vector space, as it is a rank two vec-

tor bundle over a point p, and I/I2|Ci is locally free of rank two on Ci,
so H0

(⊕n
i=1 I/I2|Ci

)
−→ H0

(⊕
p∈Ci∩Cj

I/I2|p
)

is a surjective map, or,

equivalently, H1
(
I/I2

)
= 0. Furthermore, since I/IiI decomposes as (0, 1)

on both C1 and Cn and as (0, 0) on each of C2, . . . , Cn−1, h0 (
⊕n

i=1 I/IiI) =
3 + 2(n − 2) + 3 = 2n + 2. Also, we have h0(I/I2|p) = 2 at each point of

intersection, so h0
(⊕

p∈Ci∩Cj
I/I2|p

)
= 2(n−1) since there are n−1 points

of intersection. In particular, then, it has been shown that

h0(I/I2) = 2n + 2− (2n− 2) = 4

and
H1(I/I2) = 0.

As the map on global sections, H0
(
I/I2

)
−→ H0

(⊕n
i=1 I/I2|Ci

)
is an

isomorphism away from the singular points, H0
(
I/I2

)
−→ H0(I/I2|Ci) is

surjective for each i. From the normalization of C and the higher order
neighborhoods of C,

0 −→ Im/Im+1 −→
n⊕

i=1

Im/Im+1|Ci −→
⊕

p∈Ci∩Cj

Im/Im+1|p −→ 0

is exact, where Im/Im+1|Ci = Sm(I/IiI) has h1 = 0. Therefore, H0(Î) →
H0(I/I2) is surjective as well.

Recall that Ii/Ii
2 = (1, 1) or (0, 2), and I/IiI = (0, 1) or (0, 0), are both

generated by global sections. So, by lifting to global sections of I/I2:

Lemma 3.1. I/I2 is generated by global sections.

These four global sections of I/I2, lifted to global sections of Î, define a
formal cDV modification f̂ : X̂ → Ĉ4 for which f̂−1(0) = Î, so to determine
the singularity from contracting C, the general section of the ideal sheaf Î
must be determined.

Proposition 3.2. The zero scheme of a general section of Î is a smooth
surface along C.
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Proof. A general section of Î at any point of intersection p is of the form
g ·xy +h ·z with g, h ∈ Op,X̂ and g or h is a unit. Considering this as a local
section of I/I2, there exists a global section s ∈ I/I2 that does not vanish
at p, and, therefore, h(p) 6= 0. So, s is nonsingular at p. The condition
h(p) 6= 0 defines an open dense subset of X on which h is non-vanishing.
Since h(p) 6= 0 at each point of intersection, and the intersection of these
sets is open and dense in X, a general section of I/I2 is nonsingular at
each point of intersection. As H0(Î) → H0(I/I2) is surjective, lift this to
a global section of Î.

At a smooth point of C, a general section of Î is of the form g · x + h · z
with g or h a unit. Therefore, a general section of Î is smooth away from
the singular points of C as well. �

Take a general nonzero section s ∈ H0(I/I2). With the first map being
multiplication by s, we have

0 −→ OC −→ I/I2 −→ IC,S/I2
C,S −→ 0,(3)

where S is the smooth surface defined by s. Restricting to Ci, then,
IC,S/I2

C,S |Ci
∼= OCi(1) for i = 1, n and IC,S/I2

C,S |Ci
∼= OCi for 2 ≤ i ≤ n−1.

Invertible sheaves on C are completely determined by their degree on each
component, so it will be written IC,S/I2

C,S
∼= OC(1, 0, . . . , 0, 1). Since S

is smooth, at a point of intersection p ∈ C, coordinates can be chosen
so that (s) is defined by (z = 0) and IC,S = (xy). From the injection
IC,S/I2

C,S |Ci ↪→ ICi,S/I2
Ci,S

, which is an isomorphism away from the singular
points of C, local coordinates show that the determinant map vanishes to
order 1 at each point of intersection. Therefore, ICi,S/I2

Ci,S
∼= OCi(2) for all

1 ≤ i ≤ n. We have:

Theorem 3.3. If f : X → Y is an analytic contraction map with f(C) = q

and C =
n⋃

i=1

Ci with all components having length 1, then a general hyper-

plane section of q has an An type singularity at q.

4. Contraction criteria for C.

In this section it will be shown how the splitting of Sequence (3) is equivalent
to the existence of an infinitesimal deformation of C. Then, using the theory
of deformations of the An singularity, it will be shown that the continued
splitting of related sequences determine higher order deformations of C.

The discussion following Sequence (3) in Section 3 shows IC,S/I2
C,S

∼=
OC(1, 0, . . . , 0, 1), which is the dual of the dualizing sheaf on C, ω∗C . Se-
quence (3), then, will be written

0 −→ OC −→ I/I2 −→ ω∗C −→ 0.(4)
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Lemma 4.1. Sequence (4) splits if and only if there exists an ideal K2 sat-
isfying I2 ⊂ K2 ⊂ I, I/K2

∼= OC and K2/I2 ∼= ω∗C .

Proof. If this sequence splits define

K2 = Ker(I → I/I2 → OC).

By definition, then, I2 ⊂ K2 ⊂ I and I/K2
∼= OC . The sheaf K2/I2 is

invertible on C and restricting to each component Ci we have

0 −→ K2/I2|Ci −→ I/I2|Ci −→ I/K2|Ci −→ 0.

But, I/K2|Ci
∼= Oi for all 1 ≤ i ≤ n, I/I2|Ci

∼= Oi(1)⊕Oi for i = 1, n, and
I/I2|Ci

∼= Oi ⊕ Oi for 2 ≤ i ≤ n − 1. Therefore, this sequence must split
for all 1 ≤ i ≤ n and K2/I2 ∼= OC(1, 0, . . . , 0, 1) ∼= ω∗C .

The converse is immediate from the properties of K2 since

0 −→ K2/I2 −→ I/I2 −→ I/K2 −→ 0

is exact. �

The following proposition relates the splitting of Sequence (4), or, equiv-
alently, the existence of the defining ideal sheaf K2, to the infinitesimal
deformation of C.

Proposition 4.2. C has an infinitesimal deformation if and only if there
exists an ideal sheaf K2 satisfying I2 ⊂ K2 ⊂ I, I/K2

∼= OC and K2/I2 ∼=
ω∗C .

Proof. This second condition is equivalent to the splitting of the dual of
Sequence (4), which is

0 −→ ωC −→ NC −→ OC −→ 0,(5)

and the infinitesimal deformations are classified by H0(C,NC). Now

Ext1OC
(OC , ωC) ∼= H1(C,ωC) ∼= C,

and the geometric genus of C is 0, so the long exact cohomology sequence
can be written

0−→H0(NC)−→C δ−→ C−→H1(NC)−→0,

where δ is the coboundary map given by 1 7→ extension class of OC by ωC .
Therefore, δ is either an isomorphism or the zero map. Sequence (5) splits
if and only if δ is the zero map, which is equivalent to H0(NC) = C. �

It will now be shown that the sheaf K2/IK2 determines the existence of
higher order deformations of C. Calculating in local coordinates {x, y, z} at
a singular point of C, there are two possible forms for K2.

The invertible sheaf K2/I2 is a subsheaf of I/I2, which is generated by
{xy, z}. Therefore, K2/I2 is generated locally by an element of the form
f0xy + f1z with f0, f1 ∈ Op,X with either f0 or f1 a unit. If f0 is a unit,
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then, dividing by f0, K2/I2 is generated by an element of the form xy+λ1z.
So,

K2 = (xy + λ1z) + I2 = (xy + λ1z, z2).
On the other hand, if f1 is a unit, then, dividing by f1, K2/I2 is generated
by an element of the form g0xy + z. In this case, the analytic change of
coordinates inverse to (x, y, z) 7→ (x, y, g0xy+z) gives K2/I2 being generated
by z, and it does not affect the description of I as (xy, z). It can now be
seen that

K2 = (z) + I2 = (x2y2, z).
In either case, though, the kernel of the map OC⊕OC−→K2/IK2 defined

by (f, g) 7→ f(xy +λ1z)+ gz2 or (f, g) 7→ fx2y2 + gz is IC ⊕IC . Therefore,
K2/IK2 is locally free of rank 2 on C.

Furthermore, the invertible sheaf I2/IK2
∼= I/K2 ⊗ I/K2

∼= OC , so the
exact sequence

0 −→ I2/IK2 −→ K2/IK2 −→ K2/I2 −→ 0

can be written

0 −→ OC −→ K2/IK2 −→ ω∗C −→ 0,(6)

which is the same as Sequence (4) with K2/IK2 replacing I/I2. So, the
process continues to determine higher order deformations of C.

Lemma 4.3. Let Km ⊂ Km−1 ⊂ · · · ⊂ K3 ⊂ K2 ⊂ K1 = I be a sequence of
ideals satisfying IKi−1 ⊂ Ki ⊂ Ki−1, Ki−1/Ki

∼= OC and Ki/IKi−1
∼= ω∗C .

Then:
1) In local coordinates at p on C, Ki = (xy + λ1z + · · ·λi−1 zi−1, zi) for

all 1 ≤ i ≤ m, or Ki = (xiyi, z) for all 1 ≤ i ≤ m.
2) IKi−1/IKi

∼= I/K2 ⊗Ki−1/Ki
∼= OC for all 1 ≤ i ≤ m.

3) Ki/IKi is locally free of rank 2 for all 1 ≤ i ≤ m.
4) The sequence 0 −→ IKi−1/IKi −→ Ki/IKi −→ Ki/IKi−1 −→ 0 is

split exact for all 2 ≤ i ≤ m− 1.

We will now establish the relationship between the existence of the defin-
ing ideals Ki and the deformation of the curve C as determined from the
semi-universal deformations of Y0 and X0. In particular, it will be shown ex-
plicitly, from the defining equations for X (see Equation (2) in Section 2.2)
in the deformation theory of the An singularity, that the existence of Ki

corresponds to an i th order deformation of C. From Theorems 2.1 and
2.2 in Section 2.2, and the paragraph preceding them, it will be shown
how the existence of the higher order neighborhoods of C, defined by the
Ki, coincide with certain vanishing properties of the ti terms of the func-
tions gi (see Equation (1), Section 2.2) defining the discriminant locus of
ĝ : Spec C[[t]] → Spec C[[t1, . . . , tn+1]]. An inductive argument on the num-
ber of components of C and on the order of the terms will be utilized.
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Theorem 4.4. C deforms formally in X̂ if and only if there exists an in-
finite chain of subsheaves · · · ⊂ Km+1 ⊂ Km ⊂ · · · ⊂ K2 ⊂ I such that
Km/Km+1

∼= OC and Km+1/IKm
∼= ω∗C , where ω∗C is the dual of the dualiz-

ing sheaf.

Proof. The case where C is a smooth rational curve has been proved by Reid
in [14], the “Pagoda” construction. A brief discussion of Reid’s results will
be given to compare to the multiple component case.

Case 1. C = C1.

Using the transition functions defining X in the deformation of an A1

singularity from Section 2.2, Equation (2), and expanding the gi in power
series form as in Equation (1), Section 2, we have

x = u1
2y + u1

∞∑
j=1

(a1j − a2j)tj

t = t

v1 = 1/u1.

The curve C is given by y = t = 0 in the {u1, y, t} coordinate patch, and by
x = t = 0 in the {v1, x, t} patch. In other words, the ideal sheaf of C in X
is I = (y, t) = (x, t).

Since I/I2 decomposes as (1, 1) or (0, 2), there is a surjection I/I2 → OC

if and only if I/I2 = (0, 2). It has been shown this is also equivalent
to the existence of K2 (Lemma 4.1) and the existence of an infinitesimal
deformation of C (Proposition 4.2).

Lemma 4.5. There is a surjection I/I2 → OC if and only if a11 = a21.

Proof. It suffices to show I/I2 = (0, 2) if and only if a11 = a21. In
calculating the decomposition of the conormal sheaf from the transition
function, since tj ∈ I2 for j ≥ 2, it is only necessary to consider x =
u1

2y + u1(a11− b21)t. I/I2 is generated locally by {y, t} and {x, t} in these
two coordinate patches and

(x, t) =
(

u1
2 (a11 − a21)u1

0 1

)(
y
t

)
.

This matrix, in particular the entry (a11 − a21), determines I/I2. That is,
I/I2 = (0, 2) if and only if a11 = a21 (see [12, pp. 519-520]). �

The map I/I2 → OC , if it exists, can be calculated explicitly in coordi-
nates to determine the ideal K2. Reid [14] shows that K2/I2 ∼= OC(2) ∼= ω∗C
and K2 = (y, t2) = (x, t2) in local coordinates. From Sequence (5), then,
K2/IK2 = (1, 1) or (0, 2), and the process can be continued.
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Assume that we have Km ⊂ Km−1 ⊂ · · · ⊂ K2 ⊂ I with Ki−1/Ki
∼= OC ,

Ki/IKi−1
∼= OC(2) and Ki/IKi = (0, 2) if and only if a1,i = a2,i. Induction,

with details eliminated, proves:

Lemma 4.6. There is a surjection Km+1/IKm+1−→OC if and only if
a1(m+1) = a2(m+1).

From this inductive argument and the fact that C deforms in X if and
only if g1(t) = g2(t) (Theorem 2.1, Section 2.2), the following results of Reid
[14] have been established:

Theorem 4.7 ([14, Reid]). C ∼= P1 deforms in X if and only if there exists
an infinite chain · · · ⊂ Km+1 ⊂ Km ⊂ · · · K2 ⊂ I satisfying Km/Km+1

∼= OC

and Km+1/IKm
∼= OC(2).

Furthermore, if for some m, Km/IKm = (1, 1), then g1(t) 6= g2(t). There-
fore:

Theorem 4.8 ([14, Reid]). C ∼= P1 contracts if and only if the chain · · · ⊂
Km ⊂ · · · ⊂ K2 ⊂ I terminates.

Remark 4.9. Reid, in [14], showed not only that C contracts or deforms in
this formal structure, but also that there is actually an analytic deformation
or contraction of C.

To extend to multiple components, it will first be shown for two compo-
nents and it is without loss of generality (and to avoid sub-subscripts) that
the first two components are used.

Case 2. C = C1
⋃

C2.
From the description of X by transition functions in Equation (2), if i = 1

and n = 2, then X is defined by the transition functions

x = u2
1v2 + u1(g1(t)− g2(t)) u2 = 1/v2

v1 = 1/u1 y = v2
2u1 + v2(g3(t)− g2(t))

t = t t = t

where I = (u1v2, t) = (x, t) = (y, t), I1 = (v2, t) = (x, t) and I2 = (u1, t) =
(y, t) in the coordinate patches (u1, v2, t), (x, v1, t) and (u2, y, t).

Lemma 4.10. There is a surjection I/I2−→OC if and only if a11 = a31.

Proof. Assume that there is a surjection I/I2 → OC . Defining this in local
coordinates on the patch (u1, v2, t) containing the point of intersection, let
u1v2 7→ h1(u1, v2) and t 7→ h2(u1, v2) where the hi are holomorphic functions
in u1 and v2. Since t2 ∈ I2 in each patch, it suffices to assume gi(t) = ai1t
for 1 ≤ i ≤ 3. Then, in the remaining coordinate patches, I/I2 → OC is
given by

x 7→ u1h1 + u1(a11 − a21)h2 y 7→ v2h1 + v2(a31 − a21)h2

t 7→ h2 t 7→ h2.
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The images of the generators {x, t} and {y, t} of I/I2 must be holomorphic
in the coordinate patches (x, v1, t) and (u2, y, t) respectively. In particular,
h2 must be holomorphic in the coordinate v1 = 1/u1 and in u2 = 1/v2. This
can only be possible if h2 is a constant function. Let h2 = c where c ∈ C
and c 6= 0 for a nontrivial map.

Viewing h1 as a power series in u1 and v2, the image of x, u1h1 +u1(a11−
a21)c, can only be holomorphic in v1 if it is the zero function. Therefore,
h1 = (a21 − a11)c. The surjection can exist, then, only if in the coordinates
{y, t},

y 7→ v2(a21 − a11)c + v2(a31 − a21)c
t 7→ c

with the image of y holomorphic in u2 = 1/v2. Again, this is only possible
if it is the zero function, which is equivalent to (a21 − a11) = (a21 − a31) or
a11 = a31.

Furthermore, assuming c = 1 (since c 6= 0) and letting λ1 = a11 − a21 =
a31 − a21, the surjection is defined on the generators by the equations

u1v2 7→ −λ1 x 7→ 0 y 7→ 0
t 7→ 1 t 7→ 1 t 7→ 1.

Conversely, if a11 = a31 define I/I2−→OC by the above equations. �

The subsheaf K2 of I satisfying the conditions of Lemma 4.1 can also
be calculated explicitly using this local description. By definition, K2 =
Ker(I → I/I2 → OC), so t2 ∈ I2 and {u1v2 + λ1t, t

2} generate K2 in
the (u1, v2, t) patch. Similarly, from the equations of the map I/I2 → OC

above {x, t2} and {y, t2} generate K2 in the (x, v1, t) and (u2, y, t) patches,
respectively. Notice that this local description of K2 is equivalent to one of
the forms that was determined without the use of the equations from the
deformations of the An singularity (see Lemma 4.3, Part 1). To complete
the induction:

Lemma 4.11. There is a surjection Km+1/IKm+1 → OC if and only if
a1(m+1) = a3(m+1).

Proof. Assume there is a surjection Kk/IKk → OC if and only if a1k = a3k

for all k ≤ m.
To extend this to m+1, notice that Km+1/IKm+1 is generated by {u1v2+

λ1t + · · · + λmtm, tm+1} at the point of intersection, where λi = a1i −
a2i = a3i − a2i, and by {x, tm+1} and {y, tm+1} on the other coordinate
patches. Since tm+2 ∈ IKm+1 in each patch, to calculate the surjection

Km+1/IKm+1 → OC , it suffices to consider gi(t) =
m+1∑
j=1

aijt
j for i = 1, 2, 3.
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Defining this map on generators in the coordinates (u1, v2, t), let

u1v2 + λ1t · · ·+ λmtm 7→ h1(u1, v2)
tm+1 7→ h2(u1, v2)

where h1 and h2 are holomorphic in u1 and v2. In the other patches we also
have the generator tm+1 mapping to the function h2. The exact reasoning
from Lemma 4.10 shows that h2 must be the constant function, and it can be
assumed to be the constant 1. So, the surjection on the remaining generators
is given by

x 7→ u1(h1 + a1(m+1) − a2(m+1)) y 7→ v1(h1 + a3(m+1) − a2(m+1))
tm+1 7→ 1 tm+1 7→ 1.

As for the surjection from I/I2 done previously, we can conclude that h1 =
a2(m+1) − a1(m+1) = a2(m+1) − a3(m+1), and this surjection can occur if and
only if a1(m+1) = a3(m+1). �

Therefore, for the case where C = C1
⋃

C2, C deforms if and only if
there is an infinite chain · · · ⊂ Km ⊂ · · · K2 ⊂ I with Km/Km+1

∼= OC and
Km+1/IKm

∼= ω∗C .
Induction on more components of C is immediate as it is necessary to show

that the surjection is well-defined where Cm+1 intersects ∪m
i=1Cm, which is

just the point p = Cm∩Cm+1. This completes the proof of Theorem 4.4. �

Theorem 4.12. A formal cAn contraction of C exists if and only if there is
no infinite chain of subsheaves · · · ⊂ Km+1 ⊂ Km ⊂ · · · K2 ⊂ ID satisfying
Km/Km+1

∼= OD and Km+1/IKm
∼= ω∗D for any D =

⋃k
j=i Cj (1 ≤ i ≤ k ≤

n), where ID is the ideal sheaf of D in X.

Proof. For every i and k we can conclude from the proof of Theorem 4.4
that gi 6= gk+1. Therefore, the curve D is not contained in the discrim-
inant locus, which is equivalent to the induced formal map, SpecC[[t]] →
SpecCn [[t1, . . . , tn]] not factoring through the discriminant locus in
SpecCn[[t1, . . . , tn]]. �

Notice from this theorem, it can be concluded that even if every compo-
nent of C can be contracted, this is not enough to ensure that C contracts.

Example 4.13. Using the description of X by transition functions in Equa-
tion (2) of Section 2.2, with C = C1

⋃
C2, let g1(t) = 2t, g2(t) = t and

g3(t) = 2t. Since g1(t) = g3(t), the curve C deforms in X and so is not
contractible. However, since g1(t) 6= g2(t), C1 can be contracted, and since
g2(t) 6= g3(t), C2 can also be contracted. In fact, I1/I1

2 = (1, 1) and
I2/I2

2 = (1, 1) (see [10]). The conormal sheaves of each component being
ample implies that C1 and C2 can each be contracted separately.
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