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We prove real Paley-Wiener theorems for the inverse Fourier
transform on a semisimple Riemannian symmetric space G/ K
of the noncompact type. The functions on G/K whose Fourier
transform has compact support are characterised by a L2
growth condition. We also obtain real Paley-Wiener theo-
rems for the inverse spherical transform.

1. Introduction.

The classical Fourier transform ¢ is an isomorphism of the Schwartz space
S(R¥) onto itself. The space C°(R¥) of smooth functions with compact sup-
port is dense in S(R¥), and the classical Paley-Wiener theorem characterises
the image of C2°(R¥) under Fy as rapidly decreasing functions having an
holomorphic extension to C* of exponential type. Since RF is self-dual, the
same theorem also applies to the inverse Fourier transform.

Let G be a noncompact semisimple Lie group and K a maximal compact
subgroup of GG. The Fourier transform F on the Riemannian symmetric
space X = G/K is an analogue of the classical Fourier transform on R*. A
Paley-Wiener theorem for the Fourier transform F, which characterises the
image of C2°(X) under F in terms of holomorphic extensions and growth
behaviour, as in the classical case, was proved by Helgason, see [7]. Further-
more, the L2-Schwartz space S?(X) contains C2°(X) as a dense subspace
and F is an isomorphism of S?(X) onto some generalised Schwartz space,
see [4].

Unlike the classical case, however, we can not use a duality argument to
deduce a Paley-Wiener theorem for the inverse Fourier transform. So how
can we characterise the functions whose Fourier transform F has compact
support?

The Fourier transform on X reduces to the spherical transform H on G
when restricted to K-invariant functions. The paper [8] provides an answer
to the above question for the spherical transform on Schwartz functions in
the rank one and complex cases. The characterisation is in analogy with the
classical Paley-Wiener theorem given in terms of meromorphic extensions
and growth conditions.
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In this paper we prove (real) Paley-Wiener theorems for the inverse Fourier
transform for general Riemannian symmetric spaces, i.e., we characterise, as
a subset of L?(X), the set of functions f on X whose Fourier transform F f
has compact support. More precisely, f € C°°(X) has to satisfy

lim [|A"f]y/*" < oo,
n—oo

where A is the Laplace-Beltrami operator (and (1+ |- |)"f € L?(X) for all
n € NU{0} if we also want the Fourier image to be smooth). Specialising to
bi- K-invariant functions yields (real) Paley-Wiener theorems for the inverse
spherical transform for general noncompact semisimple Lie groups.

Our approach is based on real analysis techniques developed by H. H.
Bang, see [2] and [3], and V.K. Tuan, see [10]. Also see [11] for a his-
tory and overview of (real) Paley-Wiener theorems for certain transforms
(Fourier, Mellin, Hankel...) on R. In particular we use Parseval’s formula,
intertwining properties of F, and the following characterisation of the radius
of the support of a function g on R™:

1/4n
swp 1= tim { [ aPaf

AEsupp g

For completeness and comparison, we first consider the Fourier transform
on R¥. The results here are originally due to H.H. Bang, see [2] and [3], and
V.K. Tuan, see [10]. Notice the beautiful symmetry between the (statements
of the) results for the various transforms.

2. The Fourier transform on RF.

For background and details, please see [9, Chapter 7]. Let F. denote the
classical Fourier transform on RF:

Faf(N) = /Rk f(x)e_i)‘“da:,

defined for nice functions f, for all A\ € C* for which the above integral

makes sense. Let A = % +--+ % denote the Laplacian on R* and let
1 k

S(RF) denote the Schwartz space of rapidly decreasing differentiable func-
tions. Then Fu(Af)(N) = —||NI2Faf(N), (A € RF), for all f € S(RF), and
the Fourier transform is an isomorphism of S(R¥) onto itself, with inverse
given by:

Falga) = m™ [ gyerman (@ erY
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for g € S(R¥). Parseval’s formula states that

(ot = [ @Rl = @0 [ FapFafivis
= (Fafi, Fafa),

for fi, fo € S(RF), which implies that || f||2 = ||Fafll2, for all f € S(RF),
and hence that the Fourier transform extends to an isometry from L?(R¥)
onto itself.

Let f € C(R¥) such that A"f € L?(R¥) for all n € N U {0} and let
f2 € C(RF). Then:

<fcl(Af)7~7:clf2> = <Afv f2> = <f7 Af2> = <fc1fafcl(Af2)>
= (Faf, =MPFafz) = (=N Faf, Fafo),

and we conclude that F(Af)(\) = —||A||2Faf(A) ae., by a density argu-
ment, whence Fo (A" f)(\) = (—1)"||A||*"Faf(A) a.e., and

W /R A" f(@)Pde = (2m)~* /]R A Faf )2

for all € NU {0}.

We define the support, suppg, of g € L?(R¥) to be the smallest closed
set, outside which the function g vanishes almost everywhere, and R, :=
SUD )\ csupp ¢ ||Al| to be the radius of the support of g; Ry is finite if, and only
if, g has compact support.

Lemma 2.1. Let g € L?(R¥) such that |\|*"g(\) € L*(R¥) for all n €

NuU{0}. Then
1/4n
R, = lim { / \\Ar‘*”rg(A)r?dA} .
n—oo RF

Proof. Assume g has compact support with R, > 0. Then:

1/4n
lim sup {/ H)\H4"|g()\)]2d)\}
Rk

n—oo

1/4n
< Rylimsup / lg(\) |2\ = R,.
n—00 IMI<Rq

On the other hand,

/ gV PdA > 0,
Rg—€§||)\H§Rg
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for any € > 0, hence

1/4n
liminf{/ |)\||4n|9()\)|2d)‘}
n—oo Rk

1/4n
> timint § [ I g(0) A
nmee Rg—e<||MI<Rg

1/4n
> (R, — ) liminf / gAY =R,
e Rg—e<|IMI<Ry

and thus

1/4n
i { [ IATla0P < R,
00 R,

n—

Now assume that g has unbounded support. Then

/ gV PdA > 0,
[IAlI>N

for any N > 0, so:

1/4n
liminf{/ ||)\||4n|9()\)‘2d)‘}
n—oo Rk
1/4n
> lim inf {/ |)\”4n|g()\)|2d)‘}
nmoe Al=ZN

1/4n
> N lim inf / lg(N)|2dX =N,
nmee | JIAEN

for arbitrary N > 0, and we conclude that

1/4n
liminf{/ H)\H4”|g(>\)|2d)\} = o0.
n—oo RF

O

Let L?(RF) denote the subspace of L?(R¥) of functions with compact

support and let L%(R¥) := {g € L2(R¥)|R, = R}. Let also C%(R") :

{9 € CZ(R")| Ry = R}.

Definition 2.2. We define the L?-Paley-Wiener space PW?(R¥) to be the

space of all functions f € C*°(R¥) satisfying:
(a) A"f € L%(RF) for all n € NU {0}.
(b) RS := limy oo A" f]13/*" < 0.
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Let also PW%(RF) := {f € PW?(R¥) | R® = R}, for R > 0.

The proof of Theorem 2.3 below shows that the limit in (b) above is well-
defined. The real version of the L?-Paley-Wiener theorem for the inverse
Fourier transform can now be formulated as follows:

Theorem 2.3. The inverse Fourier transform '7:1 is a bijection of L2(RF)
onto PW?(R¥), mapping L%(RF) onto PW%(RF).

Proof. Let g € L%(R¥). Then [|A|"g()\) € L'(R¥) for all n € NU {0}, and
Filg € CX(RF). We also have A"(F ' ) = FH((=1)"|A|?"g) € L*(RF)

for all n € NU {0}, by the formula for ]—"1 , and (1) thus yields:

i { [ 1At >|2dx}l/4n

1/4n
— tin {0t [ s < r

n

whence F;'g € PW%(RF).
Let now f € PWR(RF). Then Fa(A"f)(A) = (=1)"|A|*"Faf(A) €
L%(R¥) for all n € N, and another application of (1) shows that

1/4n
lim {<2w>— PR |dA}

n

1/4n
= lim {/ \A"f(ar)]zdx} =R,
n—o00 RF

and we conclude that F. f has compact support with Rz, s = R. O

Remark 2.4. The classical (complex) L2-Paley-Wiener theorem implies
that PW%(R¥) exactly consists of those L?(R¥) functions that can be ex-
tended to holomorphic functions of exponential type R on C*.

Remark 2.5. Let f € PW?(R). Then L. f € LP(R) for all n € NU {0},
and:
1/n

lim = Ry, ; = R,

p
for all 1 < p < co. This follows from [2, Theorem 1]. Similar results hold
for R¥, k > 1, see [3, Theorem 3] and [10, Theorem 4].

Definition 2.6. We define the Paley-Wiener space PW (R¥) as the space of
all functions f € C*°(R*) satisfying:

(a) (1 + |z|)™A"f € L2(R¥) for all m,n € NU {0}.

(b) R = limpoo | A" f]l3/*" < o0,
Let again PWg(R¥) := {f € PW(R¥) | RS = R}, for R > 0.
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We notice that the only difference between PW?(R¥) and PW(R¥) is an
extra requirement of polynomial decay, to help ensure that Fof € C®(RF).

The real version of the Paley-Wiener theorem for the inverse Fourier trans-
form is the following:

Theorem 2.7. The inverse Fourier transform .7-"0_11 is a bijection of C°(RF)
onto PW(RY), mapping C(R¥) onto PW g(RF).

Proof. Let g € C¥(RF), then F;'g € S(R¥), and F'g € PW%(RF) by
Theorem 2.3.

Let f € PWg(RF) ¢ PW%(RF). Then Fuf € C°(R¥) since f has
polynomial decay, and F f has compact support with Rx, ; = R by Theo-
rem 2.3. O

3. Lie group notation.

In this section we introduce the Lie group notation we need in the next
sections. We refer to [5], [6] and [7] for further details.

Let G be a real connected noncompact semisimple Lie group with finite
center and let € be a Cartan involution of G. Then the fixed point group
K := GY is a maximal compact subgroup. Let g and £ denote their Lie
algebras, and let g = €@ p be the Cartan decomposition of g into the +1
eigenspaces of 0. The Killing form on g induces an AdK-invariant scalar
product on p and hence a G-invariant Riemannian metric on X := G/K.
With this structure, X becomes a Riemannian globally symmetric space of
the noncompact type.

Fix a maximal abelian subspace a of p. Denote its real dual by a* and its
complex dual by af.. The Killing form of g induces a scalar product (-,-) and
hence a norm || - || on ac and af.. Let ¥ C a* denote the root system of (g, a)
and let W be the associated Weyl group. Choose a set ¥ C X of positive
roots, let n := @ aex, Ba be the corresponding nilpotent subalgebra of g and
let ap :={H € a|a(H) > 0Va € X} be the positive Weyl chamber with
@y it’s closure. Denote by a* and a* the similar cones in a*, and define the
element p € a* by: p(H) = %Zae&r maqo(H), H € a, where mq = dim g,.

Let g = £® a ® n be the Iwasawa decomposition of g and G = KAN =
N AK the corresponding Iwasawa decompositions of G, where A and N are
the Lie groups generated by a and n respectively. Every g € G can be
represented as: g = Kexp H(g)N = Nexp A(g)K, where the projections
onto the A-parts A(g) € a and H(g) € a are uniquely determined. We note
that A(g) = —H(g™'). Let M := Zg(a), then B := K/M is a compact
homogeneous space. We define the vector A(x,b) € a as A(x,b) := A(k™1g),
fore =gK e X andb=kM € B.

Put Ay = exp(ay), then Ay = exp(a;). The Cartan decomposition
implies that the natural mapping from K/M x Ay x K into G = KA, K is a



REAL PALEY-WIENER THEOREMS 7

diffeomorphism onto its dense open image. We define the norm of an element
g € G as: |g| = |k exp(H)ke| = ||H||, with H € a;; this is the K-invariant
geodesic distance to the origin eKX. We denote by Br := {g € G | |g| < R}
the K-invariant ball of radius R around e.

We identify functions on X with right- K-invariant functions on G. We
normalise the invariant measure on X as:

[ f@ar= [ | + [ o) () dbndtrd

for f € C2°(X), where the Jacobian J is given by: J(H) = [[,ex, (eUH) —
e~H)yma dH is the Lebesgue measure on a and dk is the measure on K
such that [, dk = 1. We notice that 0 < J(H) < Cce2r) for H € a7,
where C' is a positive constant.

The spherical functions ¢y, A € ag, on G are defined as:

prlg) = [ A g [ s g
K K

We note that ) is Weyl group invariant, ¢,n = o, w € W. Let U(g)
denote the universal enveloping algebra of g. We write D f(g) for the action
of D € U(g) on f € C*(G) from the left at g € G. The LP-Schwartz space
SP(X), 0 < p <2, is defined as the space of all functions f € C°°(X) such
that:

sup (1 + g))o(9) " * | Df(g)] < oo,
geG

for all D € U(g) and m € NU {0}. We can also characterise SP(X) as the
space of all functions f € C*°(X) satisfying:
(1 +1g)™Df(g) € LP(X),

for all D € U(g) and m € NU{0}. We note that SP(X) ¢ LI(X) for
O<g<p<L2

4. The Fourier transform.

In this section, we recall some facts and theorems for the Fourier transform
on a noncompact semisimple Riemannian symmetric space, see [7, Chap-
ter 3] for details and references.

The Fourier transform of a function f on X is defined as:

)\ b / f Z)\-f—p ch))d ’

for all A € ag, b € B for which the integral exists. In particular, F f extends
to a smooth function on ag x B, holomorphic in the first variable, for f €
C°(X), see also below.
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The plane wave eigenfunction
(2) exp(w) == e(iA+p)(A(z,b))

Y

is a joint eigenfunction of D(X), the commutative algebra of G-invariant
differential operators on X, for all A € ag,, b € B, or, more precisely

Deyy =T(D)(iNexp, VD eD(X),  (A€ap beB)

where I' : D(X) — S(a*)" is the Harish-Chandra isomorphism. In particu-
lar,

Aery =—((NA) + [IplP)eas,  (A€ag, be B)
for the Laplace-Beltrami operator A on X, and hence
FALHKD) = =N +lplHFFAL),  (A€ag, be B)
for all f € C°(X), by self-adjointness of A, see also (6).
A C®*-function (A, b) on ai x B, holomorphic in A, is called a holo-

morphic function of uniform exponential type R, if there exists a constant
R > 0, such that, for each N € N, we have:

sup e TSN+ IADN 0N, b)] < co.
A€ag, beB
The space of holomorphic functions of uniform exponential type R will be
denoted Hg(ag x B) and we denote by H(ag x B) their union over all R > 0.
Let furthermore H(af x B)" denote the space of all functions 1) € H(a} x B)
satisfying the symmetry condition:

(3) /e(iw”p)(“‘(fv’b))w(w)\,b)db:/ AT A@D)) (X b)db,
B B

for w e W and all A € af, z € X.

The Paley-Wiener theorem states that the Fourier transform is a bijection
of the space C2°(X) onto the space H(ag x B)W, with the following inversion
formula:

4)  flx)= / / eATPIA@D) 7 £ (X b)|e(N)|~2dAdb, (z € X)
a*+ B

where ¢(\) is the Harish-Chandra c-function, for f € C2°(X). Moreover,
Ff € Hr(at x B)W if, and only if, supp f C Bg. We note that |c(\)|72 is
bounded by some polynomial for A € a*.

Let f1, fo € C°(X), then Parseval’s formula for F is given by:

(5) /X fi1(@) fo(x)dz = / * /B F LA B)F f2(X, b)|e(N)|2dAdb.

We conclude that the Fourier transform extends to an isometry of L?(X)
onto L?(a’. x B, lc(\)|"2dAdb). In the following we adopt the convention
L?(a*. x B) := L*(a% x B, |c(\)|"*d\db).
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Let f € C(X) such that A"f € L?(X) for all n € NU {0} and let
fo € C(X). Then self-adjointness of the Laplace-Beltrami operator A:

(6) /X A" f(2) fola)da = /X F(@) A" o ) de

Parseval’s formula (5) and density of C°(X) imply, as in the classical case,
that

(7) FA"F)A0) = (D)™ (A + [lp*)" FF (X b),
a.e., for all n € NU {0}.

5. The inverse Fourier transform.

We define the inverse Fourier transform F~lg of a function g on a’ X B via

(4):
/ / (D+0)(A@D) g (X, b)|e(N)|"2dAdb,

for all x € X for which the integral exists.

We define the support, supp g, of g € Lz(ai x B) to be the smallest closed
set in a} X B, outside which the function g vanishes almost everywhere, and
Ry := Sup(y p)esuppg ||\l to be the ‘radius’ of the support of g.

Lemma 5.1. Let g € L*(a%. x B) such that || A||*"g(\,b) € L*(a%. x B) for
alln €e NU{0}. Then

1/4n
Ry = Jim & [ [ INlgO DRI b
n—oo ai B

Proof. As for Lemma 2.1. O

Let L2(a% x B) denote the subspace of L?(a% x B) of functions with
bounded support and let L% (a% x B) := {g € L2(a’. x B) | Ry = R}.
Definition 5.2. We define the L-Paley-Wiener space PW?(X) as the space
of all functions f € C*°(X) satisfying:

(a) A"f € L*(X) for all n € NU {0}.

nenl/2n
(b) B = limy oo [[(A + o) 1" < oo.
Let also PW%(X) := {f € PW?(X)| R? = R}, for R > 0.

The real L2-Paley-Wiener theorem for the inverse Fourier transform can
now be formulated as follows:

Theorem 5.3. The inverse Fourier transform F~! is a bijection of Lz(ai X
B) onto PW?(X), mapping L%(a% x B) onto PW%(X).
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Proof. Let g € L% (a% x B). Then F~'g € C*°(X) by Lebesgue’s dominated
convergence theorem. Equation (2) gives, for D € D(X),

D(Fg)(x) = / * /B T(D)(i)eP MA@ (X b)|e(A)|~2dAdb,

which in particular shows that (A + [|p])"F~1g = F1((-=1)"|\]|*"g) €
L*(X) for all n € NU {0}. Parseval’s formula (5) with

fi=fo=FHED)AP)

yields:
1/4n
tim { [ 18+ 1ol g

1/4n
— Iim { / / HAH“”IQ(A,b)P!c(A)I‘QdAdb} _ R,
n—0oo at JB

whence F~1g € PW%(X).

Let now f € PW(X). Then F((A+|lpl)"f)(Ab) = (=1)"[AI*"FF(A, )
€ L*(a* x B) for all n € N by (7). Another application of Parseval’s formula
as above with fi = fo = (A + ||p||)"f shows that Rr; = R$ = R, and we
conclude that F f has bounded support. O

Corollary 5.4. Let f € C®(X) be such that A™f € L*(X) for all n €

N U {0}. It then follows that lim, . ||A"f||§/2n < oo if, and only if,
lim, oo [[(A+[|pl|?)"f11Y*" < 00, Purthermore, limy oo [|A" |3/ = (R>+

Ipl[2)Y/2, for f € PW%(X) with R > 0.

Proof. Let f € PW%(X), with R > 0, then Ff € LQR(CC‘|r X B). Parseval’s
formula and an easy adaption of the proof of Lemma 2.1 shows that

Tim [An g%

n—oo

1/4n
~ lim { I KRR R b>|2\c<A>r—2dAdb}

= (B + ||pl*)"/2.
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Assume that lim,, ... A" £[|5/*" < co. Then F(A"f)(A,b) = (—1)"(||A|2
+|pl|?)"F f(A,b) € L*(a* x B), for all n € N, and

1/4n
i ¢ [ INTIE RO 2ardy
n—o00 ot /B

1/4n
< lim { [/ (HW+le!z)%!ff(k,b)IQ\C(A)!QdAdb}

= lim A" f]y*" < o0,
that is, 7 f has bounded support. O

Remark 5.5. Assume that f € SP(X), with 0 < p < 2, then Ff extends
to an analytic function on a small tube domain around a* x B in ag x B.
Hence Ff cannot have compact support on a* x B and we conclude that
SP(X)NPW?3(X) = {0} for any 0 < p < 2.

Definition 5.6. We define the Paley-Wiener space PW(X) as the space of
all functions f € C*°(X) satisfying:

(a) (14 |z))™A"f € L*(X) for all m, n € NU {0}.

(b) B = limy oo [|(A + [lo]*)" 7], < co.
Let also PWg(X) := {f € PW(X)|R% = R}, for R > 0.

Here |z| := |g|, for x = gK € X. Again, the only difference between the
Paley-Wiener spaces PW(X) and PW?(X) is the polynomial decay condition
(a), ensuring that Ff € C>®(a* x B)W (see below).

The space C°(a* x B)W is defined as the subspace of functions ¢ €
C°(a* x B) satisfying the symmetry condition (3) for all w € W and all
Aea*, € X. Let finally C¥(a* x B) :={F € C*(a* x B) | Ry = R}.

The real Paley-Wiener theorem for the inverse Fourier transform then is:

Theorem 5.7. The inverse Fourier transform F~1 is a bijection of C°(a*x
BYW onto PW(X), mapping C$(a* x B)W onto PWg(X).

Proof. Let g € C%¥(a* x B)W, then g € L%(a’ x B) and thus Flg €
PW%(X) by Theorem 5.3. We furthermore see that F~1g € S?(X) by [4,
Theorem 4.1.1], whence F~ g satisfies the polynomial decay condition (a).

Let now f € PWg(X). The basic estimate ||A(g)|| < Clg|, for all g € G,
gives us a polynomial estimate (in x) of the derivatives (with respect to
A) of the plane wave eigenfunctions ey p(x). It is also well-known that
(1+ |x])™"pg € L?(X) for some large r € N. All this, the polynomial
decay condition (a), the Cauchy-Schwartz theorem and Lebesgue’s domi-
nated convergence theorem imply that Ff € C®(a* x B)". Furthermore
F f has the desired compact support by Theorem 5.3. O
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6. The inverse spherical transform.

In this section, we specialise our results to bi-K-invariant functions, that is,
we consider the (inverse) spherical transform. We refer to [1], [5] and [6] for
background concerning Paley-Wiener theorems for the spherical transform.
Let C*°(K\G/K) C C*(G) denote the subspace of bi-K-invariant differen-
tiable functions on G. We will use similar notation for the L?, Paley-Wiener
and Schwartz spaces of K-invariant differentiable functions.

Let f € CX(K\G/K). The spherical transform H f of f is defined as:

/f z)p_r(z

for A € ai.. We note that Ff(X,b) = Hf(A) for all A € a and all b € B.
This follows from left- K-invariance of f, the identity A(k-z,b) = A(z, k~1-b)
and integrating over K.

The spherical transform is an isomorphism of S?(K\G/K) onto S(a*)V
the Weyl group invariant Schwartz functions on a*. The inversion formula
is given by:

1 -
(8) fz) = W] /a HENea(@)le(N)[2dr, (2 €G)

for f € S2(K\G/K). We use (8) to define the inverse spherical transform
H~1g for a general function g on a*:

-2
Hg(x) : ‘W|/ e\ 2d).

Let f € C®(K\G/K) be such that A"f € L*(K\G/K) for all n €
NU{0}. Then H((A+p]>)"f)(A) = (=1)"|A[|*"Hf(A) a.e., and Parseval’s
formula for H gives:

2\n 2 _ i 4n 2 c -2
L+ 1ol @)de = i [ AT Pl

for all n € NU{0}. It also follows that the spherical transform extends to an
isometry from L?(K\G/K) onto L?(a*, ﬁ|c()\)\_2d)\)w, where superscript
W denotes Weyl group invariance.

Let L2(a*)" denote the Weyl group invariant L2-functions on a* with
compact support and let subscript R denote the radius of the support. The
real versions of the Paley-Wiener theorems for the inverse spherical trans-
form then becomes:

Theorem 6.1. The inverse spherical transform H~! is a bijection of
L2(a*)W onto PW?(K\G/K), mapping L%(a*)"V onto PW%(K\G/K).

Theorem 6.2. The inverse spherical transform H™' is a bijection of
C>(a*)V onto PW(K\G/K), mapping C5(a*)V onto PWr(K\G/K).
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Proof. The above theorems are special cases of Theorem 5.3 and Theo-
rem 5.7. We note, however, that we can prove them independently using
Parseval’s formula and intertwining properties of H. O

Remark 6.3. Let f € PW(K\G/K) and consider f as a function on a by
the application H — f(exp(H)). Then f does not extend to an entire func-
tion on ac, due to the poles of the spherical function ¢y (exp(H)). There is,
however, a description of the Paley-Wiener space PW(K\G/K) as functions
having an explicit meromorphic extension and satisfying some exponential
growth conditions for the rank 1 and the complex cases, see [8] for details.
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