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We prove real Paley-Wiener theorems for the inverse Fourier
transform on a semisimple Riemannian symmetric space G/K
of the noncompact type. The functions on G/K whose Fourier
transform has compact support are characterised by a L2

growth condition. We also obtain real Paley-Wiener theo-
rems for the inverse spherical transform.

1. Introduction.

The classical Fourier transform Fcl is an isomorphism of the Schwartz space
S(Rk) onto itself. The space C∞c (Rk) of smooth functions with compact sup-
port is dense in S(Rk), and the classical Paley-Wiener theorem characterises
the image of C∞c (Rk) under Fcl as rapidly decreasing functions having an
holomorphic extension to Ck of exponential type. Since Rk is self-dual, the
same theorem also applies to the inverse Fourier transform.

Let G be a noncompact semisimple Lie group and K a maximal compact
subgroup of G. The Fourier transform F on the Riemannian symmetric
space X = G/K is an analogue of the classical Fourier transform on Rk. A
Paley-Wiener theorem for the Fourier transform F , which characterises the
image of C∞c (X) under F in terms of holomorphic extensions and growth
behaviour, as in the classical case, was proved by Helgason, see [7]. Further-
more, the L2-Schwartz space S2(X) contains C∞c (X) as a dense subspace
and F is an isomorphism of S2(X) onto some generalised Schwartz space,
see [4].

Unlike the classical case, however, we can not use a duality argument to
deduce a Paley-Wiener theorem for the inverse Fourier transform. So how
can we characterise the functions whose Fourier transform F has compact
support?

The Fourier transform on X reduces to the spherical transform H on G
when restricted to K-invariant functions. The paper [8] provides an answer
to the above question for the spherical transform on Schwartz functions in
the rank one and complex cases. The characterisation is in analogy with the
classical Paley-Wiener theorem given in terms of meromorphic extensions
and growth conditions.
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In this paper we prove (real) Paley-Wiener theorems for the inverse Fourier
transform for general Riemannian symmetric spaces, i.e., we characterise, as
a subset of L2(X), the set of functions f on X whose Fourier transform Ff
has compact support. More precisely, f ∈ C∞(X) has to satisfy

lim
n→∞

‖∆nf‖1/2n
2 <∞,

where ∆ is the Laplace-Beltrami operator (and (1 + | · |)nf ∈ L2(X) for all
n ∈ N∪{0} if we also want the Fourier image to be smooth). Specialising to
bi-K-invariant functions yields (real) Paley-Wiener theorems for the inverse
spherical transform for general noncompact semisimple Lie groups.

Our approach is based on real analysis techniques developed by H. H.
Bang, see [2] and [3], and V.K. Tuan, see [10]. Also see [11] for a his-
tory and overview of (real) Paley-Wiener theorems for certain transforms
(Fourier, Mellin, Hankel...) on R. In particular we use Parseval’s formula,
intertwining properties of F , and the following characterisation of the radius
of the support of a function g on Rn:

sup
λ∈supp g

‖λ‖ = lim
n→∞

{∫
Rn

‖λ‖4n|g(λ)|2dλ
}1/4n

.

For completeness and comparison, we first consider the Fourier transform
on Rk. The results here are originally due to H.H. Bang, see [2] and [3], and
V.K. Tuan, see [10]. Notice the beautiful symmetry between the (statements
of the) results for the various transforms.

2. The Fourier transform on Rk.

For background and details, please see [9, Chapter 7]. Let Fcl denote the
classical Fourier transform on Rk:

Fclf(λ) :=
∫

Rk

f(x)e−iλ·xdx,

defined for nice functions f , for all λ ∈ Ck for which the above integral
makes sense. Let ∆ = d2

dx2
1

+ · · · + d2

dx2
k

denote the Laplacian on Rk and let

S(Rk) denote the Schwartz space of rapidly decreasing differentiable func-
tions. Then Fcl(∆f)(λ) = −‖λ‖2Fclf(λ), (λ ∈ Rk), for all f ∈ S(Rk), and
the Fourier transform is an isomorphism of S(Rk) onto itself, with inverse
given by:

F−1
cl g(x) = (2π)−k

∫
Rk

g(λ)eiλ·xdλ, (x ∈ Rk)
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for g ∈ S(Rk). Parseval’s formula states that

〈f1, f2〉 :=
∫

Rk

f1(x)f2(x)dx = (2π)−k

∫
Rk

Fclf1(λ)Fclf2(λ)dλ

=: 〈Fclf1,Fclf2〉,

for f1, f2 ∈ S(Rk), which implies that ‖f‖2 = ‖Fclf‖2, for all f ∈ S(Rk),
and hence that the Fourier transform extends to an isometry from L2(Rk)
onto itself.

Let f ∈ C∞(Rk) such that ∆nf ∈ L2(Rk) for all n ∈ N ∪ {0} and let
f2 ∈ C∞c (Rk). Then:

〈Fcl(∆f),Fclf2〉 = 〈∆f, f2〉 = 〈f,∆f2〉 = 〈Fclf,Fcl(∆f2)〉
= 〈Fclf,−‖λ‖2Fclf2〉 = 〈−‖λ‖2Fclf,Fclf2〉,

and we conclude that Fcl(∆f)(λ) = −‖λ‖2Fclf(λ) a.e., by a density argu-
ment, whence Fcl(∆nf)(λ) = (−1)n‖λ‖2nFclf(λ) a.e., and∫

Rk

|∆nf(x)|2dx = (2π)−k

∫
Rk

‖λ‖4n|Fclf(λ)|2dλ,(1)

for all ∈ N ∪ {0}.
We define the support, supp g, of g ∈ L2(Rk) to be the smallest closed

set, outside which the function g vanishes almost everywhere, and Rg :=
supλ∈supp g ‖λ‖ to be the radius of the support of g; Rg is finite if, and only
if, g has compact support.

Lemma 2.1. Let g ∈ L2(Rk) such that ‖λ‖2ng(λ) ∈ L2(Rk) for all n ∈
N ∪ {0}. Then

Rg = lim
n→∞

{∫
Rk

‖λ‖4n|g(λ)|2dλ
}1/4n

.

Proof. Assume g has compact support with Rg > 0. Then:

lim sup
n→∞

{∫
Rk

‖λ‖4n|g(λ)|2dλ
}1/4n

≤ Rg lim sup
n→∞

{∫
‖λ‖≤Rg

|g(λ)|2dλ

}1/4n

= Rg.

On the other hand, ∫
Rg−ε≤‖λ‖≤Rg

|g(λ)|2dλ > 0,
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for any ε > 0, hence

lim inf
n→∞

{∫
Rk

‖λ‖4n|g(λ)|2dλ
}1/4n

≥ lim inf
n→∞

{∫
Rg−ε≤‖λ‖≤Rg

‖λ‖4n|g(λ)|2dλ

}1/4n

≥ (Rg − ε) lim inf
n→∞

{∫
Rg−ε≤‖λ‖≤Rg

|g(λ)|2dλ

}1/4n

= Rg − ε,

and thus

lim
n→∞

{∫
Rn

‖λ‖4n|g(λ)|2dλ
}1/4n

= Rg.

Now assume that g has unbounded support. Then∫
‖λ‖≥N

|g(λ)|2dλ > 0,

for any N > 0, so:

lim inf
n→∞

{∫
Rk

‖λ‖4n|g(λ)|2dλ
}1/4n

≥ lim inf
n→∞

{∫
‖λ‖≥N

‖λ‖4n|g(λ)|2dλ

}1/4n

≥ N lim inf
n→∞

{∫
‖λ‖≥N

|g(λ)|2dλ

}1/4n

= N,

for arbitrary N > 0, and we conclude that

lim inf
n→∞

{∫
Rk

‖λ‖4n|g(λ)|2dλ
}1/4n

= ∞.

�

Let L2
c(Rk) denote the subspace of L2(Rk) of functions with compact

support and let L2
R(Rk) := {g ∈ L2

c(Rk) |Rg = R}. Let also C∞R (Rk) :=
{g ∈ C∞c (Rk) |Rg = R}.

Definition 2.2. We define the L2-Paley-Wiener space PW2(Rk) to be the
space of all functions f ∈ C∞(Rk) satisfying:

(a) ∆nf ∈ L2(Rk) for all n ∈ N ∪ {0}.
(b) R∆

f := limn→∞ ‖∆nf‖1/2n
2 <∞.
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Let also PW2
R(Rk) := {f ∈ PW2(Rk) |R∆

f = R}, for R ≥ 0.

The proof of Theorem 2.3 below shows that the limit in (b) above is well-
defined. The real version of the L2-Paley-Wiener theorem for the inverse
Fourier transform can now be formulated as follows:

Theorem 2.3. The inverse Fourier transform F−1
cl is a bijection of L2

c(Rk)
onto PW2(Rk), mapping L2

R(Rk) onto PW2
R(Rk).

Proof. Let g ∈ L2
R(Rk). Then ‖λ‖ng(λ) ∈ L1(Rk) for all n ∈ N ∪ {0}, and

F−1
cl g ∈ C∞o (Rk). We also have ∆n(F−1

cl g) = F−1
cl ((−1)n‖λ‖2ng) ∈ L2(Rk)

for all n ∈ N ∪ {0}, by the formula for F−1
cl , and (1) thus yields:

lim
n→∞

{∫
Rk

|∆n(F−1
cl g)(x)|

2dx

}1/4n

= lim
n→∞

{
(2π)−k

∫
Rk

‖λ‖4n|g(λ)|2dλ
}1/4n

= R,

whence F−1
cl g ∈ PW2

R(Rk).
Let now f ∈ PW2

R(Rk). Then Fcl(∆nf)(λ) = (−1)n‖λ‖2nFclf(λ) ∈
L2(Rk) for all n ∈ N, and another application of (1) shows that

lim
n→∞

{
(2π)−k

∫
Rk

‖λ‖4n|Fclf(λ)|2dλ
}1/4n

= lim
n→∞

{∫
Rk

|∆nf(x)|2dx
}1/4n

= R,

and we conclude that Fclf has compact support with RFclf = R. �

Remark 2.4. The classical (complex) L2-Paley-Wiener theorem implies
that PW2

R(Rk) exactly consists of those L2(Rk) functions that can be ex-
tended to holomorphic functions of exponential type R on Ck.

Remark 2.5. Let f ∈ PW2(R). Then dn

dxn f ∈ Lp(R) for all n ∈ N ∪ {0},
and:

lim
n→∞

∥∥∥∥ dn

dxn
f

∥∥∥∥1/n

p

= RFclf = R∆
f ,

for all 1 ≤ p ≤ ∞. This follows from [2, Theorem 1]. Similar results hold
for Rk, k > 1, see [3, Theorem 3] and [10, Theorem 4].

Definition 2.6. We define the Paley-Wiener space PW(Rk) as the space of
all functions f ∈ C∞(Rk) satisfying:

(a) (1 + |x|)m∆nf ∈ L2(Rk) for all m,n ∈ N ∪ {0}.
(b) R∆

f := limn→∞ ‖∆nf‖1/2n
2 <∞.

Let again PWR(Rk) := {f ∈ PW(Rk) |R∆
f = R}, for R ≥ 0.
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We notice that the only difference between PW2(Rk) and PW(Rk) is an
extra requirement of polynomial decay, to help ensure that Fclf ∈ C∞(Rk).

The real version of the Paley-Wiener theorem for the inverse Fourier trans-
form is the following:

Theorem 2.7. The inverse Fourier transform F−1
cl is a bijection of C∞c (Rk)

onto PW(Rk), mapping C∞R (Rk) onto PWR(Rk).

Proof. Let g ∈ C∞R (Rk), then F−1
cl g ∈ S(Rk), and F−1

cl g ∈ PW2
R(Rk) by

Theorem 2.3.
Let f ∈ PWR(Rk) ⊂ PW2

R(Rk). Then Fclf ∈ C∞(Rk) since f has
polynomial decay, and Fclf has compact support with RFclf = R by Theo-
rem 2.3. �

3. Lie group notation.

In this section we introduce the Lie group notation we need in the next
sections. We refer to [5], [6] and [7] for further details.

Let G be a real connected noncompact semisimple Lie group with finite
center and let θ be a Cartan involution of G. Then the fixed point group
K := Gθ is a maximal compact subgroup. Let g and k denote their Lie
algebras, and let g = k ⊕ p be the Cartan decomposition of g into the ±1
eigenspaces of θ. The Killing form on g induces an AdK-invariant scalar
product on p and hence a G-invariant Riemannian metric on X := G/K.
With this structure, X becomes a Riemannian globally symmetric space of
the noncompact type.

Fix a maximal abelian subspace a of p. Denote its real dual by a∗ and its
complex dual by a∗C. The Killing form of g induces a scalar product 〈·, ·〉 and
hence a norm ‖ ·‖ on aC and a∗C. Let Σ ⊂ a∗ denote the root system of (g, a)
and let W be the associated Weyl group. Choose a set Σ+ ⊂ Σ of positive
roots, let n :=

⊕
α∈Σ+

gα be the corresponding nilpotent subalgebra of g and
let a+ := {H ∈ a |α(H) > 0∀α ∈ Σ+} be the positive Weyl chamber with
a+ it’s closure. Denote by a∗+ and a∗+ the similar cones in a∗, and define the
element ρ ∈ a∗ by: ρ(H) := 1

2

∑
α∈Σ+

mαα(H), H ∈ a, where mα = dim gα.
Let g = k ⊕ a ⊕ n be the Iwasawa decomposition of g and G = KAN =

NAK the corresponding Iwasawa decompositions of G, where A and N are
the Lie groups generated by a and n respectively. Every g ∈ G can be
represented as: g = K expH(g)N = N expA(g)K, where the projections
onto the A-parts A(g) ∈ a and H(g) ∈ a are uniquely determined. We note
that A(g) = −H(g−1). Let M := ZK(a), then B := K/M is a compact
homogeneous space. We define the vector A(x, b) ∈ a as A(x, b) := A(k−1g),
for x = gK ∈ X and b = kM ∈ B.

Put A+ = exp(a+), then A+ = exp(a+). The Cartan decomposition
implies that the natural mapping from K/M×A+×K into G = KA+K is a
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diffeomorphism onto its dense open image. We define the norm of an element
g ∈ G as: |g| = |k1 exp(H)k2| = ‖H‖, with H ∈ a+; this is the K-invariant
geodesic distance to the origin eK. We denote by BR := {g ∈ G | |g| ≤ R}
the K-invariant ball of radius R around e.

We identify functions on X with right-K-invariant functions on G. We
normalise the invariant measure on X as:∫

X
f(x)dx =

∫
K

∫
a+

∫
K
f(k1 exp(H)k2)J(H)dk1dHdk2,

for f ∈ C∞c (X), where the Jacobian J is given by: J(H) =
∏

α∈Σ+
(eα(H) −

e−α(H))mα , dH is the Lebesgue measure on a and dk is the measure on K

such that
∫
K dk = 1. We notice that 0 ≤ J(H) ≤ Ce2ρ(H), for H ∈ a+,

where C is a positive constant.
The spherical functions ϕλ, λ ∈ a∗C, on G are defined as:

ϕλ(g) :=
∫

K
e(iλ+ρ)A(k−1g)dk =

∫
K
e−(iλ+ρ)H(g−1k)dk.

We note that ϕλ is Weyl group invariant, ϕwλ = ϕλ, w ∈ W . Let U(g)
denote the universal enveloping algebra of g. We write Df(g) for the action
of D ∈ U(g) on f ∈ C∞(G) from the left at g ∈ G. The Lp-Schwartz space
Sp(X), 0 < p ≤ 2, is defined as the space of all functions f ∈ C∞(X) such
that:

sup
g∈G

(1 + |g|)mϕo(g)
− 2

p |Df(g)| <∞,

for all D ∈ U(g) and m ∈ N ∪ {0}. We can also characterise Sp(X) as the
space of all functions f ∈ C∞(X) satisfying:

(1 + |g|)mDf(g) ∈ Lp(X),

for all D ∈ U(g) and m ∈ N ∪ {0}. We note that Sp(X) 6⊂ Lq(X) for
0 < q < p ≤ 2.

4. The Fourier transform.

In this section, we recall some facts and theorems for the Fourier transform
on a noncompact semisimple Riemannian symmetric space, see [7, Chap-
ter 3] for details and references.

The Fourier transform of a function f on X is defined as:

Ff(λ, b) :=
∫

X
f(x)e(−iλ+ρ)(A(x,b))dx,

for all λ ∈ a∗C, b ∈ B for which the integral exists. In particular, Ff extends
to a smooth function on a∗C × B, holomorphic in the first variable, for f ∈
C∞c (X), see also below.
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The plane wave eigenfunction

eλ,b(x) := e(iλ+ρ)(A(x,b)),(2)

is a joint eigenfunction of D(X), the commutative algebra of G-invariant
differential operators on X, for all λ ∈ a∗C, b ∈ B, or, more precisely

Deλ,b = Γ(D)(iλ)eλ,b, ∀D ∈ D(X), (λ ∈ a∗C, b ∈ B)

where Γ : D(X) → S(a∗)W is the Harish-Chandra isomorphism. In particu-
lar,

∆eλ,b = −(〈λ, λ〉+ ‖ρ‖2)eλ,b, (λ ∈ a∗C, b ∈ B)

for the Laplace-Beltrami operator ∆ on X, and hence

F(∆f)(λ, b) = −(〈λ, λ〉+ ‖ρ‖2)Ff(λ, b), (λ ∈ a∗C, b ∈ B)

for all f ∈ C∞c (X), by self-adjointness of ∆, see also (6).
A C∞-function ψ(λ, b) on a∗C × B, holomorphic in λ, is called a holo-

morphic function of uniform exponential type R, if there exists a constant
R ≥ 0, such that, for each N ∈ N, we have:

sup
λ∈a∗C, b∈B

e−R|=λ|(1 + |λ|)N |ψ(λ, b)| <∞.

The space of holomorphic functions of uniform exponential type R will be
denoted HR(a∗C×B) and we denote by H(a∗C×B) their union over all R > 0.
Let furthermore H(a∗C×B)W denote the space of all functions ψ ∈ H(a∗C×B)
satisfying the symmetry condition:∫

B
e(iwλ+ρ)(A(x,b))ψ(wλ, b)db =

∫
B
e(iλ+ρ)(A(x,b))ψ(λ, b)db,(3)

for w ∈W and all λ ∈ a∗C, x ∈ X.
The Paley-Wiener theorem states that the Fourier transform is a bijection

of the space C∞c (X) onto the space H(a∗C×B)W , with the following inversion
formula:

f(x) =
∫

a∗+

∫
B
e(iλ+ρ)(A(x,b))Ff(λ, b)|c(λ)|−2dλdb, (x ∈ X)(4)

where c(λ) is the Harish-Chandra c-function, for f ∈ C∞c (X). Moreover,
Ff ∈ HR(a∗C × B)W if, and only if, supp f ⊂ BR. We note that |c(λ)|−2 is
bounded by some polynomial for λ ∈ a∗.

Let f1, f2 ∈ C∞c (X), then Parseval’s formula for F is given by:∫
X
f1(x)f2(x)dx =

∫
a∗+

∫
B
Ff1(λ, b)Ff2(λ, b)|c(λ)|−2dλdb.(5)

We conclude that the Fourier transform extends to an isometry of L2(X)
onto L2(a∗+ × B, |c(λ)|−2dλdb). In the following we adopt the convention
L2(a∗+ ×B) := L2(a∗+ ×B, |c(λ)|−2dλdb).
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Let f ∈ C∞(X) such that ∆nf ∈ L2(X) for all n ∈ N ∪ {0} and let
f2 ∈ C∞c (X). Then self-adjointness of the Laplace-Beltrami operator ∆:∫

X
∆nf(x)f2(x)dx =

∫
X
f(x)∆nf2(x)dx,(6)

Parseval’s formula (5) and density of C∞c (X) imply, as in the classical case,
that

F(∆nf)(λ, b) = (−1)n(‖λ‖2 + ‖ρ‖2)nFf(λ, b),(7)

a.e., for all n ∈ N ∪ {0}.

5. The inverse Fourier transform.

We define the inverse Fourier transform F−1g of a function g on a∗+×B via
(4):

F−1g(x) :=
∫

a∗+

∫
B
e(iλ+ρ)(A(x,b))g(λ, b)|c(λ)|−2dλdb,

for all x ∈ X for which the integral exists.
We define the support, supp g, of g ∈ L2(a∗+×B) to be the smallest closed

set in a∗+×B, outside which the function g vanishes almost everywhere, and
Rg := sup(λ,b)∈supp g ‖λ‖ to be the ‘radius’ of the support of g.

Lemma 5.1. Let g ∈ L2(a∗+ × B) such that ‖λ‖2ng(λ, b) ∈ L2(a∗+ × B) for
all n ∈ N ∪ {0}. Then

Rg = lim
n→∞

{∫
a∗+

∫
B
‖λ‖4n|g(λ, b)|2|c(λ)|−2dλdb

}1/4n

.

Proof. As for Lemma 2.1. �

Let L2
c(a

∗
+ × B) denote the subspace of L2(a∗+ × B) of functions with

bounded support and let L2
R(a∗+ ×B) := {g ∈ L2

c(a
∗
+ ×B) |Rg = R}.

Definition 5.2. We define the L2-Paley-Wiener space PW2(X) as the space
of all functions f ∈ C∞(X) satisfying:

(a) ∆nf ∈ L2(X) for all n ∈ N ∪ {0}.
(b) R∆

f := limn→∞ ‖(∆ + ‖ρ‖2)nf‖1/2n
2 <∞.

Let also PW2
R(X) := {f ∈ PW2(X) |R∆

f = R}, for R ≥ 0.

The real L2-Paley-Wiener theorem for the inverse Fourier transform can
now be formulated as follows:

Theorem 5.3. The inverse Fourier transform F−1 is a bijection of L2
c(a

∗
+×

B) onto PW2(X), mapping L2
R(a∗+ ×B) onto PW2

R(X).
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Proof. Let g ∈ L2
R(a∗+×B). Then F−1g ∈ C∞(X) by Lebesgue’s dominated

convergence theorem. Equation (2) gives, for D ∈ D(X),

D(F−1g)(x) =
∫

a∗+

∫
B

Γ(D)(iλ)e(iλ+ρ)(A(x,b))g(λ, b)|c(λ)|−2dλdb,

which in particular shows that (∆ + ‖ρ‖)nF−1g = F−1((−1)n‖λ‖2ng) ∈
L2(X) for all n ∈ N ∪ {0}. Parseval’s formula (5) with

f1 = f2 = F−1((−1)n‖λ‖2ng)

yields:

lim
n→∞

{∫
X
|(∆ + ‖ρ‖)n(F−1g)(x)|2dx

}1/4n

= lim
n→∞

{∫
a∗+

∫
B
‖λ‖4n|g(λ, b)|2|c(λ)|−2dλdb

}1/4n

= R,

whence F−1g ∈ PW2
R(X).

Let now f ∈ PW2
R(X). Then F((∆+‖ρ‖)nf)(λ, b) = (−1)n‖λ‖2nFf(λ, b)

∈ L2(a∗+×B) for all n ∈ N by (7). Another application of Parseval’s formula
as above with f1 = f2 = (∆ + ‖ρ‖)nf shows that RFf = R∆

f = R, and we
conclude that Ff has bounded support. �

Corollary 5.4. Let f ∈ C∞(X) be such that ∆nf ∈ L2(X) for all n ∈
N ∪ {0}. It then follows that limn→∞ ‖∆nf‖1/2n

2 < ∞ if, and only if,
limn→∞ ‖(∆+‖ρ‖2)nf‖1/2n

2 <∞. Furthermore, limn→∞ ‖∆nf‖1/2n
2 = (R2+

‖ρ‖2)1/2, for f ∈ PW2
R(X) with R > 0.

Proof. Let f ∈ PW2
R(X), with R > 0, then Ff ∈ L2

R(a∗+ × B). Parseval’s
formula and an easy adaption of the proof of Lemma 2.1 shows that

lim
n→∞

‖∆nf‖1/2n
2

= lim
n→∞

{∫
a∗+

∫
B

(‖λ‖2 + ‖ρ‖2)2n|Ff(λ, b)|2|c(λ)|−2dλdb

}1/4n

= (R2 + ‖ρ‖2)1/2.
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Assume that limn→∞ ‖∆nf‖1/2n
2 <∞. Then F(∆nf)(λ, b) = (−1)n(‖λ‖2

+‖ρ‖2)nFf(λ, b) ∈ L2(a∗+ ×B), for all n ∈ N, and

lim
n→∞

{∫
a∗+

∫
B
‖λ‖4n|Ff(λ, b)|2|c(λ)|−2dλdb

}1/4n

≤ lim
n→∞

{∫
a∗+

∫
B

(‖λ‖2 + ‖ρ‖2)2n|Ff(λ, b)|2|c(λ)|−2dλdb

}1/4n

= lim
n→∞

‖∆nf‖1/2n
2 <∞,

that is, Ff has bounded support. �

Remark 5.5. Assume that f ∈ Sp(X), with 0 < p < 2, then Ff extends
to an analytic function on a small tube domain around a∗ × B in a∗C × B.
Hence Ff cannot have compact support on a∗ × B and we conclude that
Sp(X) ∩ PW2(X) = {0} for any 0 < p < 2.

Definition 5.6. We define the Paley-Wiener space PW(X) as the space of
all functions f ∈ C∞(X) satisfying:

(a) (1 + |x|)m∆nf ∈ L2(X) for all m, n ∈ N ∪ {0}.
(b) R∆

f = limn→∞ ‖(∆ + ‖ρ‖2)nf‖1/2n
2 <∞.

Let also PWR(X) := {f ∈ PW(X) |R∆
f = R}, for R ≥ 0.

Here |x| := |g|, for x = gK ∈ X. Again, the only difference between the
Paley-Wiener spaces PW(X) and PW2(X) is the polynomial decay condition
(a), ensuring that Ff ∈ C∞(a∗ ×B)W (see below).

The space C∞c (a∗ × B)W is defined as the subspace of functions ψ ∈
C∞c (a∗ × B) satisfying the symmetry condition (3) for all w ∈ W and all
λ ∈ a∗, x ∈ X. Let finally C∞R (a∗ ×B) := {F ∈ C∞c (a∗ ×B) |Rg = R}.

The real Paley-Wiener theorem for the inverse Fourier transform then is:

Theorem 5.7. The inverse Fourier transform F−1 is a bijection of C∞c (a∗×
B)W onto PW(X), mapping C∞R (a∗ ×B)W onto PWR(X).

Proof. Let g ∈ C∞R (a∗ × B)W , then g ∈ L2
R(a∗+ × B) and thus F−1g ∈

PW2
R(X) by Theorem 5.3. We furthermore see that F−1g ∈ S2(X) by [4,

Theorem 4.1.1], whence F−1g satisfies the polynomial decay condition (a).
Let now f ∈ PWR(X). The basic estimate ‖A(g)‖ ≤ C|g|, for all g ∈ G,

gives us a polynomial estimate (in x) of the derivatives (with respect to
λ) of the plane wave eigenfunctions eλ,b(x). It is also well-known that
(1 + |x|)−rϕ0 ∈ L2(X) for some large r ∈ N. All this, the polynomial
decay condition (a), the Cauchy-Schwartz theorem and Lebesgue’s domi-
nated convergence theorem imply that Ff ∈ C∞(a∗ × B)W . Furthermore
Ff has the desired compact support by Theorem 5.3. �
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6. The inverse spherical transform.

In this section, we specialise our results to bi-K-invariant functions, that is,
we consider the (inverse) spherical transform. We refer to [1], [5] and [6] for
background concerning Paley-Wiener theorems for the spherical transform.
Let C∞(K\G/K) ⊂ C∞(G) denote the subspace of bi-K-invariant differen-
tiable functions on G. We will use similar notation for the L2, Paley-Wiener
and Schwartz spaces of K-invariant differentiable functions.

Let f ∈ C∞c (K\G/K). The spherical transform Hf of f is defined as:

Hf(λ) :=
∫

G
f(x)ϕ−λ(x)dx,

for λ ∈ a∗C. We note that Ff(λ, b) = Hf(λ) for all λ ∈ a∗C and all b ∈ B.
This follows from left-K-invariance of f , the identity A(k·x, b) = A(x, k−1 ·b)
and integrating over K.

The spherical transform is an isomorphism of S2(K\G/K) onto S(a∗)W ,
the Weyl group invariant Schwartz functions on a∗. The inversion formula
is given by:

f(x) =
1
|W |

∫
a∗
Hf(λ)ϕλ(x)|c(λ)|−2dλ, (x ∈ G)(8)

for f ∈ S2(K\G/K). We use (8) to define the inverse spherical transform
H−1g for a general function g on a∗:

H−1g(x) :=
1
|W |

∫
a∗
g(λ)ϕλ(x)|c(λ)|−2dλ.

Let f ∈ C∞(K\G/K) be such that ∆nf ∈ L2(K\G/K) for all n ∈
N∪{0}. Then H((∆+‖ρ‖2)nf)(λ) = (−1)n‖λ‖2nHf(λ) a.e., and Parseval’s
formula for H gives:∫

G
|(∆ + ‖ρ‖2)nf(x)|2dx =

1
|W |

∫
a∗
‖λ‖4n|Hf(λ)|2|c(λ)|−2dλ,

for all n ∈ N∪{0}. It also follows that the spherical transform extends to an
isometry from L2(K\G/K) onto L2(a∗, 1

|W | |c(λ)|−2dλ)W , where superscript
W denotes Weyl group invariance.

Let L2
c(a

∗)W denote the Weyl group invariant L2-functions on a∗ with
compact support and let subscript R denote the radius of the support. The
real versions of the Paley-Wiener theorems for the inverse spherical trans-
form then becomes:

Theorem 6.1. The inverse spherical transform H−1 is a bijection of
L2

c(a
∗)W onto PW2(K\G/K), mapping L2

R(a∗)W onto PW2
R(K\G/K).

Theorem 6.2. The inverse spherical transform H−1 is a bijection of
C∞c (a∗)W onto PW(K\G/K), mapping C∞R (a∗)W onto PWR(K\G/K).
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Proof. The above theorems are special cases of Theorem 5.3 and Theo-
rem 5.7. We note, however, that we can prove them independently using
Parseval’s formula and intertwining properties of H. �

Remark 6.3. Let f ∈ PW(K\G/K) and consider f as a function on a by
the application H 7→ f(exp(H)). Then f does not extend to an entire func-
tion on aC, due to the poles of the spherical function ϕλ(exp(H)). There is,
however, a description of the Paley-Wiener space PW(K\G/K) as functions
having an explicit meromorphic extension and satisfying some exponential
growth conditions for the rank 1 and the complex cases, see [8] for details.
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