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Hypersurfaces of prescribed weighted mean curvature, or
F -mean curvature, are introduced as critical immersions of
anisotropic surface energies, thus generalizing minimal sur-
faces and surfaces of prescribed mean curvature. We first
prove enclosure theorems in Rn+1 for such surfaces in cylindri-
cal boundary configurations. Then we derive a general second
variation formula for the anisotropic surface energies gener-
alizing corresponding formulas of do Carmo for minimal sur-
faces, and Sauvigny for prescribed mean curvature surfaces.
Finally we prove that stable surfaces of prescribed F -mean
curvature in R3 can be represented as graphs over a planar
strictly convex domain Ω, if the given boundary contour in R3

is a graph over ∂Ω.

1. Introduction and main results.

Let X : M → Rn+1, n ≥ 2, be an immersion of class C3(M,Rn+1) of an
n-dimensional smooth manifold M = Mn with boundary ∂M into Rn+1. We
denote the corresponding unit normal by N and the induced area element by
dA, and consider general parametric variational functionals F of the form

F(X) :=
∫

M
F (X,N) dA.(1.1)

The integrand F of class C0(Rn+1 × Rn+1) ∩ C3(Rn+1 × (Rn+1\{0})) is a
parametric Lagrangian characterized by the homogeneity condition

F (y, tz) = tF (y, z) for all t > 0, (y, z) ∈ Rn+1 × Rn+1.(H)

Note that (H) implies

Fzz(y, z)z = 0 for all (y, z) ∈ Rn+1 × (Rn+1\{0});(1.2)

hence we will identify the symmetric endomorphism Fzz(y, z) : Rn+1 →
Rn+1 with its restriction to the space

z⊥ := {ζ ∈ Rn+1 : 〈ζ, z〉 = 0}.(1.3)

Important examples of parametric Lagrangians are given by the area in-
tegrand

A(z) := |z|,(1.4)
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and the integrand

E(y, z) := |z|+ 〈Q(y), z〉(1.5)

appearing in the theory of capillary surfaces. Here, Q can be chosen as
a differentiable vectorfield in Rn+1 with div Rn+1Q(y) = H(y), where H(y)
is a given function representing the prescribed mean curvature. Critical
immersions of the corresponding functionals

A(X) :=
∫

M
A(N) dA =

∫
M
dA(1.6)

and

E(X) :=
∫

M
E(X,N) dA(1.7)

are minimal surfaces and surfaces of prescribed mean curvature H(X), re-
spectively.

Another interesting example is

F (z) =
3∑

j=1

√
δ2|z|2 + z2

j , δ > 0,(1.8)

which serves as a regularized version of the discrete l1-norm used for numer-
ical computations involving the anisotropic mean curvature flow [7]. Fur-
thermore, in surface processing [3] such parametric functionals have become
an increasingly important tool to enhance edge structures within a suitable
surface evolution based on (1.6) and (1.8). For more examples of integrands
and applications in numerical analysis we refer to [8] and [6].

For general parametric integrals we recall the notion of the F -mean cur-
vature

HF (X,N) = HF := − tr (AFS),(1.9)

as introduced in [2] and [4]. Here, S ∈ End (TM) is the shape operator
defined by DX ◦S := DN on the tangent bundle TM, and AF ∈ End (TM)
is the symmetric endomorphism field given by

AF := (DX)−1(Fzz(X,N)DX) on TM.(1.10)

For the special parametric Lagrangians in (1.6) and (1.7) the F -mean curva-
ture HF reduces to the classical mean curvature H, since AF |TwM = Id TwM

for each w ∈M and F (y, z) = A(z), or F (y, z) = E(y, z), respectively. Here
TwM denotes the tangent space of M at w ∈M .

The first author proved in [2] that the Euler equation for F can be written
as

HF =
n+1∑
i=1

Fyizi(X,N).(1.11)
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Consequently, given a general parametric Lagrangian F = F (y, z), critical
immersions of the corresponding parametric functional F may be viewed
as surfaces of prescribed F -mean curvature. In particular, we will regard
critical immersions of the specific parametric functional

F0(X) :=
∫

M
F (N) dA+

∫
M
〈Q(X), N〉 dA,(1.12)

where div Rn+1Q(y) = HF (y) ∈ C0(Rn+1) is a given function, as surfaces of
prescribed F -mean curvature HF (X). This class of surfaces yields a natural
generalization of minimal surfaces if HF (y) ≡ 0, or of surfaces of constant
mean curvature if HF (y) ≡ H0

F ∈ R. Let us point out that the parametric
Lagrangian F (z) in (1.12) depends on z only, and that in case HF (y) ≡
H0

F ∈ R the second integrand in (1.12) is linear in y and z and can be
interpreted as a volume term.

As a starting point for our investigations we will derive in Section 2 a
differential equation for the surface normal of an arbitrary immersion in
terms of the F -Laplace-Beltrami operator of X

∆F := div (AF grad (.) ),(1.13)

where the differential operators are taken with respect to the induced metric

gw(V,W ) = g(V,W ) := 〈DX(V ), DX(W )〉 for V,W ∈ TwM, w ∈M,
(1.14)

i.e., div = div M and grad = grad M .

Theorem 1.1. Let N be the normal of an arbitrary immersion X of class
C3(M,Rn+1) and let F ∈ C0(Rn+1 × Rn+1) ∩ C3(Rn+1 × (Rn+1\{0})) be a
parametric Lagrangian. Then

∆FN + tr (AFS
2)N = DX(div (SAF )) .(1.15)

Here, div (SAF ) denotes the divergence of the endomorphism field SAF ;
see Section 2 for details.

In Section 3 we consider hypersurfaces with bounded F -mean curvature
spanning1 a given Jordan curve Γ ⊂ Rn+1, i.e., we take an immersion
X : M → Rn+1 mapping the boundary ∂M topologically onto Γ.

A parametric Lagrangian F (y, z) is said to be (uniformly) elliptic, if there
exists a constant M1 > 0 such that

|z|〈ζ, Fzz(y, z)ζ〉 ≥M1|ζtan|2(E)

1The existence of conformally parametrized F-minimizing surfaces under Plateau type
boundary conditions was proven in [14] and [15] for n = 2 and arbitrary co-dimension, but
these solutions might have branch points. For the restricted class of boundary contours
considered in Theorem 1.2, White [24] has constructed an embedded F-minimizing disk
in R3.
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for all (y, z) ∈ Rn+1 × (Rn+1\{0}), ζ ∈ Rn+1, where ζtan := ζ − 〈ζ, z〉z/|z|2.
Notice that A(z) and E(y, z) as defined in (1.4) and (1.5) are elliptic satis-
fying (E) with M1 = 1.

Surfaces of vanishing F -mean curvature, where F is elliptic, have the
convex hull property as proven in [2, Thm. 2.3]:

Theorem 1.2. Let F = F (z) ∈ C0(Rn+1)∩C3(Rn+1\{0}) be a parametric
Lagrangian satisfying (E). Suppose X ∈ C0(M,Rn+1) ∩ C2(M,Rn+1) is an
immersion of vanishing F -mean curvature, i.e., with HF (X,N) = HF (X) ≡
0. If X spans a Jordan curve Γ ⊂ Rn+1 contained in the boundary of a closed
convex set K ⊂ Rn+1, then X(M) ⊂ K.

For surfaces of bounded (but not necessarily vanishing) F -mean curvature
spanning a given Jordan curve Γ within the infinite cylinder

Zh :=
{

(x1, . . . , xn+1) ∈ Rn+1 : h
√

(x1)2 + · · ·+ (xn)2 ≤ 1
}
, h ≥ 0,

(1.16)

we restrict our attention to Jordan curves Γ ⊂ Rn+1 with an orthogonal
projection onto an h-convex domain Ω ⊂ Bh−1(0) ⊂ Rn. Following Sauvigny
[21] we call a bounded convex domain Ω ⊂ Rn κ-convex for some κ > 0,
if for every w0 ∈ ∂Ω there is a point ξ0 = ξ0(w0) ∈ Rn such that the ball
B1/κ(ξ0) ⊂ Rn contains Ω and such that w0 ∈ ∂B1/κ(ξ0).

Theorem 1.3. Let F =F (y, z) ∈C0(Rn+1×Rn+1)∩C3(Rn+1×(Rn+1\{0}))
be a parametric Lagrangian satisfying (E). Suppose X : M → Zh of class
C0(M,Rn+1) ∩ C2(M,Rn+1) is an immersion of prescribed F -mean curva-
ture HF ∈ C0(Rn+1), where HF (y) satisfies

‖HF ‖C0(Rn+1) ≤M1h(n− 1),(1.17)

and X spans a curve Γ ⊂ Zh, whose orthogonal projection onto Rn lies in
an h-convex domain Ω ⊂ Bh−1(0) ⊂ Rn. Then

X(B) ⊂ ZΩ := {(x1, . . . , xn+1) ∈ Rn+1 : (x1, . . . , xn) ∈ Ω}.(1.18)

In general one cannot expect that surfaces of bounded F -mean curvature
satisfying the conditions of Theorem 1.3 can be represented as a graph over
the h-convex domain Ω ⊂ Rn. For n = 2 and stable surfaces of bounded
mean curvature H(y) ∈ C1,α(R3), however, Sauvigny was able to prove such
a result [21] under a sign condition on ∂

∂y3H, and it turns out that the
same is true for stable surfaces of prescribed F -mean curvature in R3; see
Theorem 1.4 below.

Before defining stability in Section 4 we generalize do Carmo’s [1] sec-
ond variation formula for the area functional (1.6) to the parametric func-
tional (1.12). That is, we derive a general formula for the second varia-
tion δ2F0(X,Ξ) of the functional (1.12) at critical immersions X : M →
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Rn+1 in the direction of an arbitrary compactly supported vector field Ξ ∈
C2

0 (M,Rn+1) containing normal and tangential terms2 ; see Theorem 4.1.
For immersions X : M → Rn+1 of prescribed F -mean curvature HF , how-
ever, the tangential term drops out (see Corollary 4.2), which additionally
implies a simplified differential equation for the normal N of such surfaces
derived in Corollary 4.3:

∆FN +
[
tr (AFS

2)− 〈∇Rn+1HF (X), N〉
]
N = −∇Rn+1HF (X).(1.19)

By means of this equation we are able to generalize Sauvigny’s result [21]
for surfaces of bounded mean curvature mentioned above to stable surfaces
of prescribed F -mean curvature in R3:

Theorem 1.4. Let F = F (z) ∈ C0(R3) ∩ C3(R3\{0}) be an elliptic para-
metric Lagrangian satisfying (E). Suppose X : B → Zh is of class C3(B,R3)
∩C1,α(B,R3) for some α ∈ (0, 1) and a stable immersion of prescribed F -
mean curvature HF ∈ C1,α(R3), where HF satisfies

‖HF ‖C0(R3) ≤M1h.(1.20)

We assume that X spans Γ ⊂ Zh, where Γ is a Jordan curve given as a graph
over the boundary ∂Ω of an h-convex domain Ω ⊂ R2. Then X(B) ⊂ ZΩ,
and X(B) can be represented as a graph over Ω, if ∂

∂y3HF (y) ≥ 0 for all
y = (y1, y2, y3) ∈ R3.

The proof of this result can be found in Section 5. For minimal surfaces
this result is due to Radó [19]. Gulliver and Spruck [13] generalized Radó’s
theorem to surfaces of constant mean curvature.

Remark. For simplicity of presentation we have assumed throughout this
paper that the surfaces are immersed up to the boundary. The strong
smoothness hypotheses of Theorem 1.4, however, allow us to exclude bound-
ary branch points for the specific boundary configurations considered in The-
orems 1.2 and 1.4 with n = 2; see the corresponding remarks in Sections 3
and 5. That is, a conformally parametrized surface of class C1,α(B,R3) with-
out interior branch points does not have boundary branch points if it either
has vanishing F -mean curvature with boundary contour Γ ⊂ ∂K for some
convex set K ⊂ R3, or if it has prescribed F -mean curvature HF satisfying
(1.20), with boundary contour Γ ⊂ Zh as in Theorem 1.4.

A general boundary regularity result, however, guaranteeing C1,α-smooth-
ness up to the boundary is currently only available for F-minimizers; see
[16], but not for F-critical points.

2Theorem 4.1 contains as special cases the corresponding second variation formulas
of Sauvigny [21] and Räwer [20] who consider only normal, or F -normal variations,
respectively.
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2. Preliminaries and a differential equation for the normal.

In terms of the induced metric g : TwM × TwM → R defined in (1.14) we
can express an arbitrary tangent vector V ∈ TwM as

V = gkjg(V, ∂j)∂k,(2.1)

and its image under the isomorphism DX : TwM → TX(w)M, where M :=
X(M) ⊂ Rn+1, as

DX(V ) = gkjg(V, ∂j)∂kX.(2.2)

Here gkj are the coefficients of the inverse of the metric tensor gkj and

{∂1, . . . , ∂n} :=
{

∂

∂x1
, . . . ,

∂

∂xn

}
is the coordinate basis spanning TwM. Let χ(M) be the space of vector fields
of class C2 on M and denote by ∇V the covariant derivative in the direction
of V ∈ χ(M). We set ∇i := ∇∂i

, i = 1, . . . , n. We will frequently use the
following versions of the product rule:

U(g(V,W )) = g(∇UV,W ) + g(V,∇UW ),(2.3)

∇U (AV ) = (∇UA)V +A(∇UV ),(2.4)

for all U, V,W ∈ χ(M) and all differentiable endomorphism fields A ∈
End (TM).As a consequence of (2.3) we obtain for symmetric A ∈ End(TM)
and φ ∈ C2(M)

U(dφ(AV )) = g(∇U (A gradφ), V ) + dφ(A∇UV ),(2.5)

where g(gradφ, V ) := dφ(V ), V ∈ TwM, defines the gradient of the function
φ on M as usual. Using the fact that 〈DX(V ), N〉 = 0 one can show that

U(DX(V )) = DX(∇UV )− 〈DX(V ), DX ◦ S(U)〉N(2.6)

for all U, V ∈ χ(M). The trace of an endomorphism A ∈ End (TM) in local
coordinates is given by

trA = gikg(A∂i, ∂k).(2.7)

In particular, we will denote

tr (A∇•V ) = gikg(A∇iV, ∂k) for A ∈ End (TM), V ∈ χ(M).(2.8)

For A := Id we obtain the usual divergence of a vector field W ∈ χ(M)

divW = div MW := tr (∇•W ) = gikg(∇iW,∂k).(2.9)

The divergence DivZ of a (not necessarily tangential) vector field Z : M →
Rn+1 is given in local coordinates by

DivZ = gik〈DZ(∂i), DX(∂k)〉.(2.10)
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For Z := DX(W ), W ∈ χ(M), we get DivZ = divW by (2.9) and (2.10).
We will also use the notion of the divergence of an endomorphism field divA,
A ∈ End (TM), with adjoint A∗, given by

g(divA, V ) := tr (∇•A
∗V ) = gikg((∇iA

∗)V, ∂k).(2.11)

In local coordinates we can write

divA = gik(∇iA)∂k,(2.12)

where ∇iA denotes the covariant derivative of the tensor A; see [9, Def.
2.60].

If we denote the coefficients of the second fundamental form of (M, g) with
hij := −g(∂i, S(∂j)), and, correspondingly, the coefficients of the F -second
fundamental form by

hFij := −g(∂i, AFS(∂j)) = −〈Fzz∂iX, ∂jN〉,(2.13)

then the F -mean curvature HF defined in (1.9) can be written as

HF = −tr (AFS) = −gijg(∂i, AFS(∂j)) = gijhFij .(2.14)

Introducing the second order differential operator

ΘF := ∆F − divAF ,(2.15)

where ∆F is given by (1.13), the first author could prove in [2] that

ΘFX = HFN(2.16)

holds for any immersion X ∈ C2(M,Rn+1). This equation reduces to the
classical identity ∆X = div gradX = HN, if F (y, z) = A(z), or F (y, z) =
E(y, z), respectively; see (1.4), (1.5). Moreover, ΘF is uniformly elliptic if F
satisfies the ellipticity condition (E), which leads to the enclosure theorems
proven in [2], and which will be used in the proofs of Sections 3 and 5.

Now we will conclude this section with:

Proof of Theorem 1.1. Apply (2.5) to φ := N i, i = 1, . . . , n + 1, and A :=
AF ∈ End (TM) to obtain by (2.6) and (2.4)

g(∇U (AF gradN), V ) =
(2.5)

U(DN(AFV ))−DN(AF∇UV )

= U(DX(SAFV ))−DX(SAF∇UV )
=

(2.6)
DX(∇U (SAFV ))
−〈DX(SAFV ), DX ◦ S(U)〉N
−DX(SAF∇UV )

=
(2.4)

DX(∇U (SAF )V )− g(SAF (V ), S(U))N.
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Choosing U = ∂i, V = ∂k we obtain by (1.13), (2.9), (2.12) and (2.7)

∆FN =
(1.13)

div (AF gradN)

=
(2.9)

gikg(∇i(AF gradN), ∂k)

= gikDX(∇i(SAF )∂k)− gikg(SAF (∂k), S(∂i))N

=
(2.12),(2.7)

DX(div (SAF ))− tr (AFS
2)N,

where we have used the symmetry of AF and S to obtain the last term. �

Using the Codazzi equation (cf. [18, p. 30])

(∇V S)W = (∇WS)V(2.17)

one can show that

divS = −gradH.(2.18)

Thus in case of the functionals (1.6) or (1.7), where AF is the identity, we
obtain

∆N + tr (S2)N = −DX(gradH).

Therefore (1.15) is a generalization of [21, Hilfssatz 1].

3. Proofs of the enclosure theorems.

For the convenience of the reader we recall the Proof of Theorem 1.2 from
[2].

Proof of Theorem 1.2. Since HF (X,N) = HF (X) = 0, we infer from (2.16)
that

ΘF (t(X)) = 0(3.1)

for all affine linear functions

t(y) := 〈a, y〉+ b, a ∈ Rn+1, b ∈ R.(3.2)

Taking an arbitrary supporting half plane of the convex body K character-
ized by an affine linear function tK , we have tK(X) ≤ 0 on ∂M, and hence
by (3.1) and the maximum principle [11, p. 32], tK(X) ≤ 0 on M, i.e.,
X(M) ⊂ K. �

Remark. For n = 2, M := B = B1(0) ⊂ R2, and X immersed only in the
interior of B but given in conformal parameters, i.e., with

|Xu|2 = |Xv|2 and 〈Xu, Xv〉 = 0 on B,(3.3)
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we can exclude boundary branch points. In fact, introducing polar coordi-
nates (r, ϑ) in B and fixing w0 ∈ ∂B we can apply Hopf’s boundary point
lemma [11, p. 34] together with (3.1) to obtain for t : R3 → R as in (3.2)

∂

∂ν
[t(X(w))]

w=w0
= 〈a,Xr(w0)〉 > 0.

Therefore we have |Xr(w0)| > 0. Rewriting (3.3) in polar coordinates we
conclude |Xϑ(w0)| > 0 which shows that w0 is not a branch point.

Proof of Theorem 1.3. For the function R(x) := (x1)2 + · · ·+(xn)2 we com-
pute similarly as in [5, p. 7] using (2.1), (2.15), (2.16), (2.12) and (E)

1
2
ΘF (R(X)) =

(2.1)
(2.15)
(2.12)

n∑
i=1

Xidiv (AF grad (Xi))

+
n∑

i=1

g(grad (Xi), AF grad (Xi))

−
n∑

i=1

Xi(divAF )(Xi)

=
(2.15)

n∑
i=1

XiΘF (Xi) +
n∑

i=1

g(grad (Xi), AF grad (Xi))

≥
(2.16)
(E)

n∑
i=1

HF (X,N)XiN i +M1

n∑
i=1

g(grad (Xi), grad (Xi))

≥ −|HF (X)|
√
R(X) +M1(n− 1)

≥ M1(n− 1)− ‖HF ‖C0(R3)h
−1

on M , since X(M) ⊂ Zh; see (1.16). Notice that we have used the rela-
tion pii = g(grad (Xi), grad (Xi)), where P = P (w) = (pij)(w) : Rn+1 →
TX(w)M is the orthogonal projection onto the n-dimensional tangent plane
of M = X(M), with

∑n+1
i=1 p

ii = n, so that
n∑

i=1

g(grad (Xi), grad (Xi)) = n− g(grad (Xn+1), grad (Xn+1)) ≥ n− 1.

Thus ΘF (R(X)) ≥ 0 onM due to (1.17), and the maximum principle implies
R(X(w)) < h−2 for all w ∈M, since R(X) 6≡ h−2 in M . Following Sauvigny
[21] we now argue as follows: Assuming that there is some point w∗ ∈ M
with X(w∗) 6∈ ZΩ we infer that x∗ := (X1(w∗), X2(w∗)) 6∈ Ω. Let y∗ ∈ ∂Ω
be a point with |y∗ − x∗| = dist (x∗,Ω) ≥ 0. (If x∗ ∈ ∂Ω take y∗ := x∗.)
Since Ω is h-convex there is a point η∗ ∈ Rn such that Ω ⊂ B1/h(η∗) and
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y∗ ∈ ∂B1/h(η∗). Thus X(w∗) 6∈ ZB1/h(η∗) and we can look at the 1-parameter
family of cylinders {Z(λ) := ZB1/h(λη∗)}0≤λ≤1, for which

X(B) ⊂ Z(0) = Zh,

and
X(B) ∩ ∂Z(1) = X(B) ∩ ∂ZB1/h(η∗) 6= ∅.

By continuity we find λ0 ∈ [0, 1] with

X(B) ⊂ Z(λ0) and X(B) ∩ ∂Z(λ0) 6= ∅.(3.4)

With the same computation as before we deduce for R0(x) := (x1−λ0η
1
∗)

2+
· · ·+ (xn − λ0η

n
∗ )2 the inequality ΘF (R0(X)) ≥ 0 on B; hence by (3.4) and

the maximum principle R0(X(w)) ≡ h−2, which is absurd. Thus we have
shown (1.18). �

4. A general second variation formula and stability.

In this section we consider C3-perturbations X(., ε) : M × (−ε0, ε0) → Rn+1

of an immersed hypersurface X ∈ C3(M,Rn+1) with

X(., 0) = X and(4.1)

∂

∂ε
X(., ε)

ε=0
= ϕN +DX(V ) =: Ξ,(4.2)

where ϕ ∈ C2
0 (M), V ∈ χ(M) with compact support. Notice that we

admit a non-vanishing tangential component in the variational field Ξ ∈
C2

0 (M,Rn+1) as in [1] but in contrast to [21, p. 64]. The second variation
δ2F0(X,Ξ) of the functional F0 defined in (1.12) at X in the direction of Ξ
is defined as

δ2F0(X,Ξ) :=
d2

dε2
F0(X(., ε))

ε=0
.(4.3)

Theorem 4.1. Let F = F (z) ∈ C0(Rn+1)∩C3(Rn+1\{0}) be a parametric
Lagrangian. Suppose X ∈ C3(M,Rn+1) is a critical immersion for the func-
tional (1.12) and Ξ ∈ C2

0 (M,Rn+1) is a variational field of the form (4.2).
Then

δ2F0(X,Ξ)(4.4)

=
∫

M

{
g(AF gradϕ, gradϕ)− ϕ2(tr (AFS

2)

− 〈∇Rn+1HF (X), N〉) + ϕg(div (SAF ) + gradHF (X), V )
}
dA.

Note that only first order derivatives of X(., ε) with respect to ε, i.e.,
merely Ξ defined in (4.2) enters the formula for the second variation which
justifies the notation on the left-hand side of (4.3).
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Proof of Theorem 4.1. Using the identity

∂

∂η
X(., ε+ η)

η=0
=

∂

∂ε
X(., ε)

ε=ε

we obtain

δ2F0(X,Ξ) =
d2

dε2
F0(X(., ε))

ε=0

=
d

dε

(
d

dη
F0(X(., ε+ η))

η=0

)
ε=0

=
d

dε

(
δF0

(
X(., ε),

∂

∂ε
X(., ε)

ε=ε

))
ε=0

.

Hence, by the first variation formula proved in [2, pp. 5,6] applied to (1.12)
and evaluated at X(., ε) in the direction ∂

∂εX(., ε)
ε=ε

,

δ2F0(X,Ξ) =
d

dε

( ∫
M

{ 〈
∂

∂ε
X(., ε)

ε=ε
, N(., ε)

〉
(4.5)

· [HF (X(., ε))−HF (X(., ε), N(., ε))]
}
dA

)
ε=0

,

where N(., ε) is the unit normal and HF (X(., ε), N(., ε)) the F -mean curva-
ture of the perturbed immersion X(., ε) ∈ C3(M,Rn+1).

According to [2, Lemma 1.1] one has

∂

∂ε
N(., ε)

ε=0
= −DX(gradϕ) +DN(V ),(4.6)

where ϕ ∈ C2
0 (M) and V ∈ χ(M) with compact support determine the

normal and tangential component of Ξ defined in (4.2). From (2.14), on the
other hand, we infer

∂

∂ε
HF (X(., ε), N(., ε))

ε=0
(4.7)

=
(2.14)

[(
∂

∂ε
gij(ε)

)
hFij + gij

(
∂

∂ε
hFij(ε)

)]
ε=0

=: I + II,

where the argument ε indicates that the corresponding quantity belongs to
the perturbed immersion X(., ε). In particular, we write, e.g., gij(0) = gij ,
∂lX(., 0) = ∂lX, etc. On account of gij(ε)gjs(ε) = δi

s for all ε ∈ (−ε0, ε0) one
has

∂

∂ε
gij(ε) = −gik(ε)

(
∂

∂ε
gkl(ε)

)
glj(ε),
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and therefore by (4.2) and (2.6) for U := ∂k, ∂l, respectively,

∂

∂ε
gij(ε)

ε=0

= −gik

{〈
∂

∂ε
(∂kX(., ε)), ∂lX

〉
+

〈
∂kX,

∂

∂ε
(∂lX(., ε))

〉}
ε=0

glj

=
(4.2)

−gik {〈ϕ∂kN + ∂k(DX(V )), ∂lX〉+ 〈∂kX,ϕ∂lN + ∂l(DX(V ))〉} glj

=
(2.6)

2ϕgikhklg
lj − gik〈DX(∇kV ), ∂lX〉glj − gik〈DX(∇lV ), ∂kX〉glj .

Thus we obtain for the expression I in (4.7) by the symmetry of the map-
pings AF and S

I =
(
∂

∂ε
gij(ε)

)
ε=0

hFij(4.8)

= 2ϕgikhklg
ljhFij − gik〈DX(∇kV ), ∂lX〉gljhFij

− gik〈DX(∇lV ), ∂kX〉gljhFij

=
(2.13)

2ϕgikg(∂k, S(∂l))gljg(∂i, AFS(∂j))

+ gikg(∇kV, ∂l)gljg(∂i, AFS(∂j))

+ gikg(∇lV, ∂k)gljg(∂i, AFS(∂j))

= 2ϕgikg(S(∂k), gljg(SAF (∂i), ∂j)∂l)

+ gikg(SAF (∂i), gljg(∇kV, ∂l)∂j)

+ gljg(gikg(∇lV, ∂k)∂i, AFS(∂j))

=
(2.1)

2ϕgikg(AFS
2(∂k), ∂i) + gikg(SAF (∂i),∇kV )

+ gljg(∇lV,AFS(∂j))

=
(2.7)
(2.8)

2ϕtr (AFS
2) + tr ((SAF +AFS)∇•V ).

Furthermore we need to compute

∂

∂ε
hFij(ε)

ε=0
(4.9)

=
(2.13)

−
〈
∂

∂ε
(Fzz(N(., ε))

ε=0
∂iX, ∂jN

〉
−

〈
Fzz(N)∂i

[
∂

∂ε
X(., ε)

ε=0

]
, ∂jN

〉
−

〈
Fzz(N)∂iX, ∂j

[
∂

∂ε
N(., ε)

ε=0

]〉
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=
(4.2),(4.6)

−
〈
∂

∂ε
(Fzz(N(., ε))

ε=0
∂iX, ∂jN

〉
− 〈Fzz(N)∂i [ϕN +DX(V )] , ∂jN〉
− 〈Fzz(N)∂iX, ∂j [−DX(gradϕ) +DN(V )]〉 .

Since 〈∂jN,N〉 = 0 we have by (2.6)

〈Fzz(N)∂i[ϕN +DX(V )], ∂jN〉 = ϕ〈Fzz(N)∂iN, ∂jN〉(4.10)

+ 〈Fzz(N)DX(∇iV ), ∂jN〉,

and also by (2.6) and on account of DN = DX ◦ S

〈Fzz(N)∂iX, ∂j [−DX(gradϕ) +DN(V )]〉
(4.11)

= −〈Fzz(N)∂iX, ∂jDX(gradϕ)〉+ 〈Fzz(N)∂iX, ∂jDX(S(V ))〉
=

(2.6)
−〈Fzz(N)∂iX, ∂jDX(gradϕ)〉+ 〈Fzz(N)∂iX,DX(∇j(S(V ))〉.

Inserting (4.9)-(4.11) into the expression for II in (4.7) leads to

II = −gij

〈
∂

∂ε
(Fzz(N(., ε)))

ε=0
∂iX, ∂jN

〉
− ϕgij〈Fzz(N)∂iN, ∂jN〉

− gij〈Fzz(N)DX(∇iV ), ∂jN〉+ gij〈Fzz(N)∂iX, ∂jDX(gradϕ)〉
− gij〈Fzz(N)∂iX,DX(∇j(S(V )))〉

=
(1.10)

−gij

〈
∂

∂ε
(Fzz(N(., ε)))

ε=0
∂iX, ∂jN

〉
− ϕgijg(AFS(∂i), S(∂j))

− gijg(AF (∇iV ), S(∂j)) + gij〈Fzz(N)∂iX, ∂jDX(gradϕ)〉
− gijg(AF (∂i),∇j(S(V ))).

By the symmetry of AF and S and by (2.7) (and (2.4) for the last term) we
may rewrite this as

II = −gij

〈
∂

∂ε
(Fzz(N(., ε)))

ε=0
∂iX, ∂jN

〉
− ϕtr (AFS

2)(4.12)

− tr (SAF∇•V ) + gij〈Fzz(N)∂iX, ∂jDX(gradϕ)〉
− tr (AFS∇•V )− tr (AF ◦ [(∇•S)V ]).

Adding (4.8) and (4.12) in (4.7) and using the symmetry of Fzz we arrive at

∂

∂ε
HF (X(., ε), N(., ε))

ε=0
(4.13)

=
(4.8),(4.12)

ϕ tr (AFS
2) + gij〈∂iX,Fzz(N)∂jDX(gradϕ)〉

− gij

〈
∂

∂ε
(Fzz(N(., ε)))

ε=0
∂iX, ∂jN

〉
− tr (AF ◦ [(∇•S)V ]).
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By virtue of (1.10), (2.6), (2.9) and (1.13) we may rewrite the second term
on the right-hand side as

gij〈∂iX,Fzz(N)∂jDX(gradϕ)〉(4.14)

= gij〈∂iX, ∂j{Fzz(N)DX(gradϕ)}〉
− gij〈∂iX, ∂j(Fzz(N))DX(gradϕ)〉

=
(1.10)
(2.6)

gijg(∂i,∇j(AF (gradϕ)))− gij〈∂iX, ∂j(Fzz(N))DX(gradϕ)〉

=
(2.9)
(1.13)

∆Fϕ− gij〈∂iX, ∂j(Fzz(N))DX(gradϕ)〉.

Moreover, by the symmetry of Fzz we have

gij〈∂iX, ∂j(Fzz(N))DX(gradϕ)〉 = gij〈∂j(Fzz(N))∂iX,DX(gradϕ)〉,
(4.15)

and by (2.6), (1.10), (2.4) and (2.11) for general W ∈ TwM

gij〈∂iX, ∂j(Fzz(N))DX(W )〉(4.16)

=
(2.6)

gij〈∂j(Fzz(N)DX(∂i))− Fzz(N)DX(∇j∂i), DX(W )〉

=
(1.10)

gij〈∂j(DX(AF (∂i)))−DX(AF (∇j∂i)), DX(W )〉

=
(2.4)
(2.6)

gij〈DX((∇jAF )∂i), DX(W )〉

= gijg((∇jAF )∂i,W ) =
(2.12)

g(divAF ,W ).

Summarizing (4.13), (4.14) and (4.16) for W := gradϕ we arrive at

∂

∂ε
HF (X(., ε), N(., ε))

ε=0
(4.17)

= ∆Fϕ+ ϕtr (AFS
2)− g(divAF , gradϕ)

− gij

〈
∂

∂ε
(Fzz(N(., ε)))

ε=0
∂iX, ∂jN

〉
− tr (AF ◦ [(∇•S)V ]).

Now writing out components one calculates

∂

∂ε
(Fzlzk(N(., ε)))

ε=0
∂iX

k∂jN
l

= Fzlzkzs(N)
(
∂

∂ε
N s(., ε)

ε=0

)
∂iX

k∂jN
l

= ∂j(Fzkzs(N))
(
∂

∂ε
N s(., ε)

ε=0

)
∂iX

k,
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whence by (4.6), (4.15) and (4.16) for W := S(V )− gradϕ,

gij

〈
∂

∂ε
(Fzz(N(., ε)))

ε=0
∂iX, ∂jN

〉
(4.18)

= gij〈∂j(Fzz(N))∂iX,DX ◦ S(V )−DX(gradϕ)〉
= g(divAF , S(V )− gradϕ).

Next we claim that for any V ∈ TwM

g(div (SAF ), V ) = tr (AF ◦ [(∇•S)V ]) + g(divAF , S(V )).(4.19)

This together with (4.18) and (4.17) leads to

∂

∂ε
HF (X(., ε), N(., ε))

ε=0
= ∆Fϕ+ ϕtr (AFS

2)− g(div (SAF ), V ).(4.20)

By (4.5) we then conclude using (4.2)

δ2F0(X,Ξ) = −
∫

M
ϕ{∆Fϕ+ ϕtr (AFS

2)− ϕ〈∇Rn+1HF (X), N〉(4.21)

− g(div (SAF ) + gradHF (X), V )} dA,

which proves Theorem 4.1. Notice that the other terms obtained by carrying
out the differentiation with respect to ε in (4.5) and evaluating at ε = 0
vanish, since

HF (X(., 0), N(., 0)) = HF (X,N) ≡ HF (X)

because X is a critical immersion for (1.12).
It remains to show (4.19). By (2.11) and the symmetry of AF and S

g(div (SAF ), V ) =
(2.11)

gikg(∇i(SAF )∗V, ∂k)

= gikg((∇iA
∗
F )S∗V, ∂k) + gikg(A∗F (∇iS

∗)V, ∂k)

=
(2.11)

g(divAF , S
∗V ) + gikg((∇iS)∗V,AF (∂k))

= g(SdivAF , V ) + gikg(V, (∇iS)AF (∂k)).

The Codazzi Equation (2.17) and the symmetry of S and AF imply now

gikg(V, (∇iS)AF (∂k)) = gikg(AF ◦ (∇iS)V, ∂k)

=
(2.8)

tr (AF ◦ [(∇•S)V ]),

which proves the claim. �

As a consequence of Theorem 4.1 we can state:
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Corollary 4.2. Let X ∈ C3(M,Rn+1) be a immersion of prescribed F -
mean curvature HF ∈ C1(Rn+1), where

F = F (z) ∈ C0(Rn+1) ∩ C3(Rn+1\{0})

is a parametric Lagrangian. Then

div (SAF ) = −gradHF (X), and(4.22)

δ2F0(X,Ξ) =
∫

M

{
g(AF gradϕ, gradϕ)(4.23)

−
[
tr (AFS

2)− 〈∇Rn+1HF (X), N〉
]
ϕ2

}
dA,

where Ξ = ϕN+DX(V ), ϕ ∈ C2
0 (M), and V ∈ χ(M) with compact support.

In particular, the second variation of a parametric integrand depends on
normal variations only.

Proof. The symmetry argument we use here is due to White [23]. Consider
the surfaces

X( · , ε, η) = X + ε(ϕN +DX(V )) + η(ψN +DX(W )),

where ϕ,ψ ∈ C∞
0 (M) and V,W ∈ χ(M) with compact support. Similarly

as in (4.5) we have

d

dε ε=0

[
d

dη η=0
F0(X(., ε, η))

]
(4.24)

=
d

dε

( ∫
M

{ 〈
∂

∂η
X(., ε, η)

η=0
, N(., ε, 0)

〉
[HF (X(., ε, 0))−HF (X(., ε, 0), N(., ε, 0))]

}
dA

)
ε=0

.

Hence by (4.20) we obtain

d

dε ε=0

[
d

dη η=0
F0(X(., ε, η))

]
=

∫
M
ψ{−∆Fϕ− ϕtr (AFS

2) + g(div (SAF ), V )}

+ ψ〈∇Rn+1HF (X), ϕN +DX(V )〉 dA.

Since

d

dε ε=0

[
d

dη η=0
F0(X(., ε, η))

]
=

d

dη η=0

[
d

dε ε=0
F0(X(., ε, η))

]
,
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we arrive at ∫
M
ψg(div (SAF ), V ) + ψg(V, gradHF (X)) dA(4.25)

=
∫

M
ϕg(div (SAF ),W ) + ϕg(W, gradHF (X)) dA

for all ϕ,ψ ∈ C∞
0 (M) and V,W ∈ χ(M) with compact support, where we

used that∫
M
ψ(−∆Fϕ− ϕtr (AFS

2)) dA =
∫

M
ϕ(−∆Fψ − ψtr (AFS

2)) dA.

Equation (4.25) is only possible if div (SAF ) = −gradHF (X), for if not, we
could choose W ≡ 0 to have a vanishing right-hand side in (4.25), and ψ and
V appropriately to obtain a positive left-hand side and thus a contradiction.

�

Inserting (4.22) into formula (1.15) of Theorem 1.1 for the normal of an
F0-critical immersion we obtain:

Corollary 4.3. Let N be the normal of an immersion X ∈ C3(M,Rn+1)
of prescribed F -mean curvature HF (y) ∈ C1(Rn+1), where F = F (z) is a
parametric Lagrangian of class C0(Rn+1) ∩ C3(Rn+1\{0}). Then

∆FN +
[
tr (AFS

2)− 〈∇Rn+1HF (X), N〉
]
N = −∇Rn+1HF (X).(4.26)

The above corollary generalizes [21, Satz 1].

The notion of stability is defined as follows:

Definition 4.4. Let X ∈ C3(M,Rn+1) be an F0-critical immersion, where
F0 is defined in (1.12) with a parametric Lagrangian F = F (z) ∈ C0(Rn+1)∩
C3(Rn+1\{0}). Then X is called stable if δ2F0(X,Ξ) ≥ 0 for all Ξ ∈
C2

0 (M,Rn+1). If δ2F0(X,Ξ) > 0 we say X is strictly stable.

5. Graph representation of prescribed F -mean curvature
surfaces.

The Proof of Theorem 1.4 is based on a maximum principle for elliptic
equations of the form Lu = (αijuxj )xi + βiuxi + cu. Usually it is required
that the coefficient c be nonpositive. As was carried out in [21] for the
Laplace operator this condition may be replaced by assuming that the first
eigenvalue of L is nonnegative. Our proof of the corresponding lemma for
general elliptic equations is related to [12, Lemma 1], but we assume less
regularity of the coefficients:

Lemma 5.1. Let Lu = (αijuxj )xi +βiuxi + cu ≤ 0 be a linear elliptic equa-
tion in a domain Ω ⊂ Rn with smooth boundary, where αij, βi, c ∈ C0,µ(Ω)
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and with αij = αji for i, j = 1, . . . , n. Assume that the first eigenvalue of
L is nonnegative on Ω. If for u ∈ C2(Ω) ∩ C0(Ω) we have Lu ≤ 0 and
u|∂Ω > 0, then infΩ u > 0.

Proof. On account of the continuity of u we can assume that there is a
smoothly bounded domain Ω2 ⊂⊂ Ω with u|∂Ω2

> 0. The first eigenvalue λ
of L in a domain Ω1 with Ω2 ⊂⊂ Ω1 ⊂⊂ Ω is simple and therefore strictly
positive, since otherwise we could apply [11, Thm. 8.38] to find a positive

eigenfunction ξ ∈
◦
H1,2(Ω1) on Ω1 with ξ = 0 on ∂Ω1. Extending ξ by zero

outside of Ω1 we would obtain ξ̃ ∈
◦
H1,2(Ω) with Lξ̃ + λξ̃ = 0, ξ̃ 6≡ 0 on Ω

with ξ̃ ≡ 0 on Ω\Ω1, contradicting [11, Thm. 8.38].
The regularity of the coefficients αij , βi, c, leads to ξ ∈ C1,µ(Ω1); see e.g.,

[10, Theorem 3.2].
Thus in Ω2 we can write u = ξ v, and due to the regularity of u and ξ we

obtain a.e. on Ω2:

L(ξv) = v(αijξxj )xi + ξ(αijvxj )xi + 2αijvxiξxj + vβiξxi + ξβivxi + cvξ

= vLξ + ξ[(αijvxj )xi + βivxi ] + 2αijvxiξxj

= ξ[ (αijvxj )xi + βivxi + (2/ξ) αijξxj vxi − λv].

Thus we obtain an elliptic differential inequality for v:

0 ≤
∫

Ω2

[αijvxjϕxi − (β̃ivxi − λv)ϕ] dx

for all nonnegative ϕ ∈ C1
0 (Ω2), where β̃i := βi + (2/ξ)aijξxj ∈ L∞(Ω2) for

i = 1, . . . , n. Thus the weak maximum principle [11, Thm 8.1] holds for v
and we have infΩ2 v ≥ 0. By the strong minimum principle [11, Thm. 8.19]
we obtain the strict relation infΩ2 v > 0. �

Proof of Theorem 1.4. According to our assumptions on Γ and Ω in Theo-
rem 1.3 there is a function f ∈ C2(∂Ω), such that Γ = {(x, f(x)) : x ∈ ∂Ω}
is (positively) oriented by setting

Pk := (xk, f(xk)), k = 1, 2, 3,(5.1)

where xk ∈ ∂Ω, k = 1, 2, 3, are chosen in positive orientation with respect
to R2.

Since X is immersed on B we may assume without loss of generality
that X is conformally parametrized, i.e., satisfies the conformality rela-
tions (3.3). (Otherwise we can perform a diffeomorphism w : B → B of
class C2,α(B,R2) ∩ C1,α(B,R2) such that X̃ := X ◦ w−1 is conformally
parametrized; see e.g., [17, Corollary 3.1.2].) Performing a suitable Möbius
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transformation on B we may assume that X satisfies the three-point condi-
tion

X(wk) = Pk k = 1, 2, 3,(5.2)

where w1, w2, w3 are fixed distinct points on ∂B.
Fix some point w0 = eiϑ0 ∈ ∂B. Since Ω is h-convex there is a point

η0 ∈ R2 such that Ω ⊂ B1/h(η0) and such that y0 := (X1(w0), X2(w0)) ∈ ∂Ω
is contained in ∂B1/h(η0). Without loss of generality we may assume that
η0 = 0. By Hopf’s boundary point lemma we then obtain for the function
R(x) := (x1)2 + (x2)2

∂

∂ν
R(X(w))

w=w0
> 0,

i.e., in polar coordinates (r, ϑ)

2
2∑

i=1

Xi(w)
∂

∂r
Xi(w)

w=w0
> 0,(5.3)

which implies |Xr(w0)| > 0, and by conformality also

|Xϑ(w0)| > 0.(5.4)

Since R(X(w0)) = h−2 ≥ R(X(w)) for all w = eiϑ ∈ ∂B we obtain

0 =
∂

∂ϑ ϑ=ϑ0
(R(X(eiϑ))) =

2∑
i=1

Xi(eiϑ)
∂

∂ϑ
Xi(eiϑ)

ϑ=ϑ0
.(5.5)

Since Γ = {(x, f(x)) : x ∈ ∂Ω}, f ∈ C2(∂Ω), we have

|X3
ϑ| = |fx1X1

ϑ + fx2X2
ϑ| ≤ ‖∇f̃‖C0(R2)

√
(X1

ϑ)2 + (X2
ϑ)2,

where f̃ ∈ C2(R2) is an extension of f onto R2 with controlled C2-norm;
see [11, p. 137]. Hence, by (5.4),

0 < |Xϑ(w)|2
w=w0

≤ (1 + ‖∇f̃‖2
C0(R2))

[
(X1

ϑ(w))2 + (X2
ϑ(w))2

]
w=w0

.(5.6)

By (5.2) the mapping (X1, X2) : ∂B → ∂Ω respects the positive orientation,
thus we infer from (5.5) and (5.6) that there is a constant σ > 0 such that

X1
ϑ(w0) = −σX2(w0), X2

ϑ(w0) = σX1(w0).

Therefore, by (5.3)

X1
r (w0)X2

ϑ(w0)−X2
r (w0)X1

ϑ(w0)

= σ(X1(w0)X1
r (w0) +X2(w0)X2

r (w0)) >
(5.3)

0,
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which means that X1
u(w0)X2

v (w0)−X1
v (w0)X2

u(w0) > 0, i.e., the third com-
ponent of N3 of the normal N is positive on ∂B. Moreover, by Corollary 4.3,
N3 satisfies the elliptic differential equation

∆FN
3 + (tr (AFS

2)− 〈∇R3HF (X), N〉)N3 = −∂HF

∂y3
(X).

Using the assumption on HF (X) this relation is given in coordinates by

LN3 := ∂i(
√
ggijajkg

kl∂lN
3) +

√
g(tr (AFS

2)− 〈∇R3HF (X), N〉)N3 ≤ 0 ,

which we regard as a linear elliptic equation for N3 with the differential
operator L associated to the second variation formula (4.23). Here, g =
det(gij), ajk = 〈Fzz(N)∂jX, ∂kX〉 and the remaining coefficients are of class
C0,α(B), and the leading coefficients of L are symmetric. Since X is stable
we have δ2F0(X,Ξ) ≥ 0; hence the first eigenvalue of L is nonnegative.
Thus Lemma 5.1 is applicable and we have N3 > 0 on B.

Since X : ∂B → Γ is a topological mapping, we can apply Sauvigny’s
reasoning involving degree theory as in [21, pp. 53,54] to conclude the proof.

�

Remark. We have seen in (5.3) and (5.4) that there are no branch points
on the boundary by the simple Hopf maximum principle argument, which is
applicable because of our regularity assumptions up to the boundary. Con-
sequently, it would suffice to assume that X is conformal and has no interior
branch points and maps the boundary ∂B only weakly monotonically onto
Γ, but at this point it is an open question if one can relax the smoothness
assumptions to X ∈ C0(B,R3) ∩ C3(B,R3).
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[21] F. Sauvigny, Flächen vorgeschriebener mittlerer Krümmung mit eineindeutiger Pro-
jektion auf eine Ebene, Math. Z., 180 (1982), 41-67, MR 83j:53004, Zbl 0465.53003.

[22] L. Simon, Lectures on Geometric Measure Theory, Proc. Centre Math. Analysis, Aus-
tralian National University, Canberra, Australia, 3, 1983 (publ. 1984), MR 87a:49001,
Zbl 0546.49019.

[23] B. White, The space of m-dimensional surfaces that are stationary for a paramet-
ric elliptic functional, Indiana Univ. Math. J., 36 (1987), 567-602, MR 88k:58027,
Zbl 0770.58005.

[24] , Existence and regularity of smooth embedded surfaces of prescribed genus that
minimize parametric even elliptic functionals on 3-manifolds, J. Differential Geom.,
33 (1991), 413-443, MR 92e:58048, Zbl 0737.53009.



36 U. CLARENZ AND H. VON DER MOSEL

Received September 30, 2002. The second author was supported by the Max-Planck
Institute for Mathematics in the Sciences Leipzig and the Sonderforschungsbereich 611 at
the University of Bonn.

Fachbereich Mathematik
Universität Duisburg-Essen
Lotharstraße 65
47047 Duisburg
Germany
E-mail address: clarenz@math.uni-duisburg.de

Mathematisches Institut
Universität Bonn
Beringstraße 1
53115 Bonn
Germany
E-mail address: heiko@math.uni-bonn.de


