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We give sufficient conditions in terms of the Melnikov func-
tions in order that an analytic or a polynomial differential
system in the real plane has a period annulus.

We study the first nonzero Melnikov function of the analytic
differential systems in the real plane obtained by perturbing a
Hamiltonian system having either a nondegenerate center, a
heteroclinic cycle, a homoclinic cycle, or three cycles obtained
connecting the four separatrices of a saddle. All the singular
points of these cycles are hyperbolic saddles.

Finally, using the first nonzero Melnikov function we give a
new proof of a result of Roussarie on the finite cyclicity of the
homoclinic orbit of the integrable system when we perturb it
inside the class of analytic differential systems.

1. Introduction and statement of the main results.

We consider the planar vector fields Xε associated to the system:

ẋ = X(x, y, λ, ε) = p(x, y) + εP (x, y, λ, ε),(1)

ẏ = Y (x, y, λ, ε) = q(x, y) + εQ(x, y, λ, ε),

where X, Y depend analytically on their variables and parameters λ ∈ Λ,
and ε ∈ R, Λ ⊂ Rr is an open region. Assume that for ε = 0, system (1)
has a period annulus; i.e., a continuous family of periodic orbits. As usual,
the dot denotes derivative with respect to the time variable t. We say that
system (1) with ε = 0 is the unperturbed system, while system (1) with ε 6= 0
is the perturbed one.

Given any compact subset D of Λ and ε0 > 0 small, we assume that
there is a transversal section J to the vector fields Xε in the region covered
by the period annulus for |ε| < ε0 and λ ∈ D. Let u be an analytical
parameterization of J . Then there is a subsection Σ ⊂ J such that the
Poincaré return map (u, λ, ε) 7→ Π(u, λ, ε) is defined from Σ×D×(−ε0, ε0) to
J . The displacement function d(u, λ, ε) is defined as d(u, λ, ε) = Π(u, λ, ε)−
u. Since system (1) has a period annulus for ε = 0, we have d(u, λ, 0) ≡ 0,
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and thus for u ∈ Σ, λ ∈ D and ε0 > 0 sufficiently small, we have

d(u, λ, ε) =
∞∑
i=1

Mi(u, λ)εi.(2)

The function Mi is called the i-th Melnikov function. In what follows the
notation |ε| � 1 means for all ε such that |ε| < ε0 with ε0 > 0 sufficiently
small. The first part of this paper is dedicated to period annulus.

Theorem 1. For any compact set D ⊂ Λ, ε0 > 0 and a transversal section
Σ for which the displacement function (2) is defined, there exists a natural
number N depending on D such that for any λ0 ∈ D, if Mi(u, λ0) ≡ 0, for
u ∈ Σ, 1 ≤ i ≤ N, then system (1) has a period annulus for λ = λ0 and
|ε| � 1.

Theorem 2. Assume that

P (x, y, λ, ε) = P (x, y, ε) =
l∑

i=0

Pi(x, y)εi,

Q(x, y, λ, ε) = Q(x, y, ε) =
l∑

i=0

Qi(x, y)εi,

and Pi(x, y), Qi(x, y) are polynomials in the variables x and y of degree at
most n, then there exists a natural number N depending on the unperturbed
system X0 and on the natural numbers l, n such that if Mi(u) ≡ 0 for 1 ≤
i ≤ N, then system (1) has a period annulus for |ε| � 1.

The second part of this paper is concerned with the properties of Mel-
nikov functions near a nondegenerate center and a hyperbolic heteroclinic
or homoclinic cycle for the perturbed Hamiltonian systems.

We first recall some definitions. Let X be a vector field in the plane.
A center is a singular point of X for which there is a neighbourhood filled
of periodic orbits with the exception of the singular point. A center of X
is called nondegenerate if it has a pair of pure imaginary eigenvalues. A
heteroclinic cycle Γ for X is a finite collection of separatrices of hyperbolic
sectors γ1, γ2, . . . , γn and a finite collection of singular points p1, p2, . . . , pn

such that the α-limit set of γi is pi for i = 1, . . . , n, the ω-limit set of γi is
pi+1 for i = 1, 2, . . . , n − 1 and the ω-limit set of γn is p1. Moreover, some
of the pi can be repeated. A heteroclinic cycle Γ is called hyperbolic, if all
its singular points are hyperbolic saddles. A heteroclinic cycle becomes a
homoclinic one, if it consists of one singular point and one separatrix. Now
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we consider the following perturbed Hamiltonian system:

ẋ =
∂H(x, y)

∂y
+ εP (x, y, ε),(3)

ẏ =− ∂H(x, y)
∂x

+ εQ(x, y, ε),

where H,P, Q are analytical functions in the variables (x, y) ∈ R2 and in the
parameter ε ∈ (R, 0). Here (R, 0) denotes a small neighbourhood of zero, and
Cω(R, 0) denotes the set of analytic functions in a small neighbourhood of
zero. In this case, as usual, we parameterize the transversal section J by the
Hamiltonian constant h = H. We assume that the unperturbed Hamiltonian
system has a continuous family of periodic orbits γh ⊂ H−1(h) for 0 < h �
1.

Theorem 3. For system (3) assume that when h ↘ 0, γh → (0, 0), a non-
degenerate center of the unperturbed system. Then the following hold:

(1) M1(h) can be analytically continued to h = 0, and

M1(0) = 0, M ′
1(0) =

2π

β

(
∂P

∂x
+

∂Q

∂y

)∣∣∣∣
(x, y, ε)=(0, 0, 0)

,

where ±iβ with β > 0 are the eigenvalues of the center.
(2) If Mi(h) ≡ 0 for 1 ≤ i ≤ k−1, then Mk(h) can be analytically continued

to h = 0 and Mk(0) = 0.

Theorem 4. For system (3) assume that when h ↘ 0, γh → γ0, a hete-
roclinic cycle of the unperturbed system consisting of n hyperbolic saddles
p1, p2 . . . , pn (eventually they can be repeated) and the corresponding n sep-
aratrices. Then the following hold:

(1) There exist analytical functions a1(h), b1(h) ∈ Cω(R, 0) such that

M1(h) = a1(h) + b1(h) ln h, 0 < h � 1,

with

a1(0) =
∫

γ0

P (x, y, 0) dy −Q(x, y, 0) dx,

b1(0) = 0,

b′1(0) = −
n∑

i=1

1
λi

(
∂P

∂x
+

∂Q

∂y

)∣∣∣∣
(x, y)=pi, ε=0

,

where −λi < 0 < λi are the eigenvalues of the saddle pi. Moreover, if(
∂P

∂x
+

∂Q

∂y

)∣∣∣∣
(x, y)=pi, ε=0

= 0, for i = 1, . . . , n,
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then

a′1(0) =
∫

γ0

(
∂P

∂x
+

∂Q

∂y

)∣∣∣∣
ε=0

dt.

(2) If n = 1, and γ0 is a homoclinic cycle of a hyperbolic saddle, and
Mi(h) ≡ 0 for 1 ≤ i ≤ k − 1, then there exist analytical functions
ak(h), bk(h) ∈ Cω(R, 0) with bk(0) = 0, such that

Mk(h) = ak(h) + bk(h) ln h, 0 < h � 1.

In general, Statement (2) of Theorem 4 cannot be generalized to hete-
roclinic cycles with two saddles or more. Now we consider the so-called
8-figure heteroclinic cycles, i.e., the cycles consisting of one saddle and its
two homoclinic orbits. Assume that for ε = 0, system (3) has two homoclinic
orbits γ±0 of a hyperbolic saddle, called the 8-figure cycle, and three families
of periodic orbits: γh ⊂ {H−1(h), h > 0}, γ+

h ∪ γ−h ⊂ {H−1(h), h < 0}, such
that γh → γ+

0 ∪ γ−0 when h ↘ 0, and γ±h → γ±0 when h ↗ 0, see Figure 1.
Three classes of Melnikov functions are defined corresponding to the three
period annuli: Mk(h), M±

k (h) for k ≥ 1. Then we have:

Theorem 5. If Mi = M+
i = M−

i ≡ 0 for 0 ≤ i ≤ k − 1 with k ≥ 1, then
the following hold:

(1) If one of three functions Mk,M
+
k ,M−

k can be analytically continued to
h = 0, then the other two can also be continued.

(2) If two of three functions Mk,M
+
k ,M−

k are identically zero, then the
third one is identically zero.

(3) There exist analytical functions ak(h), bk(h) ∈ Cω(R, 0) with bk(0) = 0
such that Mk(h) = ak(h) + bk(h) ln h for 0 < h � 1.
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Figure 1. The two 8-figure heteroclinic cycles.

We remark that by using Melnikov functions we can determinate the
cyclicity of a center or of a homoclinic cycle. Assume that the origin (0, 0)
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is a nondegenerate center of system (3) for ε = 0. Without loss of generality,
we can assume that

P (0, 0, ε) = Q(0, 0, ε) ≡ 0,(4)

which means that our perturbation preserves the singular point (0, 0) fixed.
Let f(h) ∈ Cω(R, 0). If f(h) = ahn + O(hn+1) with a 6= 0, we define
m(f) = n. If f ≡ 0, we define m(f) = ∞.

Remark 6. Let the origin (0, 0) be a nondegenerate center of system (3)
for ε = 0. Assume that (4) holds, and there exist integers k ≥ 1, m ≥ 0 such
that

Mi(h) ≡ 0 for i ≤ k − 1, and m(Mk(h)) = n + 1 with 0 ≤ n < ∞.

Then system (3) has at most n (taking into account their multiplicity) limit
cycles in some neighbourhood of the origin for |ε| � 1.

Remark 7. Assume that when h ↘ 0, γh → γ0, where γ0 is a homoclinic
cycle of a hyperbolic saddle. Let k ≥ 1 be such an integer that Mi(h) ≡ 0
for 0 ≤ i ≤ k − 1 and Mk(h) = ak(h) + bk(h) ln h is not identically zero,
then there exists a neighbourhood U of γ0 such that for |ε| � 1, system
(3) in U has at most 2m(bk)− 1 limit cycles if m(ak) ≥ m(bk); and 2m(ak)
limit cycles if m(ak) < m(bk), these estimates hold taken into account the
multiplicity of the limit cycles.

We point out that Roussarie in [10] obtained the result of Remark 7
for k = 1 and the method works for k ≥ 2 also. As an application of
Remark 7, we will give a simple proof of the finite cyclicity of the homoclinic
cycle of infinite codimension under a one-parameter purterbation, which is
a particular case of a result due to Roussarie [11]. First we recall that
a homoclinic cycle γ is said to be of infinite codimension if there exists a
continuous family of periodic orbits tending to the cycle γ.

Theorem 8. Let Xε be an one parameter analytic family of planar vector
fields. Assume that X0 has a homoclinic cycle γ of a hyperbolic saddle of
infinite codimension, then there exists a neighbourhood U of γ and a natural
number N such that Xε has at most N limit cycles (taking into account their
multiplicity) in U for |ε| � 1.

This paper is organized as follows: In Section 2, we prove Theorems 1
and 2. In Section 3 we first recall three important results, one is about
the formula for computing Melnikov functions of arbitrary order, the other
two are about the normalization of planar Hamiltonian vector fields near a
nondegenerate center or a hyperbolic saddle, which are the main tools in
this paper, and then prove Theorem 3. In Section 4 we prove Theorems 4
and 5. In Section 5 (after Proposition 25) we prove Theorem 8.
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2. Proofs of Theorems 1 and 2.

Lemma 9. Let d(u, λ, ε) be the displacement function as defined in Sec-
tion 1. Assume that, for λ = λ0 ∈ D, d(u, λ0, ε) ≡ 0, then there exists a
neighbourhood U of λ0 and a natural number N such that for any λ ∈ U , if
Mi(u, λ) ≡ 0, 1 ≤ i ≤ N , then Mi(u, λ) ≡ 0 for all natural number i, i.e.,
system (1) has a period annulus for |ε| � 1.

Proof. By the assumption, Mi(u, λ0) ≡ 0 for all i. For u0 ∈ Σ, let

Mi(u, λ) =
∞∑

j=0

ai
j(λ, u0)(u− u0)j .

Then ai
j(λ0, u0) = 0, i ≥ 1, j ≥ 0. Denote by A the ring of germs of analytic

functions at λ0 and I = I{âi
j(·, u0)}i≥1,j≥0 the ideal generated by the germs

of the analytical functions ai
j at λ = λ0. Since the ring A is Noetherian (see

for instance [3], p. 161, Theorem 6.3.3), and so I is generated by a finite
number of germs âi

j :

I = I{âi1
j1

, âi2
j2

, . . . , âin
jn
}.

Let N = max{i1, i2, . . . , in}. Then there exist analytical functions hi,k(λ, u),
1 ≤ k ≤ N, i ≥ 1 defined in some neighborhood U × V of (λ0, u0) such that

Mi(u, λ) =
n∑

k=1

aik
jk

(λ, u0)hi,k(λ, u).(5)

(See [12], p. 79, Proposition 4.) For λ ∈ U, if Mi(u, λ) ≡ 0, 1 ≤ i ≤ N, then

ai
j(λ, u0) = 0, for 1 ≤ i ≤ N, j ≥ 0,

which, by (5), implies Mi(u, λ) ≡ 0 for i ≥ 1. The proof of Lemma 9 is
complete. �

Proof of Theorem 1. Let

Di = {λ ∈ D | ∃k, k ≤ i with Mk(u, λ) not identically vanishing}
D = {λ ∈ D |Mi(u, λ) ≡ 0, ∀i > 0}.

Then

D =

( ∞⋃
i=1

Di

)⋃
D.

If the conclusion is not true, then there exists a sequence of parameter values
λn ∈ D such that

Mi(u, λn) ≡ 0 for 1 ≤ i ≤ n and d(u, λn, ε) is not identically zero.

By the compactness of D, we can assume that λn → λ ∈ D. Since Di are
open subsets of D, λ ∈ D, which is a contradiction with Lemma 9. �
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Proof of Theorem 2. Let

Pi(x, y) =
∑

0≤j+k≤n

pi
j, kx

jyk, Qi(x, y) =
∑

0≤j+k≤n

qi
j, kx

jyk.

We consider the coefficients of the polynomials pi
j, k, q

i
j, k and ε as the pa-

rameters. Note that system (4) preserves unchanged under the parameter
change ε → δ−1ε, pi

j, k → δipi
j, k, qi

j, k → δiqi
j, k. Therefore, we can assume

that |pi
j, k| ≤ 1, |qi

j, k| ≤ 1. Hence Theorem 2 becomes a corollary of Theo-
rem 1. �

Example 1. For the quadratic perturbations of Bagdanov-Takens system
(see [4]):

ẋ = y + εP (x, y)
ẏ = −x− x2 + εQ(x, y)

where P,Q are polynomials of degree at most 2, N = 4.

Example 2. For the quadratic perturbation of quadratic Hamiltonian sys-
tem which preserves the center fixed (see [7]):

ẋ =
∂H(x, y)

∂y
+ εP (x, y)

ẏ = −∂H(x, y)
∂x

+ εQ(x, y)

where H is a polynomial of degree 3, the origin (0, 0) is a center of the
unperturbed system and P, Q are polynomails of degree ≤ 2 with P (0, 0) =
Q(0, 0) = 0, N = 6.

3. Analyticity of Melnikov functions at a center.

We first recall three results which are necessary in the proof of our theorems.
The first one is about the computation of the Melnikov functions of system
(3). We consider now the equivalent form of system (3):

ωε =
(

∂H

∂x
+ εQ

)
dx +

(
∂H

∂y
− εP

)
dy = 0.

Let

ωε =
∞∑
i=0

ωiε
i.

Then ω0 = dH, and ωi’s are analytical 1-form. The following result is due
to Poggiale [9], its proof can be found in [12].

Proposition 10.
(1) M1(h) = −

∫
γ0

ω1;
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(2) If Mi(h) ≡ 0 for 1 ≤ i ≤ k, then

Mk+1(h) =
∫

γh

(
k∑

i=1

giωk−i+1 − ωk+1

)
,

where the analytic functions gi, i = 1, 2, . . . , k, are defined inductively
by

ωi − gidH =
i−1∑
j=1

gjωi−j + dRi.(6)

The next two classical results are about the normalization of planar
Hamiltonian system near a nondegenerate center or a hyperbolic saddle
respectively (for the proofs, see, for instance, [6] and [8]).

Consider now the following planar Hamiltonian system:

ẋ =
∂H(x, y)

∂y
,(7)

ẏ = −∂H(x, y)
∂x

,

where H is an analytical function defined in some neighbourhood of the
origin (0, 0).

Proposition 11. Assume that the origin (0, 0) is a nondegenerate center
of system (7) with eigenvalues ±iβ, β > 0, then there exist an analytical
area-preserving transformation of variables: (x, y) = G(u, v) in some neigh-
bourhood of the origin and a function f ∈ Cω(R, 0) with f(0) = 0, f ′(0) = β

2

such that f(u2 + v2) = H ◦G(u, v) and system (7) is changed to the form:

u̇ = 2vf ′(u2 + v2),

v̇ = −2uf ′(u2 + v2).

Proposition 12. Assume that the origin (0, 0) is a hyperbolic saddle of
system (7) with eigenvalues ±λ, λ > 0, then there exist an analytical area-
preserving transformation of variables: (x, y) = G(u, v) in some neighbour-
hood of the origin and a function f ∈ Cω(R, 0) with f(0) = 0, f ′(0) = λ
such that f(uv) = H ◦G(u, v) and system (7) is changed to the form:

u̇ = uf ′(uv),

v̇ = −vf ′(uv).

Lemma 13. Assume that f ∈ Cω(R, 0), f(0) = 0, f ′(0) > 0, and F ∈
Cω(R2,0). Define function

M(h) :=
∫∫

f(x2+y2)≤h
F (x, y) dx dy, 0 < h � 1.

Then the following statements hold:
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(1) M(h) can analytically be continued to h = 0, and

M(0) = 0, M ′(0) =
π

f ′(0)
F (0, 0).

(2) If

F (x, y) =
∞∑

n=0

Fn(x, y), Fn(x, y) =
n∑

i=0

bi, nxn−iyi,(8)

then

M(h) ≡ 0 ⇐⇒ Cm :=
m∑

k=0

(2m− 2k − 1)!! (2k − 1)!! b2k, 2m = 0,∀m ≥ 0,

(9)

where (−1)!! := 1.

Proof. Assume that series (8) is convergent in the square D = {(x, y) ∈
C2| |x| ≤ R, |y| ≤ R}. Let K = supD |F |. By Cauchy inequality, |b2k, 2m| ≤
KR−2m. Let dm = Cm

(2m+2)!! , then

|dm| ≤ (m + 1)KR−2m,(10)

which implies the function g(r) :=
∑∞

m=0 dmrm+1 is analytic in the region
|r| ≤ R2. Now we calculate the function M(h). By introducing the polar
coordinates x = r cos θ, y = r sin θ, s =

√
f−1(h), we have

M(h) =
∫ s

0
dr

∫ 2π

0
rF (r cos θ, r sin θ) dθ

=
∞∑

n=0

∫ s

0
rn+1dr

∫ 2π

0

n∑
i=0

bi, n cosn−i θ sini θ dθ

=
∞∑

m=0

∫ s

0
r2m+1dr

∫ 2π

0

2m∑
i=0

bi, 2m cos2m−i θ sini θ dθ

=
∞∑

m=0

∫ s

0
r2m+1dr

∫ 2π

0

m∑
k=0

b2k, 2m cos2m−2k θ sin2k θ dθ

= 2π

∞∑
m=0

m∑
k=0

(2m− 2k − 1)!! (2k − 1)!! b2k, 2m

(2m + 2)!!
s2m+2

= 2π

∞∑
m=0

dm(f−1(h))m+1 = 2πg(f−1(h)),

which is analytical at h = 0, and satisfies the following:

M(0) = 2πg(0) = 0, M ′(0) = 2πg′(0)(f ′(0))−1 =
π

f ′(0)
F (0, 0).
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In the computation above, we have used that∫ 2π

0
cos2m−2k θ sin2k θ dθ =

(2m− 2k − 1)!! (2k − 1)!!
(2m)!!

.

For a proof, see [2]. Statement (2) is obvious by noting that

M(h) ≡ 0 ⇐⇒ g(r) ≡ 0 ⇐⇒ dm = 0,∀ m.

�

Remark 14. Condition (9) is equivalent to∫ 2π

0
F (r cos θ, r sin θ) dθ ≡ 0, 0 ≤ r � 1.(11)

Now we consider an analytical system

u̇ =
∂H

∂v
,(12)

v̇ = −∂H

∂u
.

Lemma 15. Assume that system (12) has a family of periodic orbits γh :
H(u, v) = h, 0 < h < h. The origin (0, 0) = H−1(0) is a nondegenerate
center with eigenvalues ±iβ with β > 0. Let ω = −P (u, v)d v +Q(u, v) du be
an analytical 1-form defined in some neighbourhood of the origin, then the
function M(h) :=

∫
γh

ω can be analytically continued to h = 0, and

M(0) = 0, M ′(0) =
2π

β

(
∂P

∂u
+

∂Q

∂v

)∣∣∣∣
(u, v)=(0,0)

.

Proof. By Proposition 11, there exist an area-preserving transformation

u = u(x, y), v = v(x, y), u(0, 0) = 0, v(0, 0) = 0,(13)

and a function f ∈ Cω(R, 0) with f(0) = 0, f ′(0) = β
2 , such that

H(u(x, y), v(x, y)) = f(x2 + y2).

Thus, by Green’s formula, we obtain

M(h) =
∫∫

H(u,v)≤h

(
∂P

∂u
+

∂Q

∂v

)
du dv

=
∫∫

f(x2+y2)≤h
F (x, y) dx dy, F (x, y) =

(
∂P

∂u
+

∂Q

∂v

)∣∣∣∣u=u(x, y)
v=v(x, y)

.

By Lemma 13, M(h) can be analytically continued to h = 0, with

M(0) = 0, M ′(0) =
2π

β

(
∂P

∂u
+

∂Q

∂v

)∣∣∣∣
(u, v)=(0,0)

.

�
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Statement (1) of Theorem 3 follows from Proposition 10 and Lemma 15.
Next, we prove statement (2) of this theorem.

Lemma 16. Let H, γh, ω be defined as in Lemma 15, then M(h) =
∫
γh

ω ≡
0 if and only if there exists a real analytical function z = z(u, v) defined in
some neighbourhood of the origin (0, 0) satisfying the following linear partial
differential equation:

∂H

∂u

∂z

∂v
− ∂H

∂v

∂z

∂u
=

∂P

∂u
+

∂Q

∂v
.(14)

Proof. Sufficiency. Assume z(u, v) satisfies Equation (14), then ω − zdH is
a total differential of some function, i.e., there exists an analytical function
R defined in some neighbourhood of the origin such that ω − zdH = dR.
Therefore,

∫
γh

ω =
∫
γh

(zdH + dR) ≡ 0.

Necessity. Let u = u(x, y), v = v(x, y) be the area-preserving normaliza-
tion transformation (13). We denote by

z(x, y) = z(u(x, y), v(x, y)),

H(x, y) = f(x2 + y2) = H(u(x, y), v(x, y)),

F (x, y) =
(

∂P

∂u
+

∂Q

∂v

)∣∣∣∣u=u(x, y)
v=v(x, y)

.

Then
∂z

∂x
=

∂z

∂u

∂u

∂x
+

∂z

∂v

∂v

∂x
,

∂z

∂y
=

∂z

∂u

∂u

∂y
+

∂z

∂v

∂v

∂y
.

Consequently 
∂z

∂u
∂z

∂v

 =


∂v

∂y
− ∂v

∂x

−∂u

∂y

∂u

∂x




∂z

∂x
∂z

∂y

 .

Substituting it into (14), we get(
∂u

∂x

∂z

∂y
− ∂u

∂y

∂z

∂x

)
∂H

∂u
+
(

∂v

∂x

∂z

∂y
− ∂v

∂y

∂z

∂x

)
∂H

∂v
= F (x, y),

or equivalently

∂H

∂x

∂z

∂y
− ∂H

∂y

∂z

∂x
= F (x, y).(15)

By using H(x, y) = f(x2 + y2), (15) can be written in the form

∂z

∂y
x− ∂z

∂x
y = R(x, y), R(x, y) :=

F (x, y)
2f ′(x2 + y2)

.(16)
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If

R(x, y) =
∞∑

n=0

Rn(x, y), Rn(x, y) =
n∑

i=0

bi, nxn−iyi,

then, by Lemma 13 and Remark 14,∫ 2π

0
R(r cos θ, r sin θ) dθ =

1
2f ′(r2)

∫ 2π

0
F (r cos θ, r sin θ) dθ ≡ 0.

This implies that the coefficients bi, n must satisfy (9). Let

z =
∞∑

n=0

zn, zn =
n∑

k=0

ak, nxn−kyk.(17)

Substituting (17) into (16), we get
∂zn

∂y
x− ∂zn

∂x
y = Rn, n = 0, 1, 2, . . . .(18)

Setting a−1, n = an+1, n = 0, from (18), we obtain
n∑

k=0

[(k + 1)ak+1, n − (n− k + 1)ak−1, n]xn−kyk =
n∑

k=0

bk, nxn−kyk,

or

(k + 1)ak+1, n − (n− k + 1)ak−1, n = bk, n, k = 0, 1, . . . , n.(19)

The determinant of system (19) is

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 · · · 0 0 0
−n 0 2 · · · 0 0 0
0 1− n 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 n− 1 0
0 0 0 · · · −2 0 n
0 0 0 · · · 0 −1 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

{
0 if n = 2m;
[(2m + 1)!!]2 if n = 2m + 1.

Therefore, system (19) has a unique solution for n odd. For n = 2m even,
system (19) can be divided into two independent systems:

2ka2k, 2m − 2(m− k + 1)a2k−2, 2m = b2k−1, 2m, k = 1, 2, . . . ,m,(20)

(2k + 1)a2k+1, 2m − (2m− 2k + 1)a2k−1, 2m = b2k, 2m, k = 0, 1, . . . ,m.
(21)

System (20) contains m equations and m + 1 unknown numbers and its
matrix of coefficients has rank m. This implies that it has a solution of one
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dimension. System (21) contains m+1 equations and m unknown numbers,
and its matrix of coefficients has rank m. Note that the determinant of the
augmented matrix of system (21) is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0 b0, 2m

1− 2m 3 0 · · · 0 0 b2, 2m

0 3− 2m 5 · · · 0 0 b4, 2m
...

...
...

. . .
...

...
...

0 0 0 · · · 2m− 3 0 b2m−4, 2m

0 0 0 · · · −3 2m− 1 b2m−2, 2m

0 0 0 · · · 0 −1 b2m, 2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

m∑
k=0

(2m− 2k − 1)!! (2k − 1)!! b2k, 2m

= 0,

the last equality follows from (9). Therefore, system (21) has a unique
solution. The argument above shows that system (19) has always solutions,
and if we set a0, 2m = 0, the solution is unique. Next we prove that the series
(17) defined by the unique solution is convergent in some neighbourhood
of the origin (0, 0). Assume that R(x, y) is convergent in the square D =
{(x, y) ∈ C2 | |x| ≤ r, |y| ≤ r}. Let C = supD |R|, then by Cauchy inequality,

|bi, n| ≤ r−nC.(22)

We claim that

|ai, n| ≤ 2nr−nC.(23)

We will prove (23) only for n = 2m + 1, i = 2k + 1. All other cases can be
proved in a similar way. Indeed, by (19),

a−1, n = 0, a1, n = b0, n, a3, n =
1
3
b2, n +

n− 1
3

b0, n,

a5, n =
1
5
b4, n +

n− 3
3 · 5

b2, n +
(n− 1)(n− 3)

3 · 5
b0, n,

and in general,

a2k+1, n =
1

2k + 1
b2k, n +

n− 2k + 1
2k + 1

a2k−1, n.

Let

en = max
k

{
(n− 1)(n− 3) · · · (n− 2k + 1)

(2k + 1)!!

}
.
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By induction,

a2k+1, n =
k∑

j=0

lj, nb2j, n,(24)

where lj, n are some constants with |lj, n| ≤ en. Now we calculate the value
of en. For m = 2p even,

en = max
k

{
4p(4p− 2) · · · (4p− 2k + 2)

(2k + 1)!!

}
=

4p(4p− 2) · · · (2p + 2)
(2p + 1)!!

=
(4p)!!

(2p + 1)!
=

2m

m + 1
.

Similarly, for m = 2p + 1 odd, we also have en = 2m

m+1 . Now from (24),

|a2k+1, n| ≤
k∑

j=0

en|b2j, n| ≤ 2m max
j
|b2j, n|

≤ 2mr−nC ≤
(

2
r

)n

C,

which implies that (17) is convergent in the square
{
|x| < r

2 , |y| < r
2

}
. �

Next we prove statement (2) of Theorem 3 by induction with respect to
k.

Suppose k = 1. The 1-form ω1 − g1dH with g1 = z(x, y) is a total dif-
ferential of some function if and only if z(x, y) is a solution of (14). By
Lemma 16, if

∫
γh

ω1 ≡ 0, then there exists an analytical function g1 = z(x, y)
defined in some neighbourhood of the origin satisfying (14). This implies
that ω1 − g1dH = dR1 for some analytical function R1 defined in some
neighbourhood of the origin. Therefore, g1ω1 − ω2 is an analytical 1-form
defined in some neighbourhood of the origin. By Lemma 15 and Proposi-
tion 10, M2(h) =

∫
γh

g1ω1 − ω2 can be analytically continued to h = 0 and
M2(0) = 0. Now we assume that

Mj(h) =
∫

γh

(
j−1∑
i=1

giωj−i − ωj

)
≡ 0 for 1 ≤ j ≤ k − 1.

Applying Lemma 16 to the function Mk−1(h), we get an analytical function
gk−1 defined in some neighbourhood of the origin (0, 0) such that (6) holds
for i = k−1. By Lemma 15 and Proposition 10, Mk(h) =

∫
γh

(
∑k−1

i=1 giωk−i−
ωk) can be analytically continued to h = 0 and Mk(0) = 0. Therefore, the
proof of Theorem 3 is now completed.
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4. Melnikov functions near homoclinic and heteroclinic cycles.

In this section we shall prove Theorem 4.

Lemma 17. Assume that f ∈ Cω(R, 0) with f(0) = 0, f ′(0) > 0; P (u, v)
and Q(u, v) are analytical functions in the square {(u, v) ∈ C2 | |u| ≤ δ1,
|v| ≤ δ1}:

P (u, v) =
∞∑

n=0

n∑
i=0

pi, nun−ivi, Q(u, v) =
∞∑

n=0

n∑
i=0

qi, nun−ivi.

Let

D = [−δ, δ]× [−δ, δ] ⊂ R2, 0 < δ < δ1,

γh = {(u, v) ∈ D | f(uv) = h, u ≥ 0, v ≥ 0}.
Define the function

M(h) =
∫

γh

ω, ω = −P dv + Qdu.

Let s = f−1(h). Then there exist functions a(s), b(s) ∈ Cω(R, 0) such that

M(h) = a(s) + b(s) ln s, 0 < h � 1,

where

a(0) =
∫

γ0

ω, b(s) = −
∞∑

m=0

(pm, 2m+1 + qm+1, 2m+1)sm+1.

Proof. Calculating straightforwardly, we have

∫
γh

Qdu =
∞∑

n=0

n∑
i=0

qi, n

∫ δ

sδ−1

un−2isi du

(25)

=
∞∑

m=0

2m∑
i=0

qi, 2m

∫ δ

sδ−1

u2m−2isi du

+
∞∑

m=0

2m+1∑
i=0

qi, 2m+1

∫ δ

sδ−1

u2m+1−2isi du

=
∞∑

m=0

2m∑
i=0

qi, 2m

2m− 2i + 1
(δ2m−2i+1si − δ−2m+2i−1s2m−i+1)

+
∞∑

m=0

2m+1∑
i=0

i6=m+1

qi, 2m+1

2m− 2i + 2
(δ2m−2i+2si − δ−2m+2i−2s2m−i+2)

+ 2 ln δ

∞∑
m=0

qm+1, 2m+1s
m+1 −

∞∑
m=0

qm+1, 2m+1s
m+1 ln s
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= I1(s)−

( ∞∑
m=0

qm+1, 2m+1s
m+1

)
ln s.

Similarly, we can get∫
γh

P dv = I2(s) +

( ∞∑
m=0

pm, 2m+1s
m+1

)
ln s,(26)

which, together with (25), implies

M(h) =
∫

γh

−P dv + Qdu = a(s) + b(s) ln s,

where

a(s) = I1(s)− I2(s), b(s) = −
∞∑

m=0

(pm, 2m+1 + qm+1, 2m+1)sm+1.

By using the Cauchy inequality, it is easy to prove that the functions a(s)
and b(s) are analytical in some neighbourhood of s = 0. �

From Lemma 17 it follows:

Corollary 18. Under the assumption of Lemma 17, the function M(h) can
be analytically continued to h = 0 if and only if

pm, 2m+1 + qm+1, 2m+1 = 0, ∀ m ≥ 0.(27)

We remark that Condition (27) is equivalent to say that b(s) ≡ 0 for
0 < s � 1.

Lemma 19. Let γ0 be as in Theorem 4 a heteroclinic cycle of system (3)
consisting of n hyperbolic saddles p1, p2, . . . , pn (eventually they can be re-
peated) and n separatrices, ω = −P (x, y) dy+Q(x, y) dx an analytical 1-form
defined in some neighbourhood of γ0, and let M(h) :=

∫
γh

ω, then there exist
analytical functions a(h), b(h) ∈ Cω(R, 0) with

a(0) =
∫

γ0

ω, b(0) = 0, b′(0) = −
n∑

i=1

1
λi

(
∂P

∂x
+

∂Q

∂y

)∣∣∣∣
(x, y)=pi

where −λi < 0 < λi are the eigenvalues of the saddle pi, such that

M(h) = a(h) + b(h) ln h, 0 < h � 1.

Moreover, if (
∂P

∂x
+

∂Q

∂y

)∣∣∣∣
(x, y)=pi

= 0 for i = 1, 2, . . . , n,(28)

then

a′(0) =
∫

γ0

(
∂P

∂x
+

∂Q

∂y

)
dt.(29)
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Proof. According to Proposition 12, for every 1 ≤ i ≤ n, there exist an
analytical function Hi ∈ Cω(R, 0) with Hi(0) = 0, H ′

i(0) = λi, and an
area-preserving normalization coordinate transformation

Fi : x = x(u, v, i), y = y(u, v, i),

from some neighbourhood of the origin (0, 0) to some neighbourhood Ui of
pi such that in the new coordinate (u, v) system (3) for ε = 0 takes the form

u̇ =
∂Gi

∂v
, v̇ = −∂Gi

∂u
,

where

Gi(u, v) = Hi(uv) = H ◦ Fi(u, v).

Denote by D = {|u| ≤ δ, |v| ≤ δ}, and fix δ > 0 small enough such that
Fi(D) ⊂ Ui, i = 1, 2, . . . , n. We note that u = 0 and v = 0 are the separa-
trices of the saddle (0, 0) for the system (u̇, v̇). Let

Γ+
i = Fi({u = δ}), Γ−i = Fi({v = δ}).

Any closed orbits near γ0 is separated by Γ±i , i = 1, 2, . . . , n into 2n seg-
ments: γi

h, i = 1, 2, . . . , 2n, in which γ2i
h are close to pi and γ2i−1

h connects
γh ∩ Γ+

i−1 and γh ∩ Γ−i , see Figure 2. Then

M(h) =
∫

γh

ω =
2n∑
i=1

∫
γi

h

ω =
n∑

i=1

∫
γ2i

h

ω +
n∑

i=1

∫
γ2i−1

h

ω.(30)

Since γ2i−1
h depend analytically on h,

∫
γ2i−1

h
ω are analytical at h = 0. Next

we consider the integrals
∫
γ2i

h
ω. Let γi

h = {(u, v) ∈ D |Hi(uv) = h}. Substi-
tuting x = x(u, v, i), y = y(u, v, i) into the integral

∫
γ2i

h
ω, we obtain

∫
γ2i

h

ω =
∫

γi
h

−P i(u, v) dv + Qi(u, v) du,

where

P i(u, v) = P ◦ Fi
∂y

∂v
−Q ◦ Fi

∂x

∂v
, Qi(u, v) = Q ◦ Fi

∂x

∂u
− P ◦ Fi

∂y

∂u
.
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Figure 2.

Computing straightforward, we get

∂P i

∂u
=
(

∂P

∂x

∂x

∂u
+

∂P

∂y

∂y

∂u

)
∂y

∂v
+ P ◦ Fi

∂2y

∂u∂v

−
(

∂Q

∂x

∂x

∂u
+

∂Q

∂y

∂y

∂u

)
∂x

∂v
−Q ◦ Fi

∂2x

∂u∂v
,

∂Qi

∂u
=
(

∂Q

∂x

∂x

∂v
+

∂Q

∂y

∂y

∂v

)
∂x

∂u
+ Q ◦ Fi

∂2x

∂u∂v

−
(

∂P

∂x

∂x

∂v
+

∂P

∂y

∂y

∂v

)
∂y

∂u
− P ◦ Fi

∂2y

∂u∂v
,

which implies

∂P i

∂u
+

∂Qi

∂v
=

∂P

∂x

(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)
+

∂Q

∂y

(
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

)
(31)

=
(

∂P

∂x
+

∂Q

∂y

)
◦ Fi.

The last equality above follows from the fact that Fi is area-preserving.
Let s = H−1

i (h). From Lemma 17, there exist analytical functions ai(s),
bi(s) ∈ Cω(R, 0) with ai(0) =

∫
γi
0
−P i dv + Qi du, bi(0) = 0 and b′i(0) =
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∂P i
∂u + ∂Qi

∂y

)∣∣∣
(u, v)=(0, 0)

such that∫
γ2i

h

ω =
∫

γi
h

−P i dv + Qi du = ai(s) + bi(s) ln s, 0 < h � 1.

Consequently, ∫
γ2i

h

ω = ai(h) + bi(h) ln h,(32)

where

ai(h) = ai ◦H−1
i (h) + bi ◦H−1

i (h) ln
(

H−1
i (h)
h

)
and bi(h) = bi ◦H−1

i (h)

are analytical at h = 0 and satisfy

bi(0) = bi(0) = 0,

b
′
i(0) =

b′i(0)
λi

= − 1
λi

(
∂P

∂u
+

∂Q

∂v

)∣∣∣∣
(u, v)=(0, 0)

= − 1
λi

(
∂P

∂x
+

∂Q

∂y

)∣∣∣∣
(x, y)=pi

.

Substituting (32) into (30), we obtain

M(h) = a(h) + b(h) ln h,

where

a(h) =
n∑

i=1

∫
γ2i−1

h

ω +
n∑

i=1

ai(h), b(h) =
n∑

i=1

bi(h)

are analytical at h = 0 and satisfy

a(0) =
n∑

i=1

∫
γ2i−1
0

ω +
n∑

i=1

ai(0) =
n∑

i=1

∫
γ2i−1
0

ω +
n∑

i=1

∫
γ2i
0

ω =
∫

γ0

ω,

b(0) =
n∑

i=1

bi(0) = 0,

b′(0) =
n∑

i=1

b
′
i(0) = −

n∑
i=1

1
λi

(
∂P

∂x
+

∂Q

∂y

)∣∣∣∣
(x, y)=pi

.

Now we prove (29). First we point out that if (28) holds, it follows from
b(0) = b′(0) = 0 that M(h) ∈ C1. We claim that the integral in (29) is
convergent. Indeed, let p(t) ⊂ γ0 be a solution of system (3) for ε = 0
and assume that limt→+∞ p(t) = pi, limt→−∞ p(t) = pi−1. Note that pi is a
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hyperbolic saddle,we have, as t → +∞, ‖p(t)− pi‖ = O(exp(−ct)) for some
c > 0. Hence,∥∥∥∥(∂P

∂x
+

∂Q

∂y

)
◦ p(t)

∥∥∥∥ =

∥∥∥∥∥
(

∂P

∂x
+

∂Q

∂y

)
◦ p(t)−

(
∂P

∂x
+

∂Q

∂y

)∣∣∣∣
pi

∥∥∥∥∥
= O(‖p(t)− pi‖) = O(exp(−ct)), as t → +∞.

So, the integral
∫ +∞
0

(
∂P
∂x + ∂Q

∂y

)
dt is convergent. Similarly, the integral∫ 0

−∞

(
∂P
∂x + ∂Q

∂y

)
dt is convergent too. Our claim is proved. From H(x, y) =

h, we get

∂H

∂x

∂x

∂h
= 1,

∂H

∂y

∂y

∂h
= 1,

which implies

∂x

∂h
dy = −dt,

∂y

∂h
dx = dt.

Thus,

M ′(h) =
∂

∂h

∫
γh

(−P (x, y) dy + Q(x, y) dx)(33)

=
∫

γh

(
−∂P

∂x

∂x

∂h
dy +

∂Q

∂y

∂y

∂h
dx

)
=
∫

γh

(
∂P

∂x
+

∂Q

∂y

)
dt.

Let h → 0, we get

a′(0) = M ′(0) = lim
h→0

M ′(h) = lim
h→0

M ′(h) =
∫

γ0

(
∂P

∂x
+

∂Q

∂y

)
dt.

�

From Lemma 19, we get immediately Statement (1) of Theorem 4. Next
we prove Statement (2).

Lemma 20. Let ω = −P (x, y) dy + Q(x, y) dx be an analytical 1-form de-
fined in some neighbourhood of γ0, where γ0 is a homoclinic orbit of a hyper-
bolic saddle p = (0, 0) of system (7), then M(h) :=

∫
γh

ω can be analytically
continued to h = 0 if and only if for any area-preserving normalization co-
ordinate transformation F (u, v) near p given by Proposition 12, the Taylor
series of the function

(
∂P
∂x + ∂Q

∂y

)
◦ F (u, v) at (0, 0) does not contain the

terms umvm for any integers m ≥ 0.

Proof. According to Proposition 12, there exists a function f ∈ Cω(R, 0)
with f(0) = 0, f ′(0) > 0 such that f(uv) = H ◦ F (u, v). Let

Γ+ = F ({u = δ}), Γ− = F ({v = δ}).
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Any closed orbits near γ0 is separated by Γ± into two segments: γ1
h and γ2

h,
in which γ2

h is close to the saddle p and γ1
h connects γh ∩ Γ+ and γh ∩ Γ−

in the complement of some neighbourhood of p. Since the integral
∫
γ1

h
ω is

analytical at h = 0,

M(h) =
∫

γh

ω =
∫

γ1
h

ω +
∫

γ2
h

ω

can be analytically continued to h = 0 if and only if the integral
∫
γ2

h
ω can

be analytically continued. Let γ2
h = {(u, v)|f(uv) = h, 0 < u, v ≤ δ}, then

as in the proof of Lemma 19, we have∫
γ2

h

ω =
∫

γ2
h

−P (u, v) dv + Q(u, v) du,

where

P (u, v) = P ◦ F
∂y

∂v
−Q ◦ F

∂x

∂v
, Q(u, v) = Q ◦ F

∂x

∂u
− P ◦ F

∂y

∂u
.

Let

P (u, v) =
∞∑

n=0

n∑
i=0

pi, nun−ivi, Q(u, v) =
∞∑

n=0

n∑
i=0

qi, nun−ivi.

From Corollary 18, the integral
∫
γ2

h
ω can be analytically continued to h = 0

if and only if (27) holds which is equivalent to say that the coefficients of
the terms umvm for any m ≥ 0 in the Taylor series of the function ∂P

∂u + ∂Q
∂v

at (0, 0) are zero. Now the statement of Lemma 20 follows from (31). �

Lemma 21. Let ω and M(h) be defined as in Lemma 20, then the function
M(h) can be analytically continued to h = 0 if and only if there exists an
analytical function z = z(x, y) defined in some neighbourhood of the saddle
p, such that z(x, y) satisfies the following linear partial differential equation:

∂z

∂x

∂H

∂y
− ∂z

∂y

∂H

∂x
=

∂P

∂x
+

∂Q

∂y
.(34)

Proof. Let (x, y) = F (u, v) be the area-preserving normalization coordinate
transformation near p given by Proposition 12 and let z = z ◦ F, f(uv) =
H ◦ F (u, v), then (34) can be changed to the form

∂z

∂u
u− ∂z

∂v
v = R(u, v), R(u, v) =

1
f ′(uv)

(
∂P

∂x
+

∂Q

∂y

)
◦ F (u, v).(35)

Obviously, the Taylor series of f ′(uv)R(u, v) at (0, 0) does not contain the
terms umvm for any integers m ≥ 0 if and only if R(u, v) has the same
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property. Let

R(u, v) =
∞∑

n=0

n∑
i=0

bi, nun−ivi,(36)

z(u, v) =
∞∑

n=0

n∑
i=0

ai, nun−ivi.(37)

Substituting them into (35), we get
∞∑

n=0

n∑
i=0

[(n− i)ai, n − ai, ni]un−ivi =
∞∑

n=0

n∑
i=0

bi, nun−ivi,

or equivalently

(n− 2i)ai, n = bi, n, for n = 0, 1, 2, . . . , and i = 0, 1, . . . , n.(38)

System (38) has solutions if and only if

bm, 2m = 0, ∀m ≥ 0.(39)

Moreover, if (39) holds, we can choose

ai, n =


bi, n

n− 2i
, if n 6= 2i;

0, if n = 2i.

Since |ai, n| ≤ |bi, n|, the convergence radius of (37) is at least equal to the
convergence radius of (36). So the function z defined in (37) is analytical in
some neighbourhood of the origin. Now, the lemma follows using Lemma 20.

�

Lemma 22. Let ω and M(h) be defined as in Lemma 20, then the function
M(h) is constant for 0 < h � 1 if and only if there exists an analytical
function z = z(x, y) defined in some neighbourhood of γ0 such that (34)
holds.

Proof. Sufficiency. We consider the characteristic equation of (34):

ẋ =
∂H

∂y
, ẏ = −∂H

∂x
, ż =

∂P

∂x
+

∂Q

∂y
.(40)

Assume that there exists an analytical function z = z(x, y) defined in some
neighbourhood of γ0 such that z(x, y) satisfies Equation (34). This implies
that the surface S = {(x, y, z) ∈ R3 | z = z(x, y)} is invariant under the flow
of (40). Therefore, S ∩ {(x, y, z) ∈ R3 |H(x, y) = h} for 0 < h � 1 is a
periodic orbit of (40). So from (33), we have

M ′(h) =
∫

γh

(
∂P

∂x
+

∂Q

∂y

)
dt =

∫
γh

ż dt = 0,(41)

which implies that M(h) is constant for 0 < h � 1.



MELNIKOV FUNCTIONS 71

Necessity. Assume now M(h) is constant. By Lemma 21, Equation (34)
has an analytical solution z(x, y) in some neighbourhood of the saddle p =
(0, 0). We claim that this solution z(x, y) can be extended continuously to
a single valued analytic function in some neighbourhood of γ0. Indeed,
from (34),

(
∂P
∂x + ∂Q

∂y

)∣∣∣
(x, y)=(0, 0)

= 0, so the straight line {(0, 0, z) | z ∈

R} consists of singular points of (40). Then the invariant surface S of
(40) contains local stable and unstable manifolds of the singular point p0 =
(0, 0, z(0, 0)). Let Γ− and Γ+ be the planes transversal to the flow of (40)
at some point of local stable manifold and local unstable one respectively.
Then l± := S ∩ Γ± are analytical curves in Γ±, see Figure 3.

G

+G

-

0

+

-

l

l

pS

Figure 3.

Let A be the projection from Γ+ to Γ− along the orbits of (40). Then
l′− := Al+ is an analytical curve in Γ−. Introducing the set U = {(x, y, z) ∈
R3 |H(x, y) > 0}, by (41) we have U is filled with periodic orbits. This
implies l′− ∩ U = l− ∩ U. Therefore, by the analyticity, l′− = l−. Thus,
the union of the orbits passing through l+ and S constructs an analytical
invariant surface of system (40), which is the graph of an analytical function
z(x, y) defined in some neighbourhood of γ0. From the invariance, z(x, y) is
a solution of Equation (34). �

Lemma 23. Let ω and M(h) be defined as in Lemma 20. Then M(h) ≡ 0
if and only if there exist analytical functions z(x, y) and R(x, y) defined in
some neighbourhood of γ0 such that

ω = zdH + dR.(42)
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Proof. Sufficiency. Assume that formula (42) holds. Since the function
H is constant along the closed curve γh, so dH = 0. This implies that∫
γh

ω =
∫
γh

zdH + dR =
∫
γh

dR = 0.

Necessity. By Lemma 22, there exists an analytical function z(x, y) de-
fined in some neighbourhood of γ0 such that Equation (34) holds. Let

Mdx + Ndy = ω − zdH.

From (34),

∂M

∂y
=

∂N

∂x
.(43)

Now we define the function R(x, y) in the following way: For any point (x, y)
near γ0, let

R(x, y) =
∫ (x, y)

(0, 0)
Mdx + Ndy.(44)

By (43) and the fact∫
γh

Mdx + Ndy =
∫

γh

(ω − zdH) =
∫

γh

ω = M(h) ≡ 0,

the integral in (44) defines a single valued analytical function in some neigh-
bourhood of γ0 satisfying (42). �

The proof of statement (2) of Theorem 4. Suppose k = 2. Then M1(h) =
−
∫
γh

ω1 ≡ 0. By Lemma 23, there exist analytical functions z1, R1 defined
in some neighbourhood of γ0 such that ω1 = z1dH+dR1. By Proposition 10,
M2(h) =

∫
γh

(z1ω1 − ω2). Now by using Lemma 19, we get that statement
(2) holds for k = 2. Similarly, assume that Mi(h) ≡ 0, 1 ≤ i ≤ k − 1. Again
from Lemma 23, there exist analytical functions ak−1, Rk−1 defined in some
neighbourhood of γ0 satisfying (6). Now by Proposition 10 and Lemma 19,
Statement (2) holds for k. This completes the proof of Theorem 4. �

Proof of Theorem 5. Statement (1) is just a corollary of Lemma 20. State-
ment (2) is a corollary of Lemma 24 below. Finally Statement (3) follows
easily from Lemma 24 and Lemma 19. �

All notations used in Lemma 24 below are the same as in the statement
of Theorem 5.

Lemma 24. Let ω be an analytical 1-form defined in some neighbourhood
of the eight figure cycle, then two of the three integrals

∫
γh

ω,
∫
γ+

h
ω,
∫
γ−h

ω are
identically zero if and only if there exist analytical functions z(x, y), R(x, y)
defined in some neighbourhood of γ+

0 ∪ γ−0 such that ω = zdH + dR.
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Proof. The sufficiency can be proved by using the same argument as the
proof of Lemma 23. We now prove the necessity. First by Lemma 21,
Equation (34) has an analytical solution z(x, y) in some neighbourhood of
the saddle p. By using the same argument of the proof of Lemma 22, the
function z(x, y) can be extended continuously to a single valued analytic
function in the some neighbourhood of the eight figure. Let Mdx + Ndy =
ω − zdH. Then from (34), formula (43) holds. Now we define the function
R by the integral in (44). Then by (43) and the assumption that two of the
three integrals

∫
γh

ω,
∫
γ+

h
ω,
∫
γ−h

ω are identically zero, the function R is a

single-valued analytical one in some neighbourhood of eight figure γ+
0 ∪ γ−0

and satisfies (42). �

5. Proof of Theorem 8.

We shall need the following result:

Proposition 25. Let X be an analytical vector field defined in some open
region of R2. Assume that X has a continuous family of periodic orbits
(the period annulus) γs, 0 < s < s, and γ0 is a nondegenerate center p or
a homoclinic orbit of a hyperbolic saddle p such that lims↘0 γs = γ0, then
for any s ∈ [0, s), there exists an analytical function ρ > 0 defined in some
neighbourhood of γs such that div(ρX) ≡ 0, i.e., ρX is a Hamiltonian vector
field.

Proposition 25 will be proved through two lemmas.

Lemma 26. Under the assumptions of Proposition 25 the following hold:
For any s ∈ [0, s), the vector field X has an analytical first integral H defined
in some neighbourhood of γs such that

det D2H(p) 6= 0 and DH = 0 ⇔ X = 0.(45)

Proof. If γs is a periodic orbit, the lemma is trivial. For γ0 being a non-
degenerate center, by the Poincaré Normal Form Theorem (for a proof, see
[1]), there exists an analytic change of coordinates that brings the initial
system to the normal form

ẋ = − yf(x2 + y2),
ẏ = xf(x2 + y2).

Obviously, the system above has a first integral H = x2 + y2 satisfying (45).
Now we assume that γ0 is a homoclinic orbit of a hyperbolic saddle. Since
there exists a family of periodic orbits tending to γ0, the saddle values of any
order must be zero. Therefore under the normalized coordinate the vector
field X near the saddle takes the following form (see [1]):

ẋ = −λx(1 + R(xy))

ẏ = λy(1 + R(xy)), R ∈ Cω(R, 0), R(0) = 0.
(46)
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H = xy is a first integral of system (46). This implies that the vector
field X has an analytical first integral in some neighbourhood U of the
saddle satisfying (45). We claim that the first integral H can be extended to
some neighbourhood of γ0. Indeed, let I, J ⊂ U be two transversal sections
to X at some point of the local stable manifold and the local unstable
one, respectively. Sections I and J can be parameterized by using h = H.
Without loss of generality, we assume that the intersections of the periodic
orbits γs with I and J correspond to points with h > 0. Let f : J → I
denote the Poincaré map along the orbits of X, then f ∈ Cω(R, 0). Let
G(h) = H(f(h)) − h. Since all orbits starting from the points of J with
h > 0 are periodic, we have G(h) ≡ 0 for 0 < h � 1. By the analyticity,
G(h) ≡ 0 for |h| � 1. Now we define the function H in some neighbourhood
of γ0 as follows: For any x close to γ0, denote by γ(x) the orbit of X passing
through x, then H(x) := H(γ(x)∩ I) = H(γ(x)∩J). Obviously, H(x) takes
a constant on each orbit, i.e., H is a first integral. �

Let H be the first integral in some neighbourhood of γs as in Lemma 26.
Consider the Hamiltonian vector field

Y := JDH, J =
(

0 1
−1 0

)
.

Then X and Y define the same direction field. Let ρ = ‖Y ‖/‖X‖, then
ρ is positive and analytical at any regular point. Obviously, Y = ρX or
Y = −ρX. The next lemma shows that the function ρ can be analytically
continued to the saddle p.

Lemma 27. Assume that the analytical vector fields X1 = (P1, Q1) and
X2 = (P2, Q2) define the same direction field and the origin (0, 0) is an
isolated singular point of X1 and X2. If

2∏
i=1

[(
∂Pi

∂x

)2

+
(

∂Pi

∂y

)2
]∣∣∣∣∣

(0, 0)

6= 0(47)

or
2∏

i=1

[(
∂Qi

∂x

)2

+
(

∂Qi

∂y

)2
]∣∣∣∣∣

(0, 0)

6= 0,

then there exists a positive analytical function ρ defined in some neighbour-
hood of the origin such that ‖X1‖ = ρ‖X2‖.

Proof. We will prove the lemma under the assumption ∂P1
∂x (0, 0) 6= 0. The

proofs for other cases are similar. Since X1 and X2 define the same direction
field, they have the same vertical isocline:

V : {(x, y) |P1(x, y) = 0} = {(x, y) |P2(x, y) = 0}.
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By using Implicit Function Theorem for P1 at (0, 0), there exists a function
g(y) ∈ Cω(R, 0) with g(0) = 0, such that

V = {(x, y) |x = g(y)}.(48)

Thus,

P1(x, y) = (x− g(y))P 1(x, y), P 1 ∈ Cω(R2,0), P 1(0, 0) =
∂P1

∂x
(0, 0) 6= 0.

We claim that ∂P2
∂x (0, 0) 6= 0. Indeed, if ∂P2

∂x (0, 0) = 0, then by (47), ∂P2
∂y (0, 0)

6= 0. By the Implicit Function Theorem, the curve V is tangent to the x-axis
at the origin, which is a contradiction with (48). Thus, we get

P2(x, y) = (x− g(y))P 2(x, y), P 2 ∈ Cω(R2,0), P 2(0, 0) =
∂P2

∂x
(0, 0) 6= 0.

Therefore, the function ρ(x, y) := P 1(x,y)

P 2(x,y)
is analytical and has definite sign

in some neighbourhood of the origin. Let ρ = |ρ|, then the proof of the
lemma is completed. �

Proof of Proposition 25. It is a corollary of Lemmas 26 and 27. �

Proof of Theorem 8. Consider the following one parameter family of analyt-
ical systems:

ẋ = f(x) + εg(x, ε), x ∈ R2.(49)

We assume that for ε = 0 system (49) has a homoclinic orbit γ0 of a hy-
perbolic saddle of infinite codimension, i.e., there is a continuous family
of periodic orbits tending to γ0. By Proposition 25, there exists a posi-
tive analytical function ρ(x) defined in some neighbourhood of γ0 such that
div(ρf) ≡ 0. Now we consider the following perturbed Hamiltonian system
which is orbitally equivalent to system (49):

ẋ = ρ(x)f(x) + ερ(x)g(x, ε).(50)

We assume, without loss of generality, that there exists an analytical func-
tion H defined in some neighbourhood of γ0 such that JDH = ρf, γ0 ⊂
H−1(0), and for 0 < h � 1, γh ⊂ H−1(h) is a family of periodic orbits with
γh → γ0 as h ↘ 0. Let Mk(h) denote the k-th Melnikov function of system
(50).

Case 1. Mi(h) ≡ 0, ∀i ≥ 1. Then for |ε| � 1, system (50) has a period
annulus and hence has no limit cycles near γ0.

Case 2. There exists an integer k ≥ 1 such that Mi(h) ≡ 0, 0 ≤ i ≤ k−1 and
Mk(h) = ak(h) + bk(h) ln h is not identically vanishing. Then by Remark 7,
system (50) in some neighbourhood of γ0 has at most 2 min{m(ak),m(bk)}
limit cycles for |ε| � 1.

This completes the Proof of Theorem 8. �
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