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TRANSLATING SOLUTIONS FOR GAUSSCURVATURE
FLOWS WITH NEUMANN BOUNDARY CONDITIONS

We consider strictly convex hypersurfaces which are evolv-
ing by the non-parametric logarithmic Gauß curvature flow
subject to a Neumann boundary condition. Solutions are
shown to converge smoothly to hypersurfaces moving by trans-
lation. In particular, for bounded domains we prove that con-
vex functions with prescribed normal derivative satisfy a uni-
form oscillation estimate.

1. Introduction.

In this paper, we evolve hypersurfaces represented as graphs of strictly con-
vex functions over strictly convex bounded domains by the non-parametric
logarithmic Gauß curvature flow subject to a Neumann boundary condi-
tion. We show that solutions exist for all time and converge smoothly to
translating solutions.

To be more precise, we address the following slightly more general prob-
lem: Let u0 be a strictly convex function over a smooth strictly convex
bounded domain Ω ⊂ Rn. We use the phrase strictly convex for functions
whose Hessian is positive definite, and for domains for which all principal
curvatures of the boundary are positive. Assume that u0 is smooth up to
the boundary, u0 ∈ C∞ (Ω), and satisfies

Dνu0 = ϕ on ∂Ω,

where ν is the inner unit normal to ∂Ω and ϕ ∈ C∞(∂Ω). Let f ∈
C∞ (Ω× Rn

)
. We prove the following:

Theorem 1.1. For Ω, ϕ, ν, f and u0 as introduced above, there exists a
family u(·, t), t ∈ [0,∞), of strictly convex functions solving

∂
∂tu = log detD2u− log f(x,Du) in Ω× [0,∞),

Dνu(·, t) = ϕ on ∂Ω, t > 0,
u(·, 0) = u0 in Ω,

(1.1)

where u ∈ C∞ (Ω× (0,∞)
)
, and u(·, t) approaches u0 in C2

(
Ω
)

as t →
0. Moreover, u(·, t) converges smoothly to a translating solution, i.e., to a
solution with constant time derivative.

We remark that the parabolic maximum principle implies that the as-
ymptotic solutions for different initial data u0 are unique up to a constant.

89

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2004.213-1


90 GAUSSCURVATURE FLOWS

For the Gauß curvature flow, mentioned in the beginning, the flow equation
takes the form

∂
∂tu = log

detD2u

(1 + |Du|2)
n+2

2

= log detD2u− n+2
2 log

(
1 + |Du|2

)
.

In the proof of Theorem 1.1, we generalize the result to the so-called
oblique boundary condition

Dβu = ϕ on ∂Ω,

where β is a unit vector field which is C1-close to ν, i.e., such that there
exists a small positive constant cβ > 0 for which ‖ν − β‖C1 ≤ cβ. Such a
generalization of a Neumann boundary condition is studied for the elliptic
case in [7].

We base the barrier construction in the proof of Theorem 1.1 on solutions
to a related elliptic problem given by the following:

Theorem 1.2. Consider Ω, ν, ϕ, and f as introduced before. There exist
a unique v ∈ R and a strictly convex function u ∈ C∞ (Ω) solving the
boundary value problem{

detD2u = ev · f(x,Du) in Ω,
Dνu = ϕ on ∂Ω,(1.2)

provided that there exists a smooth strictly convex function u0 satisfying the
boundary condition Dνu0 = ϕ. The function u is unique up to a constant.

We remark that translating solutions to (1.1) can be viewed as solutions
to (1.2), where v denotes the speed.

A situation similar to Theorem 1.1 is considered for the mean curvature
flow in [2]. Hypersurfaces of prescribed Gauß curvature subject to Neumann
boundary conditions are found in the pioneering paper [4]. The extension to
the oblique boundary value problem is made in [7]. Flows of Monge-Ampère
type for the Neumann and the second boundary value problem are studied
in [6]. In our setting, the situation is more degenerate as neither f nor ϕ
do depend on u. Thus, both f and ϕ fail to satisfy the crucial monotonicity
requirement with respect to u. For the second boundary value problem,
translating solutions to flows of Gauß curvature type are considered in [5].

As mentioned in [5], methods of [6] can be adapted to the non-parametric
logarithmic Gauß curvature flow subject to the second boundary condition.
For the Neumann boundary value problem, however, the lack of monotonic-
ity requires a new proof to uniformly bound the oscillation of a solution.
Therefore, we establish a generalization of the spatial C1-estimates of [4].
Then, we use the translating solutions provided by Theorem 1.2, in particu-
lar its uniquely determined speed, to construct an auxiliary barrier function
and to obtain uniform spatial C2-estimates. Hence, the results of Krylov,
Safonov, Evans and Schauder imply uniform bounds on higher derivatives
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for all times, uniformly bounded away from 0. This allows to show smooth
convergence to a translating solution.

The paper is organized as follows: As explained in [6], standard linear
parabolic theory and the implicit function theorem imply short-time exis-
tence. We show uniform first-order estimates in Sections 2 and 3. Section 4
contains the proof of Theorem 1.2. Having the unique velocity of a trans-
lating solution, we can prove uniform a priori C2-estimates in Section 5.
Finally, in Section 6, we prove smooth convergence to a translating solu-
tion. In Appendix A we apply Theorem 1.2 to construct entire graphs of
prescribed Gauß curvature. To illustrate the convergence of the flow, we
carry out a numerical integration on a planar domain in Appendix B.

2. ∂
∂t

u-Estimate.

Notation 2.1. We write a dot to denote the time derivative, whereas we
use indices for the spatial partial derivatives. Let fpi denote a derivative of
f with respect to the gradient. For a vector ξ we define uξ ≡ ξiui. For the
logarithm of f we use f̂ ≡ log f . We use the Einstein summation convention
and sum over repeated upper and lower indices. The inverse of the Hessian
of u is denoted by

(
uij
)

= (uij)−1. We remark that – besides in the case uij

– indices are lifted with respect to the Euclidean metric. The letter c denotes
a generic positive constant. Furthermore, we may assume that 0 ∈ Ω.

Lemma 2.2. Under the assumptions of Theorem 1.1, there holds

|u̇| ≤ max
t=0

|u̇|,

as long as a smooth convex solution of (1.1) exists.

Proof. Similar to [6], we consider

r := (u̇)2.

We get the evolution equation

ṙ = uijrij − 2uij u̇iu̇j − f̂piri.

Hence, ṙ ≤ 0 at a maximum of r in Ω× [0, t]. Now, assume that a maximum
of r on Ω× [0, t] occurs at (x0, t0) with x0 ∈ ∂Ω. If t0 = 0 the lemma holds.
Thus, in the following, we may assume t0 > 0. If r is constant, then u is
a translating solution, and our lemma holds. Otherwise, we get rβ(x0) < 0
from the Hopf boundary point lemma. At x0 we compute

0 > rβ =
(
(u̇)2

)
β

= 2u̇u̇β = 2u̇ ∂
∂tϕ(x) = 0.

Contradiction. Note, that the assumption t0 > 0 guarantees that u is smooth
near (x0, t0) allowing to interchange differentiation with respect to time and
space. �
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Integrating the last estimate yields:

Corollary 2.3. As long as a smooth convex solution of (1.1) exists, we
obtain the estimate

|u(x, t)| ≤ sup
Ω
|u0|+ sup

Ω
|u̇(·, 0)| · t.

3. Ice-cream cone estimate.

The following theorem generalizes the C1-estimates of [4]. It is essential for
our situation, because the oscillation but not the C0-norm of the solution is
expected to be bounded uniformly in time.

We wish to mention oscillation estimates of Urbas [9, 8]. There, the
convexity of u and appropriate growth of f(x, p) in p is used, whereas The-
orem 3.1 combines convexity and the boundary condition.

Theorem 3.1 (Ice-cream cone estimate). Let Ω ⊂ Rn be a smooth bounded
domain, u : Ω → R a smooth strictly convex function with |uβ | uniformly
bounded on ∂Ω, where β is a unit vector field on ∂Ω such that 〈β, ν〉 ≥ c̃β
for a positive constant c̃β > 0 (recall that ν is the inner unit normal to ∂Ω).
Then there is a uniform bound for sup |Du|, independent of sup |u|.

In view of Lemma 2.2, the result above yields an estimate for the full C1-
norm of solutions u to (1.1). Note, that only the estimate for the derivatives
of u is uniform in time.

Proof. In the name of the theorem we want to emphasize that our proof uses
balls and cones, similar to ice-cream placed in a cone of waffle. We argue by
contradiction. Assume that there exists a point x0, where |Du| is maximal
and equal to M . If M is larger than a suitably chosen constant M0 we will
find a contradiction. As u is strictly convex, we see that x0 ∈ ∂Ω. At x0 we
find a tangential direction ξ0 such that 〈Du(x0), ξ0〉 is maximal compared
to all other tangential directions. Here and later, unit vectors are called
directions. We wish to prove a lower estimate for 〈Du(x0), ξ0〉 in terms of
M .

Let ξ1 be a direction such that 〈Du(x0), ξ1〉 = M . Similar to [7], we
decompose a direction ξ using β and a tangential vector τ(ξ) as

ξ = τ(ξ) +
〈ν, ξ〉
〈β, ν〉

β,(3.1)

where

τ(ξ) = ξ − 〈ν, ξ〉ν − 〈ν, ξ〉
〈β, ν〉

βT , βT = β − 〈β, ν〉ν.
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Note, that |τ(ξ)| is bounded by assumption. Decomposing ξ1, we get

M = 〈Du, ξ1〉 = 〈Du, τ(ξ1)〉+
〈ν, ξ1〉
〈β, ν〉

〈Du, β〉

≤ |τ(ξ1)| · max
τ∈Tx0∂Ω

|τ |=1

〈Du, τ〉+ c

= |τ(ξ1)| · 〈Du(x0), ξ0〉+ c.

Hence, we deduce that 〈Du(x0), ξ0〉 ≥ M
c , as long as M ≥ M0 and M0 is

chosen sufficiently large. For a direction ξ near ξ0, say |ξ− ξ0| < ε = 1
2c < 1,

we obtain

〈Du(x0), ξ〉 = 〈Du, ξ0〉+ 〈Du, ξ − ξ0〉 ≥ M
c −M |ξ − ξ0| ≥ εM.(3.2)

From the convexity of u, we deduce that 〈Du(y), ξ〉 ≥ εM for all points
y ∈ Ω of the form y = x0 + λ · ξ. Here, λ > 0 and ξ are chosen such that
|ξ − ξ0| ≤ ε and x0 + t · λ · ξ ∈ Ω for all t ∈ [0, 1].

The uniform boundedness of the principal curvatures of ∂Ω ⊂ Rn implies
that there exist R > 0 and x1 ∈ ∂Ω such that |x0−x1| > 2R, and, especially,
any x ∈ BR(x1) ∩ ∂Ω can be written in the form x0 + λ · ξ, as described
above. Thus, according to (3.2), |Du| ≥ εM in ∂Ω ∩ BR(x1). Due to our
construction, we have

inf
x∈BR(x1)∩∂Ω

u(x) > u(x0).

Figure 1. Ice-cream cone estimate.

Figure 1 shows a part of ∂Ω and two cones corresponding to the directions
ξ as well as two pairs of concentric balls. The larger ones are the balls BR
mentioned above, the smaller ones are introduced in the following.
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Now, we proceed iteratively. Note, that R and ε can be chosen as fixed
constants, independent of the point x0. As long as |Du(xi)| ≥ Mεi ≥ M0,
we can find a further point xi+1 as we went from x0 to x1. Thus, for M =
sup |Du| sufficiently large, we can construct a sequence of points {xi}i=0,...,N

of arbitrarily large length N , satisfying for all i ≥ 1

|Du| ≥Mεi on ∂Ω ∩BR(xi)

and
inf

x∈BR(xi)∩∂Ω
u(x) > u(xi−1).

Since ∂Ω has finite measure and bounded principal curvatures, there is
an upper bound N0(ρ) on the number of pairwise disjoint restricted balls
Bρ(yj) ∩ ∂Ω for fixed ρ > 0 and yj ∈ ∂Ω.

Hence, if M = sup |Du| > M0ε
−N0(R

2 ), there will be two points xi0 , xj0
with i0 > j0 > 0 such that

BR
2
(xi0) ∩BR

2
(xj0) ∩ ∂Ω 6= ∅.

But xj0 ∈ BR(xi0) implies

u(xj0) < u(xj0+1) < · · · < u(xi0−1) < inf
x∈BR(xi0

)∩∂Ω
u(x) ≤ u(xj0).

Contradiction. �

4. Existence of translating solutions.

This section is devoted to the proof of Theorem 1.2. That is, we construct
solutions to the elliptic problem{

v = log detD2u− log f(x,Du) in Ω,
uβ = ϕ on ∂Ω.(4.1)

The absence of any monotonicity property in u, both in f as well as in the
boundary condition ϕ, limits seriously the existence of solutions.

Step 1. Here, we show that for given ε > 0 and v ∈ R there is a unique
solution uε,v of {

detD2u = evf(x,Du)eεu in Ω,
uβ = ϕ on ∂Ω.(∗ε,v)

Note, that the dependence on v is continuous and strictly decreasing. In
fact, we have the explicit relation

uε,v = uε,0 − v
ε .

To show the unique existence of uε,v, we will derive an a priori C0-bound,
then the ice-cream cone estimate, Theorem 3.1, yields the C1-bound. Having
controlled the full C1-norm, we can estimate the C2-norm exactly as in
Urbas [7], since the strict monotonicity assumption on ϕ is not used for this
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part. A detailed argument, applied to the parabolic case, is given in the
next section. Bounds for higher Ck-norms follow via the estimates due to
Krylov, Safonov, Evans, and from Schauder theory.

To get the C0-bound, we define suitable barriers for (∗ε,0). Recall, that
u0 is a convex function satisfying (u0)β = ϕ on ∂Ω. Define u±ε = u0 ±M/ε,
where M > 0 will be chosen later. Then

detD2u±ε

f(x,Du±ε )eεu
±
ε

=
detD2u0

f(x,Du0)eεu0±M = g(x)e−εu0e∓M ,

with c−1 < g(x) < c. Hence, restricting ourselves to ε < 1, there exists a
large constant M > 0, not depending on ε, such that u+

ε is a strict superso-
lution and u−ε is a strict subsolution of (∗ε,0). This implies, that

u−ε < uε,0 < u+
ε ,(4.2)

or equivalently, ∣∣uε,v − (u0 − v
ε )
∣∣ < M

ε .

Step 2. Now, we consider the limit ε→ 0. In general, we cannot expect that
the sup bounds for uε,v can be obtained uniformly in ε. In fact, it follows
from the maximum principle that only for a unique v, there is a solution to
(∗ε,v) with ε = 0. Observe, that (4.2) implies that

uε,+M < u0 < uε,−M .

Therefore, for every ε > 0 we can find a unique vε ∈ (−M,M) such that
uε,vε(0) = u0(0). Note, that (4.2) does not suffice to control the oscillation
of uε,vε , uniformly in ε. We employ the ice-cream cone estimate to bound
uε,vε uniformly in C1. Again, uniform C1-bounds imply uniform higher
Ck-bounds.

Now, we choose a sequence εi → 0 as i→∞. Since vεi is bounded, there
exists a subsequence, relabeled, such that vεi → v∞ and uεi,vεi

→ u∞ell in any
Ck-norm. This completes the proof of Theorem 1.2.

The extension u∞(x, t) := u∞ell(x) + v∞t is a translating solution, as, by
construction, u∞ satisfies{

v∞ = u̇∞ = log detD2u∞ − log f(x,Du∞) in Ω,
u∞β = ϕ on ∂Ω.

5. Parabolic C2-estimates.

The following argument is a modification of the proofs in [4, 6] and [7]. We
use the translating solution u∞, especially, its speed v∞, to construct an
auxiliary barrier function.

Assume that u∞ell > u0. We define

ϕ̃(x, z) = ϕ(x) + (z − u∞ell).
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Due to uniform estimates on the gradient of u, we can find a positive constant
µ0 such that

min{f(x,Du), f(x,Du∞ell)} ≥ µ0.

For 0 < ρ < 1, consider the elliptic boundary value problem{
v∞ = log detD2ψ − log µ0

2 in Ω,
ψβ = ϕ̃

(
x, ψ + ρ · |x|2

)
− 2ρ 〈x, β〉 on ∂Ω.(5.1)

We wish to show a uniform a priori C2-estimate for ψ. Theorem 3.1 gives an
estimate for the gradient. Similarly to [7], bounds on the second derivatives
follow. It is here that the smallness of ‖ν−β‖C1 is used. Thus, it remains to
prove uniform C0-estimates. Note, that a convex solution ψ cannot satisfy
ψβ(x) > 0 for all x ∈ ∂Ω. Hence, the upper bound on ψ follows since
ϕ̃(x, z) → ∞ uniformly as z → ∞. For the lower bound, we consider
ψ − u∞ell. Applying the maximum principle to the differential inequality{

0 > log detD2ψ − log detD2u∞ell in Ω,
(ψ − u∞ell)β = ψ − u∞ell + ρ · |x|2 − 2ρ 〈x, β〉 on ∂Ω,

we see that ψ−u∞ cannot attain an interior minimum. If a minimum occurs
on ∂Ω, we get

0 ≤ (ψ − u∞ell)β = ψ − u∞ell + ρ · |x|2 − 2ρ 〈x, β〉.

Thus, ψ is uniformly bounded below, a solution to (5.1) exists. Due to the
uniform C2-estimates, we can fix λ > 0 such that

(ψij) ≥ λId.(5.2)

Furthermore, these estimates allow to fix ρ > 0 such that ψ := ψ + ρ · |x|2
satisfies {

v∞ > log detD2ψ − logµ0 in Ω,
ψβ = ϕ̃

(
x, ψ

)
on ∂Ω.

Applying the maximum principle, we get u∞ell ≤ ψ. We extend ψ and ψ by
setting ψ(x, t) := ψ(x) + t · v∞, ψ(x, t) := ψ(x) + t · v∞, respectively. Thus,
u ≤ u∞ ≤ ψ, where u∞ is the translating solution defined in Section 4. We
get for x ∈ ∂Ω(
ψβ − uβ

)
(x, t) = ψβ(x, 0)− ϕ(x) =

(
ψ − u∞

)
(x, 0) = (ψ − u∞)(x) ≥ 0.

Furthermore, for a sufficiently small δ0 > 0,

(ψ − u)β =
(
ψ − ρ · |x|2 − u

)
β
≥ −2ρ 〈x, β〉 ≥ δ0 > 0 on ∂Ω,(5.3)

provided that β is C0-close to ν. Here, we used that 0 ∈ Ω implying 〈x, ν〉 <
0. Using these preparations, we prove a priori C2-estimates similarly to [6]
and [7]. For the reader’s convenience, we repeat the arguments incorporating
the necessary modifications to the parabolic case.
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5.1. Preliminary results. Assume, that a smooth solution u of our flow
equation (1.1) exists on the time interval [0, T ]. We will use the letter τ to
indicate a direction tangential to ∂Ω.

Lemma 5.1 (Mixed C2-estimates at the boundary). Let u be a solution of
(1.1). Then |uτβ| remains uniformly bounded on ∂Ω.

Proof. We represent ∂Ω locally as graphω over its tangent plane at a fixed
point x0 ∈ ∂Ω such that locally Ω = {(x̂, xn) : xn > ω(x̂)}. Let us extend β
and ϕ smoothly. At x0, differentiating the oblique boundary condition

βi(x̂)ui(x̂, ω(x̂)) = ϕ(x̂, ω(x̂)), x̂ ∈ Rn−1,

with respect to tangential directions x̂j , 1 ≤ j ≤ n− 1,

βijui + βiuij + βiuinωj = ϕj + ϕnωj ,

we obtain at x0 ≡ (x̂0, ω(x̂0)) ∈ ∂Ω a bound for βiuij . Thereby, we use
the gradient estimate for u and Dω(x̂0) = 0. Multiplying with τ j gives the
result. �

Lemma 5.2 (Double oblique C2-estimates at the boundary). For any so-
lution of (1.1), |uββ| is uniformly bounded on ∂Ω.

Proof. Note that uββ > 0 as u(·, t) is strictly convex for each t. We keep the
geometric setting of the proof of Lemma 5.1 with x0 ∈ ∂Ω. From (1.1) we
obtain

u̇k = uijuijk − (f̂k + f̂piuik).

We define

Lw := ẇ − uijwij + f̂piwi.

We can find appropriate extensions of β and ϕ such that∣∣∣L(βkuk − ϕ(x)
)∣∣∣ ≤ c ·

(
1 + tr

(
uij
))
.

We choose δ > 0 sufficiently small and define Ωδ := Ω ∩Bδ(x0). Set

ϑ := d− µd2,

where µ � 1 is chosen sufficiently large, and d denotes the distance to
∂Ω. We will show that in Ωδ there holds Lϑ ≥ ε

3tr
(
uij
)

for a small constant
ε > 0, depending only on a positive lower bound for the principal curvatures
of ∂Ω. Next,

Lϑ = −uijdij + 2µuijdidj + 2µuijddij + f̂pi(di − 2µddi)

≥ −uijdij + 2µuijdidj − cµd
(
1 + tr

(
uij
))
− c.
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We use the strict convexity of ∂Ω, |Dd−en| ≤ cδ, |ukl| ≤ tr
(
uij
)
, 1 ≤ k, l ≤

n, and the inequality for arithmetic and geometric means

Lϑ ≥ ε tr
(
uij
)

+ µunn − cµδ
(
1 + tr

(
uij
))
− c

≥ n
3

(
det
(
uij
)) 1

n · ε
n−1

n · µ
1
n + 2

3ε tr
(
uij
)

− cµδ
(
1 + tr

(
uij
))
− c.

More precisely, we used

ε tr
(
uij
)

+ µunn

3
≥ n

3
ε

n−1
n µ

1
n

(
n∏
i=1

uii

) 1
n

,

and, assuming (uij)i,j<n is diagonal,

det
(
uij
)

= det


u11 0 · · · 0 u1n

0
. . . . . .

...
...

...
. . . . . . 0

...
0 · · · 0 un−1n−1 un−1n

u1n · · · · · · un−1n unn


=

n∏
i=1

uii −
∑
i<n

|uni|2
∏
j 6=i
j<n

ujj ≤
n∏
i=1

uii .(5.4)

Since
det
(
uij
)

=
1

det(uij)
= exp

(
−f̂ − u̇

)
,

det
(
uij
)

is uniformly bounded from below by a positive constant. We may
choose µ so large, that

n
3

(
det
(
uij
)) 1

n · ε
n−1

n · µ
1
n ≥ c+ 1.

For δ ≤ 1
cµ min

{
1, 1

3ε
}
, we get

Lϑ ≥ 1
3ε tr

(
uij
)
.

Furthermore, ϑ ≥ 0 on ∂Ωδ, if δ is chosen smaller if necessary.
Let l be an affine linear function such that l(x0) = 0 and

l ≥ βi(u0)i − ϕ in Ωδ.

For constants A, B > 0, consider the function

Θ := Aϑ+B|x− x0|2 −
(
βiui − ϕ(x)

)
+ l.

We fix B � 1, get Θ ≥ 0 on ∂Ωδ, and deduce for A � B that LΘ ≥ 0,
since tr

(
uij
)

is bounded from below by a positive constant. The maximum
principle yields Θ ≥ 0 in Ωδ. As Θ(x0) = 0, we conclude that Θβ(x0) ≥ 0
implying uββ ≤ c. �
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Lemma 5.3. For a solution of (1.1), there holds

min
t∈[0,T ]
x∈∂Ω

max
ξ∈Tx∂Ω
|ξ|=1

uξξ(x, t) > 0.

Proof. We have already seen that there is a uniform positive lower bound
for detD2u. Again, at a fixed boundary point, we may choose a coordinate
system, such that en is equal to the inner unit normal of ∂Ω and (uij)i, j<n
is diagonal. Similarly to (5.4), we estimate

det (uij) =
n∏
i=1

uii −
∑
i<n

|uni|2
∏
j 6=i
j<n

ujj ≤
n∏
i=1

uii .(5.5)

We decompose ν as

ν =
1

〈β, ν〉
(
β − βT

)
,

βT as in the proof of Theorem 3.1, and get in view of Lemmata 5.1 and 5.2

uνν ≤
1

〈β, ν〉2

(∣∣βT ∣∣2 ·max
i<n

uii + c

)
.

Finally, the claimed bound follows from (5.5). �

5.2. Remaining C2-estimates. Similarly to [7], we define

w(x, ξ, t) := eα(ψ−u)+γ·|Du|2 · uξξ
for (x, ξ, t) ∈ Ω×Sn−1× [0, T ] and positive constants α, γ to be fixed later.
We assume that w, restricted to boundary points and tangential directions,
attains its maximum at xw ∈ ∂Ω in a tangential direction which we may
take to be e1, and tw ∈ [0, T ]. We may assume that tw > 0. Furthermore,
we fix Euclidean coordinates such that en is the inner normal direction and
(uij)i, j<n(xw) is diagonal. Decompose e1 as

e1 = τ(e1) +
〈ν, e1〉
〈β, ν〉

β,

where

τ(e1) = τ = e1 − 〈ν, e1〉ν −
〈ν, e1〉
〈β, ν〉

βT , βT = β − 〈β, ν〉ν.

Note that τ is tangential, but not necessarily of unit length. For smoothly
extended β and ϕ, we differentiate the boundary condition and obtain on
∂Ω

2〈ν, e1〉
〈ν, β〉

uβτ =
2〈ν, e1〉
〈ν, β〉

(
ϕjτ

j − τ jβijui
)

=: χ(x,Du).(5.6)

On the boundary, we get

u11 = uττ + χ+
〈ν, e1〉2

〈β, ν〉2
uββ.
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Since χ(xw, ·) = 0, the function

w̃(x, t) := eα(ψ−u)+γ|Du|2(u11 − χ)

satisfies w̃(xw, tw) = w(xw, τ, tw), moreover, for all x ∈ ∂Ω and t ∈ [0, T ]

w̃(x, t)(5.7)

= eα(ψ−u)+γ|Du|2(x, t)
{
uττ (x, t) +

〈ν, e1〉2

〈β, ν〉2
uββ(x, t)

}
≤

{
1− 〈ν, e1〉2

(
1−

∣∣βT ∣∣2
〈β, ν〉2

)
−

2〈ν, e1〉
〈
βT , e1

〉
〈β, ν〉

}
w̃(xw, tw)

+ c〈ν, e1〉2eα(ψ−u)+γ|Du|2(x, t)

≤

1 + c〈ν, e1〉2 −
2〈ν, e1〉

〈
βT , e1

〉
〈β, ν〉

+ c
〈ν, e1〉2

max
ξ∈Tx∂Ω
|ξ|=1

uξξ(x)

 w̃(xw, tw)

≤

{
1 + c1〈ν, e1〉2 −

2〈ν, e1〉
〈
βT , e1

〉
〈β, ν〉

}
w̃(xw, tw).

Now, Lemma 5.3 ensures that we can choose c1 in the last inequality inde-
pendent of α and γ.

We may assume that c1 in (5.7) is chosen sufficiently large and β is suffi-
ciently close to ν such that the expression in the last curly brackets in (5.7)
is bounded below by 1

2 .
We define on Ω× [0, T ]

W :=
eα(ψ−u)+γ|Du|2(u11 − χ)

1 + c1〈ν, e1〉2 − 2〈ν,e1〉〈βT ,e1〉
〈β,ν〉

.

Assume that W attains its maximum at (xW , tW ) and tW > 0.
First, we address the case xW ∈∂Ω. Observe thatW (xW , tW ) ≤ w̃(xw, tw)

= W (xw, tw). At (xw, tw), we get Wβ ≤ 0, which implies that

u11β + αδ0u11 ≤ c(1 + (1 + γ)u11),(5.8)

using δ0 from (5.3). At xw, keeping the notation of Lemma 5.1, we differ-
entiate the boundary condition uβ = ϕ twice in direction e1. The a priori
estimates obtained so far, and the fact that D2u, restricted to tangential
directions, is diagonal, yield

uβ11 ≥ −c− 2β1
1u11 − 2βn1 un1.(5.9)

Then, combining (5.8) and (5.9) implies

c(1 + (1 + γ)u11) ≥ αδ0u11 − c.
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For α = α(γ) sufficiently large, we get an upper bound on u11(xw, tw). This
completes the C2-estimates, if W attains its maximum on ∂Ω.

Now, we consider the case that W attains its maximum at (xW , tW ),
xW ∈ Ω. We use

Γ = − log

(
1 + c1〈ν, e1〉2 −

2〈ν, e1〉
〈
βT , e1

〉
〈β, ν〉

)
in the following calculations. Γ is well-defined as the argument of the loga-
rithm is bounded below by a positive constant. Moreover, the C2

(
Ω
)
-norm

of Γ is uniformly bounded independent of α and γ. We use that

logW = α · (ψ − u) + γ · |Du|2 + log(u11 − χ) + Γ

attains its maximum at xW . Of course, we may assume that 1 ≤ (u11 −
χ)(xW , tW ). At (xW , tW ), we get

0 ≤ Ẇ

W
= α

(
ψ̇ − u̇

)
+ 2γuku̇k +

u̇11 − d
dtχ

u11 − χ
,

0 =
Wi

W
= α(ψ − u)i + 2γukuki +

u11i −Diχ

u11 − χ
+ Γi,

and, in the matrix sense,

0 ≥ Wij

W
− WiWj

W 2

= α(ψ − u)ij + 2γukjuki + 2γukukij

+
u11ij −Dijχ

u11 − χ
− (u11i −Diχ)(u11j −Djχ)

(u11 − χ)2
+ Γij ,

where we have used that Γ is time-independent. We useD· and d
dt to indicate

that the chain rule has not yet been applied. In the rest of the section, we
drop the argument, if we evaluate at (xW , tW ). We get

0 ≥ uij(logW )ij − Ẇ .

Estimates for the time derivatives of ψ and u, the strict convexity of ψ
(5.2), the fact that Γ ∈ C2 with uniform bounds, and the differentiated flow
equation (1.1) yield

0 ≥ 2γ∆u+
1

u11 − χ

(
uirujsuij1urs1

)
(5.10)

− uij
(u11i −Diχ)(u11j −Djχ)

(u11 − χ)2

+
1

u11 − χ

(
f̂piui11 − c− c ·

∣∣D2u
∣∣2)+ 2γukf̂piuik

+
1

u11 − χ

(
d

dt
χ− uijDijχ

)
− c(α+ γ) + (αλ− c)tr

(
uij
)
.
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Direct calculations and (1.1) imply

d

dt
χ− uijDijχ ≥ −c

(
1 +

∣∣D2u
∣∣+ tr

(
uij
))
.

We use Wi
W = 0 to get

2γukf̂piuik +
f̂piu11i

u11 − χ
≥ −c · α−

c ·
(
1 +

∣∣D2u
∣∣)

u11 − χ
− c.

Now, these estimates are applied to (5.10). Let ϑ ∈ (0, 1
2) be a small con-

stant, to be fixed later. First, we assume that, still at (xW , tW ),

(1− ϑ)uηη ≡ (1− ϑ) max
|ξ|=1

uξξ ≤ (u11 − χ).

Here, a direction η, |η| = 1, is chosen which corresponds to a maximal
eigenvalue. Schwarz’s inequality gives

uij(u11i −Diχ)(u11j −Djχ) ≤ (1 + ϑ)uiju11iu11j +
c

ϑ
uijDiχDjχ.

From the definition of η, we get

uirujsuij1urs1 ≥
max
|ξ|=1

ujsuξj1uξs1

uηη
≥ 1− ϑ

u11 − χ
uiju11iu11j .

Using ϑ ≤ 1
2 and Wi

W = 0, we get

uirujsuij1urs1 − uij
1

u11 − χ
(u11i −Diχ)(u11j −Djχ)

≥ uirujsuij1urs1 − (1 + ϑ)
1

u11 − χ
uiju11iu11j −

c

ϑ(1− ϑ)
1
uηη

uijDiχDjχ

≥ −ϑ 2
u11 − χ

uiju11iu11j −
2
ϑ

c

uηη

(
1 + tr

(
uij
)

+
∣∣D2u

∣∣)
≥ −cϑ(u11 − χ)

(
tr
(
uij
)

+ α2 tr
(
uij
)

+ γ2
∣∣D2u

∣∣)
− 1
ϑ

c

uηη

(
1 + tr

(
uij
)

+
∣∣D2u

∣∣) .
Combining this inequality with (5.10) gives

0 ≥
(

2γ − c ϑγ2 − c

ϑ(∆u)2
− c

)
∆u− c(1 + α+ γ)

+
(
αλ− c− c ϑα2 − c

ϑ(∆u)2
− c

∆u

)
tr
(
uij
)
.

We fix γ, α = α(γ) sufficiently large, and finally ϑ = ϑ(γ, α) sufficiently
small. This implies an upper bound on u11. Note that as before, first we
have fixed γ and then α.
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Now, it remains to consider the case

(1− ϑ)uηη ≥ (u11 − χ).

We assume that we are in the nontrivial situation where(
1− ϑ

2

)
uηη ≥ u11.(5.11)

Set

Ω× Sn−1 × [0, T ] 3 (x, ξ, t) 7→ W̃ (x, ξ, t) =
eα(ψ−u)+γ|Du|2(uξξ − χ)

1 + c1〈ν, e1〉2 − 2〈ν,e1〉〈βT ,e1〉
〈β,ν〉

,

where χ is introduced in (5.6). Assume that W̃ attains its maximum at a
positive time tfW at xfW ∈ Ω for a direction ξ ∈ Sn−1. Assume further, that
xfW ∈ ∂Ω. If xfW ∈ Ω, a modification of the proof for the case, when W
attains its maximum in Ω × (0, T ], implies a bound for the second spatial
derivatives of u. Using a decomposition of ξ as in (3.1), we obtain for β
sufficiently C0-close to ν

|τ(ξ)|2 ≤ 1 + c
∥∥βT∥∥

C0 .

As a direct consequence of this decomposition, we see that

uξξ ≤ uτ(ξ)τ(ξ) + c.

We apply (5.7) and (5.11)

W̃ (xfW , ξ, tfW ) ≤ |τ(ξ)|2W (xw, tw) + c

≤
(
1 + c

∥∥βT∥∥
C0

)
W (xW , tW ) + c

≤
(
1− ϑ

2

) (
1 + c

∥∥βT∥∥
C0

)
W̃ (xW , η, tW ) + c

≤
(
1− ϑ

2

) (
1 + c

∥∥βT∥∥
C0

)
W̃ (xfW , ξ, tfW ) + c,

where c = c(α, γ). For βT sufficiently small, we obtain a uniform bound on
W̃ (xfW , ξ, tfW ).

6. Longtime existence and convergence.

So far, we have obtained uniform estimates on u̇, Du, and D2u as long
as a smooth solution exists. For t = 0, we enclose our initial value u0

by translating solutions. The maximum principle implies, that u will stay
between the translating solutions. We obtain that

− c+ v∞ · t ≤ u ≤ +c+ v∞ · t.(6.1)

We apply Hölder estimates for the second derivatives due to Evans, Krylov,
and Safonov, as well as Schauder estimates, see [3]. Since (1.1) has no
explicit u-dependence, we get longtime existence with uniform bounds on
all higher derivatives of u.
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To show convergence to a translating solution, we consider w := u− u∞.
The following argument is similar to [1, 5]. Using the mean value theorem,
we see that w satisfies a parabolic flow equation of the form{

ẇ = aijwij + biwi in Ω,
wβ = 0 on ∂Ω.

Thus, the strong maximum principle implies, that w is constant or its oscilla-
tion is strictly decreasing in time. In the first case, u is already a translating
solution. In the second case, we wish to exclude that the oscillation is strictly
decreasing but does not tend to zero. If the oscillation of w(·, t) tends to
ε > 0 as t→∞, we consider for ti →∞

ui(x, t) := u(x, t+ ti)− v∞ · ti.
We have uniform estimates in any Ck-norm for the derivatives of ui, and
locally (in time) uniform bounds for the C0-norm, see (6.1). Hence, a sub-
sequence of the functions ui converges locally (in time) uniformly in any
Ck-norm to a solution u∗ of our flow equation (1.1) that exists for all time.
As the oscillation of w = u−u∞ is monotone in t, we see that the oscillation
of u∗ − u∞ is equal to ε, independent of t. This is a contradiction to the
strong maximum principle. If the oscillation of w tends to zero, we see that
u converges to a translating solution in C0 as t→∞. Adding a constant to
the translating solution u∞, we may assume that u → u∞ in the C0-norm
as t→∞. Interpolation inequalities of the form

‖Dw‖2
C0(Ω)

≤ c(Ω) · ‖w‖C0(Ω) ·
(∥∥D2w

∥∥
C0(Ω)

+ ‖Dw‖C0(Ω)

)
for w = u− u∞ and its derivatives imply smooth convergence. The proof of
Theorem 1.1 is complete.

Appendix A. Prescribing Gauß curvature for entire graphs.

Here, we present an application of our previous existence result on bounded
domains to construct unbounded hypersurfaces with prescribed Gauß cur-
vature. Assuming that the hypersurface is given as an entire graph, the
problem is to find a solution of

detD2u

(1 + |Du|2)
n+2

2

= g(x).(A.1)

Observe that this equation fits in the context of the present paper, cf. (4.1)

v∞ = log detD2u− log f(x,Du),

by defining

f(x, p) = g(x)/h(p) with h(p) = h(|p|) =
(
1 + |p|2

)−n+2
2

and looking for translating solutions with speed v∞ = 0.
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Following an argument of Altschuler and Wu [1], we will construct entire
rotationally symmetric translating solutions from solutions on growing disk-
type domains. Using the graph of the lower half sphere with suitably chosen
radius, it is a direct consequence of the strong maximum principle that there
cannot exist an entire strictly convex translating solution for any constant
value of the Gauß curvature. In the rotationally symmetric case, we have
the following result:

Theorem A.1. Let g(x) = g(|x|) be positive, smooth and integrable. There
exists an entire strictly convex solution u to (A.1) if and only if

v := log

∫
Rn h(|p|)dp∫
Rn g(|x|)dx

≥ 0.

The solution constructed here has a uniformly bounded gradient if and only
if v > 0.

We remark that the rotationally symmetric setting does also allow for a
proof by reducing the problem to an ordinary differential equation.

Proof. We will use that for given constants R > 0, ρ > 0, there is a unique,
strictly convex solution (v∞, u∞) to the following problem: ev

∞
= detD2u∞ h(|Du∞|)

g(|x|) in BR(0),
u∞ν = −ρ on ∂BR(0),

u∞(0) = 0.
(∗R,ρ)

This is a direct application of Theorem 1.2. Furthermore, the uniqueness of
the solution implies its rotational symmetry. The solution can also be found
by imposing a second boundary value condition.

From the strict convexity, we deduce that Du∞ is a diffeomorphism from
BR(0) onto Bρ(0). Integrating (∗R,ρ), we obtain

ev
∞
∫
BR

g(|x|)dx =
∫
BR

detD2u∞ h(|Du∞|)dx =
∫
Bρ

h(|p|)dp,

which uniquely determines the speed

v∞ = v∞(R, ρ) := log

∫
Bρ
h(|p|)dp∫

BR
g(|x|)dx

as a function of the parameters R, ρ. Note that v∞(R, ρ) is strictly decreas-
ing in R and strictly increasing in ρ with v∞(R, ρ) → −∞ for ρ→ 0.

1. Nonexistence for v < 0: We argue similarly as in the aforementioned case
of constant Gauß curvature. Now, we replace lower half spheres by suitably
constructed solutions on finite domains with arbitrarily large gradients at
the boundary. Since v < 0, there exists a unique R̂ such that

∫
BR̂

g(|x|)dx =∫
Rn h(|p|)dp. Assuming that we have an entire solution u of (A.1), there is a
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ρ > 0 such that |Du(x)| < ρ/2 for all |x| < R̂. Now, take the unique R < R̂
satisfying ∫

BR

g(|x|)dx =
∫
Bρ

h(|p|)dp

and consider the solution (v∞, u∞) of (∗R,ρ). By definition, we know that
v∞ = v∞(R, ρ) = 0, hence, u∞ solves Equation (A.1) in BR(0). Further-
more, the Neumann boundary condition and our choice of ρ yield |Du∞| >
|Du| in a neighborhood of ∂BR(0). Thus, there is a translate u∞ + m,
m ∈ R, which is strictly greater than u. Now we shift back until the graphs
touch first at a point x ∈ BR(0). By the strong maximum principle, this is
impossible as u and u∞ solve the same elliptic equation in BR(0).

2. Existence for v ≥ 0: We construct our solution by choosing a sequence
of increasing radii Rk tending to ∞. By the monotonicity properties of
the function v∞(R, ρ), we can find for each R > 0 a unique ρR such that
v∞(R, ρR) = 0. We remark that ρR is an increasing sequence. Again,
Theorem 1.2 gives a unique smooth rotationally symmetric solution uR to
(∗R,ρR

), which is defined on BR(0) and satisfies v∞ = 0. Note that for
fixed R, the speed v∞ and the normal derivative at the boundary, −ρR,
are uniquely related. Hence, the solution uR must coincide on smaller balls
BR′(0), R′ < R, with the previous solutions uR′ to (∗R′,ρR′

). Therefore, as
R tends to ∞, the sequence {uR} will converge uniformly on compact sets
to a limit u, defined on all of Rn. Clearly, u is a rotationally symmetric
solution to (A.1). Observe that the sequence ρR will diverge in the case
v = 0, whereas it stays bounded for v > 0. This proves the boundedness of
|Du| in the latter case. �

Proceeding as in the existence part of the proof, we get easily that non-
integrable g(x) also allow for solutions provided that h(p) is non-integrable
too.

This observation can be extended to the function h(p) arising in the equa-
tion of prescribed Gauß curvature in Minkowski space

detD2u

(1− |Du|2)
n+2

2

= g(x).(A.2)

Hence, h(p) = h(|p|) =
(
1− |p|2

)−n+2
2 , which is not integrable on B1(0).

Theorem A.2. For all positive and smooth functions g(x) = g(|x|), there
exists an entire strictly convex solution u to (A.2) satisfying |Du| < 1. More-
over, for a solution constructed here, |Du| ≤ 1− ε, ε > 0, if and only if g is
integrable.
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Proof. We proceed similarly as in the proof of Theorem A.1 and use the
notation introduced there. Here, the speed function v∞(R, ρ) is only de-
fined for ρ < 1. But still, v∞(R, ρ) is strictly decreasing in R and strictly
increasing in ρ. In addition, v∞(R, ρ) → −∞ for ρ→ 0 and v∞(R, ρ) →∞
for ρ → 1. As in part 2 of the proof of Theorem A.1, we can find for any
R > 0 a unique ρR ∈ (0, 1) satisfying v∞(R, ρR) = 0. Since ρR < 1, we can
choose a smooth function h̃(p), defined on Rn, such that h(p) = h̃(p) for all
|p| ≤ ρR. Again, Theorem 1.2 gives a unique smooth convex rotationally
symmetric solution uR to (∗R,ρR

) with h replaced by h̃, which is defined on
BR(0) and satisfies v∞ = 0. We remark that the convexity of u implies that
|Du| ≤ ρR on BR(0). Thus, u also solves the elliptic equation, if we replace
h̃ by the original h. Again, for R > R′, uR will coincide with solutions
uR′ obtained on smaller balls BR′(0). Hence, for R tending to infinity, uR
converges to an entire solution u of (A.2). In the present case, the sequence
ρR stays uniformly bounded away from 1 if

∫
Rn g(|x|)dx < ∞, whereas ρR

converges to 1 if g is non-integrable. �

In the general case without rotational symmetry, a theorem correspond-
ing to Theorem 1.1 in Minkowski space can be obtained easily from the
techniques of this paper, provided that there holds a uniform a priori bound
of the form |Du| < 1− ε, ε > 0.

Appendix B. Illustrations.

To illustrate the convergence of solutions, we investigate numerically the
flow equation  u̇ = log detD2u in Ω× [0,∞),

uν(·, t) = (u0)ν on ∂Ω, t > 0,
u(·, 0) = u0 in Ω

on the ellipsoidal domain Ω =
{
(x, y) ∈ R2 : 1.1 ·

(
x2 + (2y)2

)
< 1
}
, where

u0(x, y) = 1.5x2 + y2 − 0.1y4.
The numerical integration has been carried out on a 200 × 100 grid cor-

responding to [−1, 1] × [−0.5, 0.5] ∈ R2. Let Ω0 consist of all grid points
contained in Ω, and ∂Ω0 denotes those grid points not contained in Ω0 such
that one of the nearest neighbors belongs to Ω0. For simplicity, we keep the
same notation for the discretized quantities.

We use an explicit scheme for time integration. The boundary condition
is implemented as follows: For all x0 ∈ ∂Ω let y0 := x0 + ν(x0) · τ0, where
ν(x0) is the normalized negative gradient of x2 + (2y)2 and τ0 = inf{τ :
x0 + ν(x0) · τ ∈ convex hull(Ω0)}. We set u(x0) := u0(x0)− u0(y0)− u(y0).
Here, u(y0) is obtained by linear interpolation.
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(a) t = 0.0 (b) t = 0.1 (c) t = 0.5

Figure 2. Time evolution on an ellipsoidal domain.

Figure 2 shows a gray-scale plot of the velocity u̇ at different times. It can
be seen that the velocity tends to a constant, reflecting the convergence of
u to a translating solution.
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Figure 3. Convergence to constant velocity.

In Figure 3a, we show the decay of δ(t) = ||u̇(t)− v(t)||2L2(Ω), where v(t) =
1
|Ω|
∫
u̇(x, t) dx is the mean velocity. The expected exponential convergence

can be seen from Figure 3b. Here, we plot the exponential rate −1
t log δ(t),

which saturates nicely for larger times.
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[8] , Global Hölder estimates for equations of Monge-Ampère type, Invent. Math.,
91 (1988), 1-29, MR 89b:35047, Zbl 0674.35026.

[9] , The equation of prescribed Gauss curvature without boundary conditions, J.
Differential Geom., 20 (1984), 311-327, MR 87a:53099, Zbl 0566.53013.

Received August 26, 2002.

Max Planck Institute for Mathematics in the Sciences
Inselstr. 22-26, 04103 Leipzig
Germany
E-mail address: Oliver.Schnuerer@mis.mpg.de

Department of Mathematics and Computer Science
Free University Berlin
Arnimallee 2-6
14195 Berlin
Germany

Max Planck Institute for Mathematics in the Sciences
Inselstr. 22-26, 04103 Leipzig
Germany
E-mail address: Hartmut.Schwetlick@mis.mpg.de

http://www.ams.org/mathscinet-getitem?mr=97b:58032
http://www.emis.de/cgi-bin/MATH-item?0812.35063
http://www.ams.org/mathscinet-getitem?mr=90g:35050
http://www.emis.de/cgi-bin/MATH-item?0686.34013
http://www.ams.org/mathscinet-getitem?mr=98k:35003
http://www.emis.de/cgi-bin/MATH-item?0884.35001
http://www.ams.org/mathscinet-getitem?mr=87j:35114
http://www.emis.de/cgi-bin/MATH-item?0604.35027
http://www.ams.org/mathscinet-getitem?mr=2003f:53120
http://www.ams.org/mathscinet-getitem?mr=99h:35068
http://www.emis.de/cgi-bin/MATH-item?0912.35068
http://www.ams.org/mathscinet-getitem?mr=89b:35047
http://www.emis.de/cgi-bin/MATH-item?0674.35026
http://www.ams.org/mathscinet-getitem?mr=87a:53099
http://www.emis.de/cgi-bin/MATH-item?0566.53013
mailto:Oliver.Schnuerer@mis.mpg.de
mailto:Hartmut.Schwetlick@mis.mpg.de

