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In establishing conditions for continuity of the height of a
capillary surface f(x, y) at a re-entrant corner point of the
domain of definition, Lancaster and Siegel introduced a hy-
pothesis of symmetry, which does not appear in correspond-
ing conditions for a protruding corner. We show here that the
hypothesis cannot be discarded. Starting with a symmetric
configuration for which the surface height is continuous at the
corner point in accordance with the hypotheses of those au-
thors, we show that the height can be made discontinuous by
an asymmetric domain perturbation that is in an asymptotic
sense arbitrarily small, and for which all hypotheses other
than that of symmetry remain in force.

In a downward directed gravity field, the height f(x, y) of a capillary
surface interface is determined, up to an additive constant depending on an
eventual volume constraint, as a solution of

∇ · Tf = κf, Tf ≡ ∇f√
1 + |∇f |2

(1)

corresponding to a (physical) constant κ > 0. On the boundary ∂Ω one
finds the condition

ν · Tu = cos γ(2)

where ν is unit exterior normal, and γ the (prescribed) contact angle between
the solution surface and the bounding cylinder walls over ∂Ω. We may
assume 0 ≤ γ ≤ π. The unique existence of solutions of (1) and (2) in a
piecewise smooth bounded domain Ω follows from the material in [2], [4],
[7] and [8]. It should be noted that Condition (2) is imposed only on the
smooth portions of the boundary; no condition is required at corner points,
nor is there any a-priori growth restriction at those points.

Lancaster and Siegel [6] have characterized remarkable properties of ra-
dial limits Rf of solutions f(x, y) at eventual corner points O ∈ ∂Ω. The
limit exists for every direction of approach at the corner points, but its de-
pendence on direction can vary considerably, depending on circumstances.
By Corollary 1 of [6], if ∂Ω is of class C(1) except at the corner points, then
the solutions are continuous up to all boundary points with the possible
exception of corner points.
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For a protruding corner of opening 2α < π, Corollary 4 of [6] yields that
for all γ in the range π/2−α < γ < π/2+α, Rf is finite and is independent
of direction, and thus f is continuous at the corner. If γ lies exterior to
this range, it was shown by Concus and Finn [1] that no bounded solution
exists.

For a re-entrant corner of opening 2α > π, the situation is more compli-
cated. It follows from Theorem 5.2 of [3] that all solutions are bounded at
such a point; however Korevaar showed [5] that solutions can be discontin-
uous at re-entrant corner points. Lancaster and Siegel proved in [6]:

Corollary 2. Suppose π/2 ≤ α < π and that Ω is symmetric under reflec-
tion in the x-axis, with the x-axis bisecting the corner point. Suppose further
that either

α− π/2 ≤ γ ≤ π/2 or π/2 ≤ γ ≤ 3π/2− α.(3)

Then the (uniquely determined ) solution f(x, y) of (1) and (2) in Ω is sym-
metric under reflection in the x-axis, and continuous at O.

Condition (3) is analogous to the condition of Corollary 4 just mentioned
for a protruding corner. The authors show that also in this case their re-
sult is sharp with respect to that condition, by providing a counterexample
under the given symmetry when γ is outside the specified range. However
symmetry was not needed for Corollary 4, and the question arises, as to the
extent it is essential for Corollary 2. This question is not addressed in [6].

In the present note, we show that in general (3) does not suffice for con-
tinuity, and the symmetry hypothesis cannot be significantly relaxed. In
fact, in an asymptotic sense to be defined, there exist configurations that
deviate arbitrarily little from symmetry, for which (3) holds and for which
the solution f(x, y) fails to be continuous at O.

We construct an example of such behavior as a modification of the coun-
terexample just indicated. We assume π/2 < α < π, and consider the case
γ = α− π/2, which satisfies (3). As starting point we repeat some steps in
the reasoning of [6].

Figure 1 illustrates a particular configuration. This is basically Figure 10
in [6], the only change significant for us being that two vertical boundary
lines in that figure are now introduced with finite slopes that are negatives
of each other.

As in [6], we introduce the disk D ⊂ Ω of radius R0, tangent to the y-axis
at O. By Theorem 5.2 of [5], any solution f(x, y) of (1) in D satisfies

sup
D

f <
2

κR0
+ R0(4)

throughout D (one needs a slightly strengthened version of the theorem,
which is routine to obtain). The choice R0 =

√
2/κ yields the best possible
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bound from (4); we restrict attention to domains Ω that contain this disk,
and we are led to

sup
D

f < 2

√
2
κ

(5)

in D. Thus, (5) holds also for the radial limit Rf along any line segment
within D leading to O.

We denote by ε the distance between the lines L and L∗ of Figure 1. We
choose γ∗ in the range γ ≤ γ∗ < π− γ and introduce the two symmetrically
placed circular arcs C1, C2 of equal radii r, determined by

ε = r(cos γ + cos γ∗)(6)

and meeting the line L in angle γ. These arcs meet L∗ in the angle γ∗. We
construct a torus T of sectional radius r which contains C1, C2, and we denote
by 2R the distance between the centers of C1, C2. Consider the portion of T
that lies above the plane of the arcs, and choose the underside g(x, y) of that
surface as a “comparison surface”. This surface has the general appearance
of a footbridge in a Japanese garden. Note that it is vertical on the circles
C1, C2, and that it meets vertical walls through L,L∗ in the constant angles
γ, γ∗. The surface g(x, y) has at each of its points a mean curvature

Hg ≥
1
2

(
1
r
− 1

R− r

)
,(7)

and cos γ∗ ≤ cos γ. Theorem 5.1 of [5] now yields that in the domain DT ⊂ Ω
onto which T projects, there holds

inf
DT

f >
1
κ

(
1
r
− 1

R− r

)
−R.(8)

We now change the perspective somewhat. Instead of starting with the
channel width ε and angle γ∗ as above, we choose r = r0 so that

1
κ

(
1
r0
− 1

R− r0

)
−R > 2

√
2
κ

.(9)

We retain this choice for r throughout the ensuing discussion. The choice
imposes a relation between ε and γ∗, according to (6), which is formally
satisfied, for any ε in the range 0 < ε ≤ r0(1 + cos γ), by a unique value γ∗

for which 0 ≤ γ∗ < π − γ. We observe that any r0 chosen as above satisfies
r0 < R0.

We would like to position C2 so that the intersection with L will be at O.
From the relations (5), (8) and (9) we could then conclude that f(x, y) is
discontinuous at O. In the configuration of Figure 1 that cannot be done,
as the other endpoint of C2 would then no longer meet L∗, and Theorem 5.1
of [5] could no longer be applied. That is of course consistent with the
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original result of [2], that in the symmetric configuration the solution must
be continuous at O.

By abandoning symmetry, we can however modify the configuration to
permit the construction. We tilt the y-axis clockwise through an angle δ to
be determined, so that it becomes an inclined line Lδ, and we shift the disk
D so that it is tangent to Lδ at O. We then extend L∗ until it meets ∂D
at a point p(δ), and we shorten L∗∗ so that it does not extend beyond Lδ.
Finally, we choose δ so that the two circles C2 and ∂D meet at that same
point p(δ), when C2 meets L at O. If δ is small enough, D will continue to lie
within Ω. We will show that such a choice is always available, corresponding
to the value of r = r0 chosen above, and with γ∗ within the required range,
if ε is sufficiently small. For the moment we postpone verification of this
requirement.

Local details of the construction are indicated in Figures 2 and 3. In
this configuration, T can be positioned to contain the arc C2, and a segment
extending to O can be found within DT . On such a segment, the lower bound
(8) holds. However, on any segment extending to O within D we have the
upper bound (5). In view of (9), the asserted discontinuity of f at O follows.
But all conditions for Corollary 2 are fulfilled except for symmetry. Subject
to verification that δ is determined by the requirements and tends to zero
with ε, we find that the symmetry hypothesis of the corollary is necessary
for continuity at O.

The formal analytical criterion for determining δ(ε) is contained in the
equations

cos γ + cos γ∗ = ε/r0(10a)

cos(γ + δ) + cos(γ∗ + δ) = ε/R0.(10b)

Here (10a) is a repetition of (6); it follows immediately from the con-
struction of C1, C2. We obtain (10b) similarly using the placement of D and
additionally that C2 and ∂D intersect at O and at p in equal angles; see
Figure 3 for the configuration.

Keeping r0 fixed, we let ε → 0, and observe that γ∗, as determined from
(10a), then increases toward π−γ. Specifically, from (10a) a smooth function
branch

γ∗ = ϕ(ε) ≡ arccos
(

ε

r0
− cos γ

)
(11)

is determined, for which ϕ(0) = π − γ. For this branch, we find

ϕ′(ε) = −1/r0 sinϕ(ε)(12)

and thus ϕ′(0) = −1/r0 sin γ. We conclude γ∗ < π − γ, and γ∗ ≥ γ if ε is
small enough. We place the function (11) into (10b), and solve the resulting
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implicit relation for a branch δ(ε), with

δ(ε) = arccos

(
ε

2R0 cos γ−γ∗

2

)
− γ + γ∗

2
,(13)

such that δ(0) = 0. Since ϕ(0) − γ = π − 2γ and 0 < π − 2γ < π, this
procedure determines the required δ(ε) explicitly.

For the distance d(ε) to which L∗ must be extended to meet Lδ, we obtain
after some manipulation, using Figure 3,

d(ε) =
ε

sin γ

cos(γ+γ∗

2 )

cos(γ−γ∗

2 )
.(14)

The denominator in (14) is harmless, as just observed. For the numerator,
we have

cos
γ + γ∗

2
=
[
1 + cos(γ + γ∗)

2

] 1
2

(15)

=
√

2
2

[1 + cos γ cos γ∗ − sin γ sin γ∗]
1
2 .

In view of (10a) we obtain

cos
γ + γ∗

2
(16)

=
√

2 sin γ

2

[
1 +

ε cos γ

r0 sin2 γ
−
(

1 +
2ε cos γ

r0 sin2 γ
− ε2

r2
0 sin2 γ

) 1
2

] 1
2

.

From the inequality
√

1 + x > 1 + (x/2) − (x2/8), x > 0, applied to the
inner root, we are led to

cos
γ + γ∗

2
< Cε(17)

for a fixed constant C, as ε → 0, and hence d(ε) = O(ε2), from (14). A
similar estimate applies to the amount d∗ by which L∗ must be shortened.
Thus d and d∗ decrease faster than ε. Under a coordinate normalization
holding the width of the strips constant as ε → 0, the new distance d̃(ε)
retains the order d̃(ε) = O(ε). It is in that asymptotic sense that there exist
configurations that deviate arbitrarily little from symmetry, for which the
solution f(x, y) fails to be continuous at O, as asserted above. This behavior
is also evident geometrically, directly from the nature of the construction.
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Figure 1. Domain Ω leading to continuity at O of capillary
surface with contact angle γ = α− π/2.
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Figure 2. Details of construction for example of disconti-
nuity at O. The two circles are tangent respectively to the
vertical and to Lδ at O, and both pass through p.
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