Pacific Journal of Mathematics

WORD EQUATION $ABC = CDA, B \neq D$

C.M. WEINBAUM

Volume 213 No. 1

January 2004

WORD EQUATION $ABC = CDA, B \neq D$

C.M. WEINBAUM

We find a new formula for solving ABC = CDA, $B \neq D$ for 4 nonempty words in a free semigroup. Properties of the solutions are derived.

1. Introduction.

In a free semigroup, let Q be a quadruple $\langle A, B, C, D \rangle$ of nonempty words satisfying ABC = CDA, $B \neq D$. Hmelevskii [1] gives a formula for Q and proves that the solutions of ABC = CDA cannot be represented by a finite set of formulas involving words and positive integer exponents. Hmelevskii also shows that such a representation does exist for equations in 3 variables. This paper contains a simpler formula for Q and proofs of some of its properties. For more results about words, see [2], [3].

2. Terminology.

Fix an alphabet of letters. A word W is a finite sequence of letters. |W| is the length of W; the empty word is 1; |1| = 0. Word X followed by word Y is written as a product XY. $X \leq Y$ if XZ = Y for some possibly empty word Z. A product of k copies of W, written as W^k , is a power of W if $k \geq 0$ with $W^0 = 1$ and a proper power if $W \neq 1$ and $k \geq 2$. Write W backwards to get W^* . So $(XY)^* = Y^*X^*$. Word W is periodic if $W = A(BA)^k$ for some $B \neq 1, A, k \geq 2$.

A solution is a quadruple $Q = \langle A, B, C, D \rangle$ of words with ABC = CDA, $B \neq D$ and $A, B, C, D \neq 1$. Also use the notation $Q = \langle Q_1, Q_2, Q_3, Q_4 \rangle$. All such Q form a set Σ . A quadruple Q is unitary if |A| = 1. Define $\sigma(Q) = ABCD$. Using words X, Y, Z, define special quadruples:

$$A_k = A_k(X, Y, Z) = \langle X(YX)^k, YXZ, X(YX)^{k+1}, ZXY \rangle, k \ge 0.$$

$$B_k = B_k(X, Y, Z) = \langle X, YXZ, XYX(ZXYX)^k, ZXY \rangle, k \ge 0.$$

For any quadruple $U = \langle A, B, C, D \rangle$, define functions p, q:

$$p(U) = \langle ABC, B, C, D \rangle$$
 and $q(U) = \langle C, D, A, B \rangle$.

If $U \in \Sigma$ then $p(U) \in \Sigma$ and $q(U) \in \Sigma$. Let Γ be the set of all finite products of p's and q's. The identity function i is in Γ since (qq)(U) = q(q(U)) = U = i(U).

Remark 2.1. $A_k(X, Y, Z) \in \Sigma$ if and only if $YXZ \neq ZXY$ and $X \neq 1$ if k = 0.

Remark 2.2. $B_k(X, Y, Z) \in \Sigma$ if and only if $YXZ \neq ZXY$ and $X \neq 1$.

Remark 2.3. If $\langle A, B, C, D \rangle$ is a solution then $A \neq C$, $|A| \neq |C|$, |B| = |D|.

Remark 2.4. If $\langle A, B, C, D \rangle$ is a solution and |A| = 1 then |C| > 1.

3. Summary of results.

- (1) Each solution Q equals $g(A_k)$ for some $g \in \Gamma$ and $A_k \in \Sigma$ (Theorem 5.1).
- (2) If ABC = CDA, $B \neq D$ then ABCD is not a proper power (Theorem 5.2).
- (3) Each unitary solution equals some $B_k \in \Sigma$ (Theorem 5.3).
- (4) If $\langle A, B, C, D \rangle = g(A_k(a, b, c)), k \ge 0, g \in \Gamma$, letters a, b, c, then $\{B, D\} = \{bac, cab\}; A, C$ have odd lengths; $A = A^*, C = C^*$ (Theorem 5.4).
- (5) For each $\langle A, B, C, D \rangle \in \Sigma$, ABCD or CDAB is periodic and ABCD or CDAB equals $\sigma(B_k)$ for some unitary $B_k \in \Sigma$, k = 0 or 1 (Theorem 5.5).

4. Preliminaries.

Lemma 4.1. Let $Q = A_k(X, Y, Z)$ be a unitary solution with $k \ge 0$. Then Q equals some A_0 .

Proof. $|X(YX)^k| = 1$ implies either k = 0 or k = 1. If k = 0 we are done. If k = 1 then X = 1, |Y| = 1, $YZ \neq ZY$, $A_k = A_1(1, Y, Z) = A_0(Y, 1, Z)$. \Box

Lemma 4.2. If V = g(U) with $g \in \Gamma$, $U = A_k$, $k \ge 0$ then $U_1 \le V_1$, $U_1 \le V_3$.

Proof. True if g is the identity function or if g is p or q. Use an induction argument on the number of p's and q's in g.

Lemma 4.3. Let $V = g(A_k)$ be a unitary quadruple for some $g \in \Gamma$, $k \ge 0$. Then $g = qp^n q$ for some $n \ge 0$.

Proof. Let $U = A_k$. Since $|V_1| = 1$, applying Lemma 4.2 to V yields $|U_1| = 1$. By Remark 2.4, $|U_3| > 1$. We can assume g is not the identity function because we can use n = 0 in that case. Then g can be expressed as a reduced product of p's and q's with no 2 adjacent q terms.

We use the following observations:

- (1) V = g(U) and g is not the identity function.
- (2) $|U_1| = 1, |U_3| > 1, |V_1| = 1.$
- (3) q interchanges the first and third components of a quadruple.

- (4) p increases the length of the first component of a quadruple.
- (5) p preserves the length of the third component of a quadruple.

We conclude that a reduced product for g equals $qp^n q$ for some $n \ge 1$. \Box

Lemma 4.4. If $YXZ \neq ZXY$, $n \geq 2$ then $\sigma(B_n(X, Y, Z)) = \sigma(B_0(X, V, W))$ for some words V, W such that $VXW \neq WXV$.

Proof. For any $t \ge 0$,

$$\sigma(B_{2t+2}) = (XYXZ)^{2t+4}XY, \quad \sigma(B_{2t+3}) = (XYXZ)^{2t+5}XY.$$

$$\sigma(B_{2t+2}) = \sigma(B_0(X, V, W)) \text{ for } V = Y, W = Z(XYXZ)^{t+1}.$$

$$\sigma(B_{2t+3}) = \sigma(B_0(X, V, W)) \text{ for } V = YXZXY, W = Z(XYXZ)^t.$$

In each case, $YXZ \leq VXW$ and $ZXY \leq WXV$. Therefore $VXW \neq WXV$.

The following Lemma is Proposition 1.3.4 in [2].

Lemma 4.5. For words, XZ = YX with $Y, Z \neq 1$ implies Y = UV, $X = U(VU)^k$, Z = VU for some U, V with $k \ge 0$. If $X \ne 1$ then we can choose $V \ne 1$.

5. Main results.

Theorem 5.1. Each solution Q equals $g(A_k)$ for some $g \in \Gamma$ and $A_k \in \Sigma$.

Proof. Let $Q = \langle A, B, C, D \rangle$ be a solution. Then $|A| \neq |C|$. We may assume |A| < |C| since the function q, applied to Q, interchanges A and C.

Define m = m(Q) = |ABC| so that $m \ge 3$. Therefore m > 3 since $|A| \ne |C|$. Suppose m = 4. |A| = 1 = |B|, |C| = 2 else |B| = 2 implies |A| = 1 = |C|. Thus $Q = \langle a, a, aa, a \rangle$ for some letter a and B = a = D, impossible. So $m \ge 5$. Assume m = 5. Then $\langle |A|, |B|, |C| \rangle$ equals $\langle 1, 1, 3 \rangle$ or $\langle 1, 2, 2 \rangle$.

In the first case, $Q = \langle a, b, aba, b \rangle$, contradicting $B \neq D$. In the second case, $Q = \langle a, ab, aa, ba \rangle = A_0(a, 1, b)$ for letters $a \neq b$. Thus the theorem is true for m = 5.

Use induction on *m*. Assume m > 5. Suppose |AB| < |C|. Then C = ABI = JDA for some $I, J \neq 1$. ABJDA = ABC = CDA = ABIDA so I = J, ABI = C = IDA. Then $R = \langle I, D, A, B \rangle$ is a solution.

$$m(R) = |IDA| = |C| < |ABC| = m(Q).$$

By an induction assumption, $R = h(A_k)$ for some $h \in \Gamma$, $A_k \in \Sigma$. Therefore $q(p(h(A_k))) = q(p(R)) = \langle A, B, IDA, D \rangle = Q$. Use g = qph.

Now suppose $|C| \leq |AB|$. Using ABC = CDA, deduce C = AI = JA for some $I, J \neq 1$. Then $|J| = |I| \leq |B| = |D|$ since $|AI| = |C| \leq |AB|$. Using

ABC = CDA,

 $ABC = AIDA \Rightarrow BC = IDA \Rightarrow B = IK$ for some K using $|I| \le |B|$.

 $ABJA = CDA \Rightarrow ABJ = CD \Rightarrow D = LJ$ for some L using $|J| \le |D|$.

Then AIKJA = ABC = CDA = AILJA implies K = L. Apply Lemma 4.5 to AI = JA.

We get $A = X(YX)^k$, I = YX, J = XY for some words $Y \neq 1$, X and $k \geq 0$. So $C = AI = X(YX)^{k+1}$, B = IK = YXK, D = KJ = KXY. If k = 0 then $X = A \neq 1$. Thus

$$\langle A, B, C, D \rangle = \langle X(YX)^k, YXK, X(YX)^{k+1}, KXY \rangle = A_k(X, Y, K) \in \Sigma.$$

Thus $Q = g(A_k(X, Y, Z))$ using the identity function for g and Z = K. \Box

Theorem 5.2. If ABC = CDA, $B \neq D$ then ABCD is not a proper power.

Proof. It suffices to show that ABCD or CDAB is not a proper power. Assume |A| < |C|. Suppose $ABCD = U^k$ for $k \ge 2$. So $U \le ABC$ and $CDAB = V^k$ with $V \le CDA$. Since |U| = |V| and ABC = CDA, it follows that U = V and $ABCD = U^k = V^k = CDAB$, D = B, a contradiction. Now assume |C| < |A|. Then a similar argument show that CDAB is not a proper power.

Theorem 5.3. Each unitary solution equals some $B_n \in \Sigma$.

Proof. Let V be a unitary solution. Then $V = g(A_k(X, Y, Z))$ with $g \in \Gamma$, $A_k \in \Sigma$ by Theorem 5.1. $U = A_k(X, Y, Z)$ is unitary by Lemma 4.2. By Lemma 4.1, $U = A_0(R, S, T)$ for some R, S, T with $SRT \neq TRS$, |R| = 1. $g = qp^n q$ for some $n \ge 0$ by Lemma 4.3. So $V = qp^n q(A_0(R, S, T)) = B_n(R, S, T)$.

Theorem 5.4. If $U = g(A_k(a, b, c))$ with $k \ge 0$, $g \in \Gamma$, letters a, b and c, then:

(i) $\{U_2, U_4\} = \{bac, cab\},\$

(ii) U_1 , U_3 have odd lengths,

(iii) $U_1 = (U_1)^*, U_3 = (U_3)^*.$

Proof. Call U good if (i), (ii), (iii) are true for U. It suffices to prove 3 statements:

(1) If $U = A_k(a, b, c)$ then U is good.

(2) If U is good then so is q(U).

(3) If U is good then so is p(U).

Statements (1), (2) are easily verified. As for (3), assume U is good. Then $U_1U_2U_3 = U_3U_4U_1$, $(U_2)^* = (U_4)$, $(U_1)^* = U_1$, $(U_3)^* = (U_3)$. Let $V = \langle U_1U_2U_3, U_2, U_3, U_4 \rangle = p(U)$. Properties (i), (ii) are easily verified for V. To check (iii) for V, $(V_3)^* = (U_3)^* = U_3 = V_3$ and $(V_1)^* = (U_1U_2U_3)^* = (U_3)^*(U_2)^*(U_1)^* = U_3U_4U_1 = U_1U_2U_3 = V_1$.

Theorem 5.5. If $\langle A, B, C, D \rangle \in \Sigma$ then ABCD or CDAB is periodic. If |A| < |C| then $ABCD = XY(XZXY)^{k+2} = \sigma(B_k)$ for some X, Y, Z, $YXZ \neq ZXY$, |X| = 1, k = 0 or 1. By symmetry, if |C| < |A| then CDAB equals such a product.

Proof. Assume |A| < |C|. ABC = CDA implies C = FA, $F \neq 1$. So ABFA = FADA, ABF = FAD. Rewrite this: EF = FG, E = AB, G = AD. Apply Lemma 4.5 to EF = FG. Get $F = P(QP)^n$, AB = PQ, AD = QP, $Q \neq 1$, $n \geq 0$, $ABCD = P(QP)^{n+2}$. P = 1 cannot occur since then AB = Q = AD and B = D, impossible. Thus $P \neq 1$, $Q \neq 1$, AB = PQ, AD = QP imply A, P and Q all start with the same word X of length 1. Therefore there exist Y, Z with P = XY, Q = XZ. It follows that $ABCD = P(QP)^{n+2} = \sigma(B_n(X,Y,Z))$. By Theorem 5.2, ABCD is not a proper power. Therefore $XYXZ = PQ \neq QP = XZXY$ implies $YXZ \neq ZXY$.

For n = 0 or 1, use k = n.

For n > 1, apply Lemma 4.4 to $\sigma(B_n(X, Y, Z))$ and use k = 0.

6. Examples of solutions.

Define solutions: $Q_k = (qp)^{2k}(S)$ with $S = \langle a, ba, aba, ab \rangle = A_0(a, b, 1)$, letters $a \neq b$. Using a simplified version of a function G found in [1] we have:

$$Q_k = \langle G(2k+2), ba, G(2k+3), ab \rangle, \ k \ge 0,$$

where G(2) = a, G(3) = aba, and G(n) = G(n-1)Z(n-1)G(n-2), $n \ge 4$; Z(n) = ba (ab) if n even (odd).

For example, Q_1 , Q_2 , Q_3 are computed from $G(4), \ldots, G(9)$ where:

$$G(4), \dots, G(7) = XX, XYX, X(YX)^2, (XY)^2 (YX)^2,$$

$$G(8) = (XY)^2 Y (XY)^2 (YX)^2,$$

$$G(9) = (XY)^2 Y (XY)^2 Y XYY (XY)^2 (YX)^2,$$

using X = aba, Y = ababa.

References

- Ju. I. Hmelevskii, Equations in Free Semigroups, translated by G. A. Kandall from the Russian original: Trudy Mat. Inst. Steklov., 107 (1971), 1-270, American Mathematical Society, Providence, R.I., 1976, MR 52 #14094, Zbl 0326.02032.
- M. Lothaire, Combinatorics on Words, Cambridge Mathematical Library, Cambridge University Press, 1997, MR 98g:68134, Zbl 0874.20040.
- [3] _____, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, 90, Cambridge University Press, 2002, MR 2003i:68115, Zbl 1001.68093.

Received July 30, 2002 and revised October 16, 2002.

1020 SOUZA DRIVE EL DORADO HILLS, CA 95762 *E-mail address:* swimslowly@aol.com