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WORD EQUATION ABC = CDA, B # D

C.M. WEINBAUM

We find a new formula for solving ABC = CDA, B # D
for 4 nonempty words in a free semigroup. Properties of the
solutions are derived.

1. Introduction.

In a free semigroup, let @ be a quadruple (A, B, C, D) of nonempty words
satisfying ABC = CDA, B # D. Hmelevskii [1] gives a formula for ¢) and
proves that the solutions of ABC' = CDA cannot be represented by a finite
set of formulas involving words and positive integer exponents. Hmelevskii
also shows that such a representation does exist for equations in 3 vari-
ables. This paper contains a simpler formula for () and proofs of some of its
properties. For more results about words, see [2], [3].

2. Terminology.

Fix an alphabet of letters. A word W is a finite sequence of letters. |W| is
the length of W; the empty word is 1; |1] = 0. Word X followed by word
Y is written as a product XY. X <Y if XZ =Y for some possibly empty
word Z. A product of k copies of W, written as W*, is a power of W if k > 0
with W0 = 1 and a proper power if W # 1 and k > 2. Write W backwards
to get W*. So (XY)* = Y*X*. Word W is periodic if W = A(BA)* for
some B#1, A k> 2.

A solution is a quadruple @Q = (A, B, C, D) of words with ABC = CDA,
B # D and A,B,C,D # 1. Also use the notation @ = (Q1,Q2, Q3, Q4).
All such @ form a set ¥. A quadruple @ is unitary if |A| = 1. Define
0(Q) = ABCD. Using words X, Y, Z, define special quadruples:

Ap = A(X,Y, 2) = (X(YX)F YXZ, X(Y X)L ZXY) k> 0.

By = By(X,Y,Z) = (X,YXZ,XYX(ZXYX)*, ZXY), k > 0.
For any quadruple U = (A, B, C, D), define functions p, ¢:

p(U) = (ABC, B,C, D) and q(U)=(C,D,A,B).

If U € ¥ then p(U) € ¥ and ¢(U) € X. Let I be the set of all finite
products of p’s and ¢’s. The identity function i is in I' since (qq)(U) =

q(q(U)) = U = i(U).
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Remark 2.1. Ax(X,Y,Z) e Y if and only if YXZ # ZXY and X # 1 if
kE=0.

Remark 2.2. By,(X,Y,Z) € ¥ if and only if YXZ # ZXY and X # 1.
Remark 2.3. If (A, B,C, D) is a solution then A # C, |A| # |C|, |B| = |D|.
Remark 2.4. If (A, B,C, D) is a solution and |A| =1 then |C| > 1.

3. Summary of results.

(1) Each solution @ equals g(Ay) for some g € T' and Ay € ¥ (Theo-
rem 5.1).

(2) If ABC = CDA, B # D then ABCD is not a proper power (Theo-
rem 5.2).

(3) Each unitary solution equals some By, € ¥ (Theorem 5.3).

(4) It (A,B,C,D) = g(Ag(a,b,c)), k > 0, g € T, letters a, b, ¢, then
{B, D} = {bac, cab}; A, C have odd lengths; A = A*, C = C* (Theo-
rem 5.4).

(5) For each (A, B,C,D) € ¥, ABCD or CDAB is periodic and ABC'D
or CDAB equals o(By) for some unitary By € X, k = 0 or 1 (Theo-
rem 5.5).

4. Preliminaries.

Lemma 4.1. Let Q = Ax(X,Y, Z) be a unitary solution with k > 0. Then
Q equals some Ay.

Proof. | X(YX)*| =1 implies either k = 0 or k = 1. If K = 0 we are done. If
k=1then X =1, Y| =1,YZ # ZY, Ay = Ai(1,Y, Z) = Ay(Y,1,2). O

Lemma 4.2. If V = g(U) with g € T', U = Ag, k > 0 then Uy < Vi,
U <Vs.

Proof. True if g is the identity function or if g is p or ¢. Use an induction
argument on the number of p’s and ¢’s in g. U

Lemma 4.3. Let V = g(Ag) be a unitary quadruple for some g € T, k > 0.
Then g = qp™q for somen > 0.

Proof. Let U = Ay. Since |Vi] = 1, applying Lemma 4.2 to V yields |U; | = 1.
By Remark 2.4, |Us| > 1. We can assume g is not the identity function
because we can use n = 0 in that case. Then g can be expressed as a
reduced product of p’s and ¢’s with no 2 adjacent g terms.

We use the following observations:

(1) V.=g(U) and g is not the identity function.

(2) |Uh] =1, |Us| > 1, |V1| = 1.

(3) ¢ interchanges the first and third components of a quadruple.
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(4) p increases the length of the first component of a quadruple.
(5) p preserves the length of the third component of a quadruple.

We conclude that a reduced product for g equals gp™q for some n > 1. [

Lemma 4.4. If YXZ # ZXY, n > 2 then o(B,(X,Y,Z)) = o(Bo(X,V,
W) for some words V., W such that VW # WXV.

Proof. For any t > 0,
0(Bayo) = (XY XZ)?MXY, 0(Baygys) = (XYXZ)2PXY.
0(Batyo) = o(Bo(X,V,W)) for V=Y, W = Z(XY X 7)1,
0(Baty3) = o(Bo(X,V,W)) for V=Y XZXY, W = Z(XY X Z)".

In each case, YXZ < VXW and ZXY < WXV. Therefore VXW +#
WXV. 0

The following Lemma is Proposition 1.3.4 in [2].

Lemma 4.5. For words, XZ =YX withY,Z # 1 impliesY =UV, X =
UWVU, Z=VU for some U, V with k > 0. If X # 1 then we can choose
V #1.

5. Main results.
Theorem 5.1. FEach solution @Q equals g(Ay) for some g € T' and Ay, € X.

Proof. Let Q = (A, B,C, D) be a solution. Then |A| # |C|. We may assume
|A| < |C| since the function ¢, applied to @, interchanges A and C.

Define m = m(Q) = |ABC| so that m > 3. Therefore m > 3 since
|A| # |C|. Suppose m = 4. |A| =1 = |B|, |C| = 2 else |B| = 2 implies
|Al =1 = |C|. Thus Q = (a,a,aa,a) for some letter a and B = a = D,
impossible. So m > 5. Assume m = 5. Then (|A|, |B|,|C]) equals (1,1, 3)
or (1,2,2).

In the first case, @ = (a,b, aba,b), contradicting B # D. In the second
case, Q = (a,ab,aa,ba) = Ag(a, 1,b) for letters a # b. Thus the theorem is
true for m = 5.

Use induction on m. Assume m > 5. Suppose |AB| < |C|. Then C =
ABI = JDA for some I,J # 1. ABJDA = ABC = CDA = ABIDA so
I=J, ABI =C =1DA. Then R= (I, D, A, B) is a solution.

m(R) = |IDA| = |C| < |ABC| = m(Q).

By an induction assumption, R = h(Ay) for some h € T'; Ay € 3. Therefore

a(p(h(Ay))) = a(p(R)) = (A, B,IDA, D) = Q. Use g = qph.
Now suppose |C| < |AB|. Using ABC = CDA, deduce C = Al = JA for
some I,J # 1. Then |J| = |I| < |B| = |D| since |AI| = |C| < |AB|. Using
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ABC = CDA,
ABC = AIDA = BC = IDA = B = IK for some K using |I| < |B|.
ABJA=CDA = ABJ =CD = D = LJ for some L using |J| < |D|.

Then AIKJA = ABC = CDA = AILJA implies K = L. Apply Lem-
ma 4.5 to Al = JA.

We get A= X(YX)k, I =YX, J= XY for some words Y # 1, X and
E>0.S0oC=Al=X{YX)"*!, B=IK=YXK,D=KJ=KXY. If
k=0 then X = A # 1. Thus

(A,B,C,D) = (X(YX)" YXK,X(YX)" KXY) = Au(X,Y,K) € %.
Thus Q = g(Ax(X,Y, Z)) using the identity function for g and Z = K. O
Theorem 5.2. I[f ABC = CDA, B # D then ABCD is not a proper power.

Proof. Tt suffices to show that ABCD or CDAB is not a proper power.
Assume |A| < |C|. Suppose ABCD = U* for k > 2. So U < ABC and
CDAB = V¥ with V < CDA. Since |U| = |V| and ABC = CDA, it follows
that U = V and ABCD = U* = V¥ = CDAB, D = B, a contradiction.
Now assume |C| < |A|. Then a similar argument show that CDAB is not a
proper power. U

Theorem 5.3. Each unitary solution equals some B, € X.

Proof. Let V' be a unitary solution. Then V' = ¢g(Ax(X,Y,Z)) with g € T,
A € ¥ by Theorem 5.1. U = Ai(X,Y,Z) is unitary by Lemma 4.2. By
Lemma 4.1, U = Ay(R, S, T) for some R, S, T with SRT # TRS, |R| = 1.
g = qp™q for some n > 0 by Lemma 4.3. So V = ¢p"q(A¢(R,S,T)) =

B,(R,S,T). O
Theorem 5.4. If U = g(Ag(a,b,c)) with k > 0, g € T, letters a, b and c,
then:

(i) {Ua,Us} = {bac, cab},
(ii) Ur, Uz have odd lengths,
(iii) Uy = (Uh)", Us = (Us)".

Proof. Call U good if (i), (ii), (iii) are true for U. It suffices to prove 3
statements:

(1) If U = Ag(a,b,c) then U is good.

(2) If U is good then so is ¢(U).

(3) If U is good then so is p(U).
Statements (1), (2) are easily verified. As for (3), assume U is good. Then
ULUsUs = UsUsUy, (Us)* = (Uy), (U1)* = Uy, (Us)* = (Us). Let V =
(U1U3Us,Us,Us, Uy) = p(U). Properties (i), (ii) are easily verified for V.
To check (iii) for V, (V3>* = (U3)* = U3 = Vg and (‘/1)* = (U1U2U3)* =
(Us)*(Ug)*(Ur)* = UsUyUy = U UaU3 = V7. (]
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Theorem 5.5. If (A,B,C,D) € ¥ then ABCD or CDAB is periodic. If
|A| < |C| then ABCD = XY (XZXY)**2 = o(By,) for some X, Y, Z,
YXZ # ZXY, |X| =1, k = 0 or 1. By symmetry, if |C| < |A| then
CDAB equals such a product.

Proof. Assume |A| < |C|. ABC = CDA implies C = FA, F # 1. So
ABFA = FADA, ABF = FAD. Rewrite this: EF = FG, E = AB,
G = AD. Apply Lemma 4.5 to EF = FG. Get F = P(QP)", AB = PQ,
AD = QP, Q # 1, n > 0, ABCD = P(QP)"*2. P = 1 cannot occur
since then AB = Q = AD and B = D, impossible. Thus P # 1, Q # 1,
AB = PQ, AD = QP imply A, P and @ all start with the same word X
of length 1. Therefore there exist Y, Z with P = XY, Q = XZ. It follows
that ABCD = P(QP)"*? = ¢(B,(X,Y,Z)). By Theorem 5.2, ABCD is
not a proper power. Therefore XY XZ = PQ # QP = XZXY implies

YXZ +£ZXY.
For n=0or 1, use k = n.
For n > 1, apply Lemma 4.4 to o(B,(X,Y, 7)) and use k = 0. O

6. Examples of solutions.

Define solutions: Qp = (gp)%*(S) with S = (a,ba,aba,ab) = Ag(a,b,1),
letters a # b. Using a simplified version of a function G found in [1] we
have:

Qr = (G(2k + 2),ba, G(2k + 3),ab), k > 0,
where G(2) = a, G(3) = aba, and G(n) = G(n—1)Z(n—1)G(n—2), n > 4;
Z(n) = ba (ab) if n even (odd).
For example, Q1, Q2, Q3 are computed from G(4),...,G(9) where:
G(4),...,G(71) = XX, XYX, X(YX)? (XY)X(YX)?,

G(8) = (XY)’Y(XY)*(YX)?,

G(9) = (XY))YV(XY)’Y XYY (XY)*(Y X)?,
using X = aba, Y = ababa.
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