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In this paper, we investigate geodesics in cusped hyperbolic
3-manifolds. We derive conditions guaranteeing the existence
of geodesics avoiding the cusps and use these geodesics to
show that in “almost all” finite volume hyperbolic 3-manifolds,
infinitely many horoballs in the universal cover correspond-
ing to a cusp are visible in a fundamental domain of the cusp
when viewed from infinity.

1. Introduction.

Let M be a cusped hyperbolic manifold of finite volume. Lift M to the
upper-half space model of H3, so that cusps lift to horoballs. Center one of
the horoballs at infinity, then expand one cusp until it just touches itself or
another cusp. Inflate each cusp in turn until all have maximal size without
intersecting themselves or another cusp. The result is a maximal cusp or
maximal set of cusps. Looking down from infinity, we see a pattern of
horoballs within the fundamental parallelogram for the cusp subgroup that
fixes ∞. Call the set of horoballs in the parallelogram the horoball dia-
gram for the manifold. If the horoballs are opaque, how many are visible?
Do finitely many horoballs suffice to cover the fundamental parallelogram?
This question, first asked by Darren Long, is answered below.

There are cusped hyperbolic 3-manifolds in which a viewer situated at
infinity can see only finitely many horoballs in the horoball diagram. This
is true of the figure-eight knot complement because the first three layers of
horoballs cover the plane (see Figure 1). Since this is not obvious from a
diagram, we prove this fact in Section 4. And, because any singly cusped
finite cover of the figure-eight knot complement will also have this property,
there are infinitely many examples of manifolds with this property. But
remarkably, such examples are exceptional:

Theorem 1.1. In the horoball diagram of almost all finite volume hyperbolic
3-manifolds, infinitely many horoballs are visible from infinity.
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Figure 1. For the figure-eight knot, the plane is covered
by the top three layers of horoballs.

In Section 2, we define “almost all” and discuss the notation used through-
out the paper. In Section 3, we prove Theorem 1.1. In Section 4, we investi-
gate the properties of the figure-eight knot complement and the Whitehead
link complement. Finally, we explain various implications of these results
in Section 5 by relating our ideas to number theoretic problems. We are
grateful to Ian Agol for bringing these questions to our attention.

2. Preliminaries.

Here we list the conventions used in this paper. We will be working in
the upper-half plane model of H2 and the upper-half space model of H3,
and points will be denoted p = (z, t) ∈ H3 (or p = (x, t) ∈ H2) where
x, t ∈ R, z ∈ C and t > 0; that is, ∂H3 = C ∪ {∞} and ∂H2 = R ∪ {∞}.
Given two points p1, p2 ∈ Hn, the Euclidean length between p1 and p2 will
be denoted `e(p1, p2). The hyperbolic length between points p1 and p2 will
be denoted `(p1, p2). A cusp in a hyperbolic 3-manifold is a subset with
interior homeomorphic to T 2 × (0, 1) which lifts to a set of horoballs in
H3. Choosing one such horoball to be centered at ∞, the cusp subgroup is
the Z + Z subgroup of the fundamental group of the manifold realized as a
discrete group of fixed point free isometries. A fundamental domain for the
action of the cusp subgroup on the boundary plane C is a parallelogram P .
Horocycles or horodiscs in H2 will be denoted by h or hi, and horospheres
or horoballs in H3 by H and Hi. In both cases, the corresponding Euclidean
radii will be denoted by r, ri, r, ri ∈ R+ respectively.

Definition 2.1. We say that almost all finite volume hyperbolic 3-mani-
folds have a property Q if, for any real number V > 0, all but finitely many
with volume less than V have property Q.

Stated differently, “almost all” is “all but a finite number below any given
volume.”



CLEANLINESS OF GEODESICS IN HYPERBOLIC 3-MANIFOLDS 203

Definition 2.2. A geodesic is singly orthogonal if it intersects the cusp
boundary exactly once and does so at a right angle; a doubly orthogonal
geodesic intersects the cusp boundary twice perpendicularly.

That is, a singly orthogonal geodesic is perpendicular to the tangent plane
of the cusp at the point of intersection. Note that a geodesic entering the
cusp perpendicularly stays in the cusp from then on.

A cusped hyperbolic 3-manifold has infinitely many doubly orthogonal
geodesics connecting any cusp to itself and infinitely many connecting any
cusp to any other cusp. We can see this by lifting cusps to horoballs, center-
ing a horoball at infinity, and then we find infinitely many doubly orthog-
onal geodesics by drawing the vertical geodesics connecting the centers of
horoballs and infinity. If we are allowed to alter the size of the cusps, we
shall choose a configuration such that no cusp overlaps the interior of itself
or another cusp. Below, we will use `h to denote the hyperbolic length of a
doubly orthogonal geodesic outside the cusp or cusps. Usually, the size of
the cusps is chosen to maximize cusp volume, and in the case of a 1-cusped
hyperbolic 3-manifold, this choice is canonical. Given any geodesic in a
cusped hyperbolic 3-manifold, we have the following definition:

Definition 2.3. A dirty geodesic intersects the cusp boundary non-ortho-
gonally at least once, a spotted geodesic intersects the cusp boundary tan-
gentially at least once and perpendicularly otherwise, and a clean geodesic
is neither dirty nor spotted.

(a) Dirty (b) Spotted (c) Clean

Figure 2. The various possibilities for a geodesic intersect-
ing the cusp.

For examples of lifts of geodesics of each type see Figure 2. We will find
that the existence of geodesics of these various types is intimately related to
the question of horoball visibility.
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3. Horoball visibility and cleanliness.

We want to show that for almost all hyperbolic 3-manifolds, infinitely many
horoballs are visible. The proof consists of three parts. First, we show that
infinitely many horoballs are visible if there is a clean singly orthogonal
geodesic. Second, there is a clean singly orthogonal geodesic if there is a
“short” closed geodesics. Third, there are “short” closed geodesics in almost
all hyperbolic 3-manifolds.

Theorem 3.1. If a hyperbolic 3-manifold M contains a clean singly or-
thogonal geodesic then infinitely many horoballs in the horoball diagram are
visible from ∞.

Proof. Suppose that M contains a clean singly orthogonal geodesic α. Let P
be a parallelogram in C that is a fundamental domain for the cusp subgroup
and let α̃ be a lift of α to H3 with one endpoint at infinity and the other
endpoint in P . Suppose that only finitely many horoballs are visible. Then
there is some ε > 0 such that all horoballs H∗

i with radius r∗i < ε are in the
shadows of the horoballs Hi of radius ri ≥ ε. Then there is a neighborhood of
α̃ of Euclidean radius δ > 0 which is disjoint from all the Hi. Since horoball
centers are dense in C, there must be a horoball H whose center lies in this
neighborhood, and consequently H has radius r < ε. Since part of H lies in
the δ-neighborhood of α̃, the projection of H to C is not completely covered
by the projections of the Hi. �

Although the ability to see infinitely many horoballs from infinity may not
imply the existence of a clean singly orthogonal geodesic, there is a partial
converse to the above result.

Theorem 3.2. Given a hyperbolic 3-manifold M , if infinitely many horo-
balls in the horoball diagram are visible from ∞, then M contains a clean
or spotted singly orthogonal geodesic.

Proof. The fundamental parallelogram P for the cusp subgroup of M is a
compact subset of C. Let H0 denote one of the largest horoballs with center
in P . Choose Hi+1 to be one of the largest horoballs with center in P which
is smaller than Hi and whose projection to C is not completely covered
by the projections of larger horoballs. Hi exists for all i by assumption.
Let ci denote the center of Hi; since P is compact, we can pick a ∈ P a
limit point of {ci}. Then a cannot lie in the interior of the projection of a
horoball H because if it did, then we could choose an N large enough so
that HN is also completely contained within the projection of H. So, either
a is outside the projections of all horoballs or a lies on the boundary of
the projection(s) of one or more horoballs. We conclude that the geodesic
from a to ∞ covers a clean singly orthogonal or spotted singly orthogonal
geodesic in the manifold. �
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Corollary 3.3. If a hyperbolic 3-manifold M contains infinitely many clean
doubly orthogonal geodesics then M contains a clean or spotted singly or-
thogonal geodesic.

Proof. If M contains infinitely many clean doubly orthogonal geodesics,
then the fundamental parallelogram for M in H3 contains infinitely many
horoballs such that the geodesic from the top of each horoball to the horoball
at infinity does not touch any other horoballs. Since the projection of each
such horoball to C contains a region uncovered by the other horoballs, the
result follows immediately from Theorem 3.2. �

There are many relationships between geodesic length and clean geodesics.
For example, any doubly orthogonal geodesic g of hyperbolic length `h(g) <
log 4 is clean. Some geometry shows that there is not enough room for a
third horoball to fit between the two horoballs pierced by the geodesic. (see
Figure 3).

Figure 3. If a doubly orthogonal geodesic is short enough,
then no horoball can intersect it.

We also look at simple closed geodesics, and define them to be clean if
they avoid the cusps.

Lemma 3.4. Any closed geodesic g of hyperbolic length `h(g) < log(2+2
√

2)
is clean.

Proof. We must prove that if g is short enough, then there is a tubular
neighborhood around g that misses all horoballs. Let g be the closed geodesic
lifting to a vertical geodesic g̃, so that g has endpoints (0, 1) and (0, 1+ `eg)
and g̃ has ideal endpoints (0, 0) and ∞. Let H1 denote the horoball centered
at one endpoint of the semi-circular geodesic which intersects g̃ at (0, 1), and
let H2 be the horoball centered a Euclidean distance `e(g)+1 from the origin
on the same line as the origin and the center of H1. We want to find g so that
when we inflate both H1 and H2, then the moment they become tangent
to each other will be the exact moment when they each become tangent to
g∗. We know that r1 = 1, r2 = `e(g) + 1, and the distance between the
centers of H1 and H2 is d(H1,H2) = `e(g). Thus, from the triangle whose
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hypoteneuse is the line between the Euclidean centers of H1 and H2, we find
that `e(g) = 2 + 2

√
2. �

Surprisingly, if a manifold has a sufficiently short closed geodesic, there
is a clean singly orthogonal geodesic. Before we prove the theorem for 3-
manifolds, we will first prove the corresponding result for 2-manifolds.

Lemma 3.5. A cusped hyperbolic 2-manifold with a closed geodesic g of
hyperbolic length `h(g) < log 3 will have a clean singly orthogonal geodesic.

Proof. Lift the hyperbolic 2-manifold to the upper half-plane model, lifting
g to a vertical geodesic g̃. Expand a tubular neighborhood about g̃ until
it just touches the cusp, say at a horocycle h. Draw the vertical geodesic
g̃′ heading up from the center of h and leaving the cusp orthogonally. In-
tuitively, if the tubular neighborhood is wide enough (i.e., the geodesic is
short enough), then there will not be enough room above h and below the
tubular neighborhood for another horocycle to hit g̃′, which will make g̃′ a
clean singly orthogonal geodesic. See Figure 4.

h

h′

g′

g

011+ℓe(g)

˜

˜

Figure 4. A short geodesic with a wide neighborhood.

Suppose h has a Euclidean radius of r, and let h′ be the image of h under
the isometry generating the closed geodesic g, so h′ is a horocycle of radius
(1 + `e(g))r. For convenience, choose coordinates so that the vertical line g
sits at 0, and the horocycle h has center at 1, so h′ has center at (1+ `e(g)).
Now r is as large as possible when h and h′ are tangent, which gives

r ≤

√
`e(g)2

4 + 4`e(g)
.(3.1)
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But if

r(1 + `e(g)) ≤ `e(g),(3.2)

then h′ doesn’t hit g̃′. And if h′ doesn’t hit g̃′, then no horocycle can hit g̃′,
because h′ was chosen to be maximal. Putting inequalities (3.1) and (3.2)
together gives us the sufficient condition that `e(g) < 3 (or equivalently that
r < 3/4). �

The proof for the 3-manifold case is similar, except that we have to take
into account the loxodromic nature of a closed geodesic in H3. We utilize
ideas similar to those appearing in [Mey86].

Theorem 3.6. Any cusped hyperbolic 3-manifold with a closed geodesic of
length less than 0.1777 will have a clean singly orthogonal geodesic.

Proof. Lift the manifold to the upper half-space model in such a way that
the given closed geodesic lifts to a vertical geodesic above the origin. Expand
a tubular neighborhood of this closed geodesic until it just hits the cusp. Let
H be a horoball tangent to the neighborhood, and suppose the center of H is
at (1, 0) and has radius r. Now let g̃′ be the vertical geodesic between (0, 1)
and ∞; we claim that g̃′ is the desired singly orthogonal clean geodesic.

Suppose a horoball hits g̃′. We rotate this horoball around g̃′ until the
center of the horoball is at some positive real number. This situation is
equivalent to the H2 case, and by the previous lemma, we know that another
horoball cannot hit g̃′ provided r < 3/4.

We therefore want to bound r based on g. We assume that θ, the twist
of g, is less than 2π/6. Let H ′ be the image of H under the isometry
corresponding to the closed geodesic g. The radius r is maximized when H
and H ′ are tangent. By the law of cosines, we bound the radius:

r ≤

√
1 + (1 + `e(g))2 − 2(1 + `e(g)) cos θ

4 + 4`e(g)
.

Assuming −2π/6 < θ < 2π/6, we have r < 3/4 whenever `e(g) < (13 +√
105)/8, which we will denote by k. Thus, if the hyperbolic length of g is

less than log k and the twist of g is less than 2π/6, then we have our singly
orthogonal clean geodesic.

But by unwinding g up to six times, we can always get a closed geodesic
with twist less than 2π/6. So if we have a closed geodesic with any twist
and of hyperbolic length less than (log k)/6 ≈ 0.1777, then we will have a
singly orthogonal clean geodesic. �

It’s important to realize that our assumption of θ < 2π/6 was not arbi-
trary; choosing 2π/6 produces the best possible bound with this method.

Lemma 3.7. Given a real number ε > 0, almost all hyperbolic 3-manifolds
have a simple closed geodesic of length less than ε.
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Proof. Pick a value V > 0. By the results of Thurston and Jørgensen
(cf. [Thu79]), every hyperbolic 3-manifold of volume less than V comes
from surgery on a finite set of cusped hyperbolic 3-manifolds. Therefore, for
any given bound B, all but finitely many of the manifolds of volume less
than V will have a pair of surgery coefficients (p, q) that satisfy p2 +q2 > B.
By choosing B large, we can insure that the core of the surgery becomes a
simple closed geodesic of length less than ε. �

The following theorem completes the proof of the main result of this
paper:

Theorem 3.8. In almost all hyperbolic 3-manifolds, infinitely many horo-
balls are visible looking down from infinity to the fundamental parallelogram.

Proof. By the previous lemma, almost all hyperbolic 3-manifolds have a ge-
odesic g where `h(g) < 0.17. But by Theorem 3.6, a hyperbolic 3-manifold
with a closed geodesic shorter than 0.17 has a clean singly orthogonal geo-
desic. And by Theorem 3.1, a clean singly orthogonal geodesic means that
infinitely many horoballs are visible. �

4. Examples.

An example of a manifold that does not have a clean singly orthogonal
geodesic is the figure-eight knot complement.

Lemma 4.1. The first three layers of horoballs that make up the horoball
packing of the figure-eight knot complement project to cover C entirely.

Proof. Let Hi denote the ith largest horoball in the cusp diagram of K for
1 ≤ i ≤ 3. Let ri be the radius of Hi and let d(Hi,Hj) be the distance
between the centers of tangent horoballs Hi and Hj where the distance
between the centers of Hi and its nearest copy is computed if i = j. Since
certain copies of H1,H2, and H3 are pairwise tangent, we can find d(Hi,Hj)
for 1 ≤ i ≤ 3, 1 ≤ j ≤ 3. Since H1 and its nearest translate are tangent to
one another and to the horoball centered at infinity, we see that d(H1,H1) =
1. Next, we can find d(H1,H2) by noting that the hexagonal packing of the
copies of H1 force the centers of the copies of H2 to be in the center of the
equilateral triangle with vertices at the centers of the copies of H1. Since
r1 = 1/2, we find that

d(H1,H2) =
1
2

1
sin π

6

=
1√
3
.

It is not hard to see that (1/2 + r2)2 = (1/2− r2)2 + 1/3 and therefore that
r2 = 1/6. Similarly, since d(H1,H3) = 1/2, we find that r3 = 1/8.
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Let Di denote the projection of the interior of Hi. Now, to show that the
copies of D1, D2, and D3 completely cover C, it is sufficient to show that

3⋂
i=1

Di 6= ∅.

And, to show this, it suffices to show that θ1 + θ2 > π/6, where θ1 is the
angle between the line segment joining the centers of H1 and H2 and the
line segment joining the center of H1 with the point where ∂D1 and ∂D2

intersect, and θ2 is similarly defined for H1 and H3. Now we have
1
36

=
1
3

+
1
4
− 2

(
1√
3

) (
1
2

)
cos θ1.

And thus, θ1 = cos−1(5
√

3
9 ), and similarly θ2 = cos−1(31

32). (For helpful
pictures, see Figure 1 or refer to SnapPea [Wee].) �

Corollary 4.2. In the figure-eight knot complement:
(1) There are no clean singly orthogonal geodesics.
(2) There are only finitely many doubly orthogonal clean geodesics.

Proof. The first part follows immediately from the above theorem. An in-
finitely long clean geodesic can be pictured as a vertical geodesic leaving the
horoball centered at ∞, but all vertical geodesics in the figure-eight knot
complement must intersect the cusp a second time by the theorem.

The second part also follows immediately since there are only finitely
many copies of the largest three horoballs in the fundamental domain for
the cusp of the figure-eight knot complement in the universal cover. �

An example of a manifold that has a horoball pattern which does not
completely cover C and thus from which infinitely many horoballs are visible
from infinity is the Whitehead link complement.

Lemma 4.3. The Whitehead link complement considered with symmetric
tangent cusps has a clean singly orthogonal geodesic.

Proof. Take the set of horoballs in the upper-half-space model with centers
at p

q (reduced) where p, q ∈ Q(
√

(−1)) and diameters given by 1
kqq . The

horoball centered at {∞} is respresented by a horizontal plane at height
k
2 . This set of horoballs is invariant under the Picard group and therefore
projects to the two cusps in the Whitehead link complement. Ford [For25]
demonstrated that in such a space there exists a semi-circle C with endpoints
(1
2 ,−

√
3

2 , 0) and (1
2 ,

√
3

2 , 0) and radius
√

3
2 , that is tangent to an infinite num-

ber of horoballs without entering the interior of any when k =
√

3. Although
these horoballs are not disjoint, we can shrink back the resultant cusps in
the Whitehead link at a symmetric rate until the horoball centered at infin-
ity has boundary equal to the horizontal plane at height 1, at which point
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all of the horoballs have disjoint interiors. Then there is a tube, t, of radius
log 2√

3
around C that does not intersect any horoballs in its interior. Let

v be a singly orthogonal geodesic with basepoint (1
2 ,

√
3

2 ). Moving upwards
towards ∞, v travels within t until the point s = (1

2 ,
√

3
2 , 1

4) and thus must
be clean within that region. Above s, the only balls that might intersect v
are those with diameter at least 1

4 . But by looking at the balls centered at
1+i
2+i ,

0+i
1+2i , and 1+0i

2+0i , we see that they are mutually tangent and enclose an
area around v which does not cover it’s basepoint and prevents any balls
of diameter at least 1

4 from being in that region. Thus v is a clean singly
orthogonal geodesic. �

Theorem 4.4. Infinitely many horoballs are visible from infinity within the
fundamental parallelogram of the Whitehead link complement when consid-
ered with symmetric tangent cusps.

Proof. This follows immediately from the above lemma and Theorem 3.1.
�

5. Number theory.

Many of these questions have relevance to number theory. In every cusped
hyperbolic 3-manifold, the centers of the horoballs form a subfield of the
complex plane. For example, if Γ is a torsion-free subgroup of finite index
in a Bianchi group, then H3/Γ is a finite volume hyperbolic 3-manifold
and questions about clean singly orthogonal geodesics are closely related to
standard diophantine approximation.

Let α be a real irrational number. In 1891, Hurwitz showed that the
inequality

|α− p

q
| < 1

k|q|2

has infinitely many solutions in coprime integers p and q when k =
√

5, and
that

√
5 is the best constant possible. This inequality can be generalized to

approximate complex numbers.
Let d be a positive square-free integer and let Od be the ring of integers

in Q(
√
−d). Let α ∈ C − Q(

√
−d). Denote by kd(α) the supremum of all

k such that the inequality above has infinitely many solutions in p, q ∈ Od.
Define the set of numbers

Ld = {1/kd(α) : α ∈ C−Q(
√
−d)}

to be the Lagrange spectrum for the imaginary quadratic number field
Q(
√
−d) and Cd = supLd the Hurwitz constant for the field. See [For25]

and [Vul].
Geometrically, this inequality indicates that if we expand the horoballs

for a given manifold, M = H3/Γ where Γ is a torsion-free subgroup of finite
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index in a Bianchi group, until they all have radii equal to Cd\|q|2 then
any vertical geodesic with basepoint α will intersect an infinite number of
horoballs. But horoballs with such radii are not necessarily disjoint. An
interesting question which presents itself is, what happens if we allow the
radii of the horoballs to correspond to those of a maximal cusp, thereby
ensuring that the horoballs are disjoint? This is equivalent to studying the
inequality when k = 1.

As we have shown, the plane is completely covered by the horoballs in
a maximal cusp of the figure eight knot complement. Therefore, there ex-
ists at least one solution to the inequality for all α’s when k = 1. With
the Whitehead link complement, however, the existence of a clean singly
orthogonal geodesic implies that if α = 1

2 +
√

3
2 i then the inequality has no

solutions. These questions could be applied to other hyperbolic 3-manifolds
besides those associated with the Bianchi groups.

References

[For25] L. Ford, On the closeness of approach of complex rational fractions to a complex
irrational number, Trans. Amer. Math. Soc., 2 (1925), 146-154, MR 1501304,
Zbl 51.0157.03.

[Mey86] R. Meyerhoff, A lower bound for the volume of hyperbolic 3-manifolds, Can. J.
Math., XXXIX (1987), 1038-1056, MR 88k:57049, Zbl 0694.57005.

[Thu79] W. Thurston, The Geometry and Topology of Three-Manifolds, Notes, Dept. of
Math., Princeton University, 1979. See also Three-Dimensional Geometry and
Topology. Vol. 1, Princeton Mathematical Series, 35, Princeton University Press,
Princeton, NJ, 1997, MR 1435975, Zbl 0873.57001.

[Vul] L.Ya. Vulakh, Diophantine approximation on Bianchi groups, J. Number Theory,
54 (1995), 73-80, MR 96g:11076, Zbl 0838.11027.

[Wee] J. Weeks, SnapPea, A computer program for creating and studying hyperbolic
3-manifolds, available at http://www.geometrygames.org/SnapPea/index.html.

Received October 1, 2002 and revised January 20, 2003. This research was supported by
Williams College and the National Science Foundation under grants DMS-9820570 and
DMS-9803362.

Dept. of Mathematics
Williams College
Williamstown, MA 01267

http://www.ams.org/mathscinet-getitem?mr=1501304
http://www.emis.de/cgi-bin/MATH-item?51.0157.03
http://www.ams.org/mathscinet-getitem?mr=88k:57049
http://www.emis.de/cgi-bin/MATH-item?0694.57005
http://www.ams.org/mathscinet-getitem?mr=1435975
http://www.emis.de/cgi-bin/MATH-item?0873.57001
http://www.ams.org/mathscinet-getitem?mr=96g:11076
http://www.emis.de/cgi-bin/MATH-item?0838.11027
http://www.geometrygames.org/SnapPea/index.html


212 ADAMS, COLESTOCK, FOWLER, GILLAM, AND KATERMAN

E-mail address: Colin.Adams@williams.edu

Dept. of Mathematics
Williams College
Williamstown, MA 01267

Dept. of Mathematics
Williams College
Williamstown, MA 01267

Dept. of Mathematics
Williams College
Williamstown, MA 01267

Dept. of Mathematics
Williams College
Williamstown, MA 01267

mailto:Colin.Adams@williams.edu

