Pacific Journal of Mathematics

SYMMETRIES OF REAL CYCLIC *p*-GONAL RIEMANN SURFACES

ANTONIO F. COSTA AND MILAGROS IZQUIERDO

Volume 213 No. 2

February 2004

SYMMETRIES OF REAL CYCLIC *p*-GONAL RIEMANN SURFACES

ANTONIO F. COSTA AND MILAGROS IZQUIERDO

A closed Riemann surface X which can be realised as a p-sheeted covering of the Riemann sphere is called p-gonal, and such a covering is called a p-gonal morphism. A p-gonal Riemann surface is called real p-gonal if there is an anticonformal involution (symmetry) σ of X commuting with the p-gonal morphism. If the p-gonal morphism is a cyclic regular covering the Riemann surface is called real cyclic p-gonal, otherwise it is called real generic p-gonal. The species of the symmetry σ is the number of connected components of the fixed point set Fix (σ) and the orientability of the Klein surface $X/\langle \sigma \rangle$. In this paper we find the species for the possible symmetries of real cyclic p-gonal Riemann surfaces by means of Fuchsian and NEC groups.

1. Introduction.

A closed Riemann surface X which can be realised as a p-sheeted covering of the Riemann sphere is called p-gonal, and such a covering is called a p-gonal morphism. The p-gonal Riemann surfaces have been extensively studied, see [1], [2], [6], [8], [9], [12] and [13]. A p-gonal Riemann surface is called real p-gonal if there is an anticonformal involution (symmetry) σ of X commuting with the p-gonal morphism.

Let X_g be a real *p*-gonal Riemann surface of genus $g \geq 2$. A symmetry σ of X_g is an anticonformal involution of X_g . The topological type of a symmetry is determined by the number of connected components, called *ovals*, of the fixed-point set Fix (σ) and the orientability of the Klein surface $X/\langle \sigma \rangle$. We say that σ has species $\Sigma_{\sigma} = +k$ if Fix (σ) consists of k ovals and $X/\langle \sigma \rangle$ is orientable, and $\Sigma_{\sigma} = -k$ if Fix (σ) consists of k ovals and $X/\langle \sigma \rangle$ is non-orientable. The set Fix (σ) corresponds to the real part of a complex algebraic curve representing X, which admits an equation with real coefficients.

If the *p*-gonal morphism is a cyclic regular covering, then the Riemann surface is called *real cyclic p-gonal*. When p = 2 the surface X_g is called hyperelliptic. A Riemann surface represented by an algebraic curve given

by an equation of the form

(1.1)
$$y^p = \prod (x - a_i) \prod (x - b_j)^2 \cdots \prod (x - m_j)^{p-1}$$

where the coefficients of the polynomial $\prod (x - a_i) \cdots \prod (x - m_j)^{p-1}$ are real is a real cyclic *p*-gonal Riemann surface. The complex conjugation induces a symmetry on the above curve. A natural problem is to study and classify all possible symmetries of such a Riemann surface up to conjugacy, as they will produce non-isomorphic real models of the complex algebraic curve.

In Section 2 we characterise real cyclic p-gonal Riemann surfaces, where p is an odd prime, in terms of signatures of Fuchsian and NEC groups. In Section 3 we determine all possible symmetries of a real cyclic p-gonal Riemann surface represented by an algebraic curve with equation (1.1).

2. Signatures of real cyclic *p*-gonal Riemann surfaces.

Let X_g be a compact Riemann surface of genus $g \geq 2$. The surface X_g can be represented as a quotient $X_g = \mathcal{H}/\Gamma$ of the upper half plane \mathcal{H} under the action of a surface Fuchsian group Γ , that is, a cocompact orientationpreserving subgroup of the group $\mathcal{G} = \operatorname{Aut}(\mathcal{H})$ of conformal and anticonformal automorphisms of \mathcal{H} without elliptic elements. A discrete, cocompact subgroup Γ of $\operatorname{Aut}(\mathcal{H})$ is called an NEC (non-euclidean crystallographic) group. The subgroup of Γ consisting of the orientation-preserving elements is called the *canonical Fuchsian subgroup of* Γ , it is denoted by Γ^+ . The algebraic structure of an NEC group and the geometric structure of its quotient orbifold are given by the signature of Γ :

$$(2.1) \quad s(\Gamma) = (h, \pm, [m_1, \dots, m_r], \{(n_{11}, \dots, n_{1s_1}), \dots, (n_{k1}, \dots, n_{ks_k})\}).$$

The orbit space \mathcal{H}/Γ is an orbifold with underlying surface of genus h, having r cone points and k boundary components, each with $s_j \geq 0$ corner points. The signs "+" and "-" correspond to orientable and non-orientable orbifolds respectively. The integers m_i are called the proper periods of Γ and they are the orders of the cone points of \mathcal{H}/Γ . The brackets $(n_{i1}, \ldots, n_{is_i})$ are the period cycles of Γ and the integers n_{ij} are the link periods of Γ and the orders of the corner points of \mathcal{H}/Γ . The group Γ is called the *fundamental group* of the orbifold \mathcal{H}/Γ .

A group Γ with signature (2.1) has a *canonical presentation* with generators:

(2.2)
$$x_1, \dots, x_r, e_1, \dots, e_k, c_{ij}, 1 \le i \le k, 1 \le j \le s_i + 1$$
, and $a_1, b_1, \dots, a_h, b_h$

if \mathcal{H}/Γ is orientable, or

 d_1,\ldots,d_h

otherwise, and relators:

(2.3)
$$x_i^{m_i}, \quad i = 1, \dots, r,$$
$$c_{ij}^2, \ (c_{ij-1}c_{ij})^{n_{ij}}, \ c_{i0}e_i^{-1}c_{is_i}e_i, \quad i = 1, \dots, k, j = 2, \dots, s_i + 1$$

and $x_1 \cdots x_r e_1 \cdots e_k a_1 b_1 a_1^{-1} b_1^{-1} \cdots a_h b_h a_h^{-1} b_h^{-1}$ or $x_1 \cdots x_r e_1 \cdots e_k d_1^2 \cdots d_h^2$ according to whether \mathcal{H}/Γ is orientable or not. This last relation is called the long relation.

The hyperbolic area of the orbifold \mathcal{H}/Γ coincides with the hyperbolic area of an arbitrary fundamental region of Γ and equals:

(2.4)
$$\mu(\Gamma) = 2\pi \left(\varepsilon h - 2 + k + \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) + \frac{1}{2} \sum_{i=1}^{k} \sum_{j=1}^{s_i} \left(1 - \frac{1}{n_{ij}} \right) \right),$$

where $\varepsilon = 2$ if there is a "+" sign and $\varepsilon = 1$ otherwise. If Γ' is a subgroup of Γ of finite index then Γ' is an NEC group and the following Riemann-Hurwitz formula holds:

(2.5)
$$[\Gamma:\Gamma'] = \mu(\Gamma')/\mu(\Gamma).$$

An NEC group Γ without elliptic elements is called a surface group and it has signature $(h; \pm; [-], \{(-), \stackrel{k}{\ldots}, (-)\})$. In such a case \mathcal{H}/Γ is a Klein surface, i.e., a surface with a dianalytic structure of topological genus h, orientable or not according to the sign "+" or "-", and having k boundary components. Conversely, a Klein surface whose complex double has genus greater than one can be expressed as \mathcal{H}/Γ for some NEC surface group Γ . Furthermore, given a Riemann (resp. Klein) surface represented as the orbit space $X = \mathcal{H}/\Gamma$, with Γ a surface group, a finite group G is a group of automorphisms of X if and only if there exists an NEC group Δ and an epimorphism $\theta : \Delta \to G$ with ker $(\theta) = \Gamma$ (see [5]). The NEC group Δ is the lifting of G to the universal covering $\pi : \mathcal{H} \to \mathcal{H}/\Gamma$ and is called the universal covering transformation group of (X, G).

Definition 1. For a prime p, a real cyclic p-gonal Riemann surface is a triple (X, f, σ) where σ is a symmetry of X, f is a cyclic p-gonal morphism and $f \circ \sigma = c \circ f$, and c is the complex conjugation.

Notice that by Lemma 2.1 in [1] the condition $f \circ \sigma = c \circ f$ is automatically satisfied for genera $g \ge (p-1)2 + 1$, since the *p*-gonal morphism is unique. From now on, the genera will satisfy the condition above. As a consequence of the assumption $g \ge (p-1)2 + 1$ for the genera of the *p*-gonal surface X_g we have that the group C_p generated by the *p*-gonal morphism is a normal subgroup of Aut⁺(X_g). Notice the the classification method fails for surfaces with genera in the range $2 \le g \le (p-1)2$. For instance, there are two 7-gonal surfaces of genus 3. One of them, X_3 , is the Klein's quartic with Aut⁺(X_3) $\simeq PSL_2(7)$, in this case C_7 is non-normal in $PSL_2(7)$. We give now a characterisation of real cyclic p-gonal Riemann surfaces represented by real equations via NEC groups.

Theorem 1 ([7]). Let X be a Riemann surface with genus g. The surface X admits a symmetry σ and a meromorphic function f such that (X, f, σ) is a real cyclic p-gonal Riemann surface represented by a curve with real equation $y^p = \prod (x - a_i) \cdots \prod (x - m_j)^{p-1}$ if and only if there are an NEC group Δ with signature $(0, +, [p, \dots, p], \{(p, \dots, p)\})$ and an epimorphism $\theta : \Delta \to D_p$ such that X is conformally equivalent to $\mathcal{H}/\operatorname{Ker} \theta$ and $\operatorname{Ker} \theta$ is an NEC Fuchsian surface group.

Let (X, f, σ) be a real cyclic *p*-gonal Riemann surface uniformised by a Fuchsian surface group Γ . Consider the automorphism $\varphi : X \to X$ such that $X/\langle \varphi \rangle$ is the Riemann sphere and φ is a deck-transformation of the covering f. Notice that the group Δ is the universal covering transformation group of (X, φ, σ) , that $D_p = \langle \varphi, \sigma \rangle$ and that the canonical Fuchsian subgroup Δ^+ is the universal covering transformation group of (X, φ) . Thus $X/\langle \varphi \rangle$ is a sphere with conic points of order p. Let $\overline{\sigma}$ be the symmetry in the Riemann sphere $X/\langle \varphi \rangle$ induced by σ . Since the triple (X, φ, σ) is represented by the equation $y^p = \prod (x - a_i) \cdots \prod (x - m_j)^{p-1}$, the symmetry σ is given by the map $\sigma : X \to X$ defined by $\sigma : (x, y) \to (\overline{x}, \overline{y})$. The set of real solutions of 1.1 is the set Fix (σ) . Thus $\overline{\sigma}$ is conjugated to the complex conjugation. Then $X/\langle \varphi, \sigma \rangle = X/\langle \varphi \rangle / \langle \overline{\sigma} \rangle$ is a disc with corner(s) and conic points of order p.

With the above notation:

Theorem 2. Let X be a real cyclic p-gonal Riemann surface such that $\langle \varphi, \sigma \rangle$ is isomorphic to D_p . If G is the group of conformal and anticonformal automorphisms of X, then X/G is uniformised by an NEC group Λ such that there is a surface Fuchsian subgroup $\Gamma \leq \Lambda$ uniformising X and the group Λ has one of the following signatures:

(I) $(0, +, [p, \dots, p, qp^{\epsilon}], \{(p, \dots, p)\}), \text{ where } \epsilon = 0 \text{ or } 1 \text{ and } 2r + s = \frac{2g + 2(1-\epsilon)(p-1)}{q(p-1)}, G/\langle \varphi \rangle = C_q \times C_2.$

(II)
$$(0, +, [\widetilde{p, \ldots, p}], \{(qp^{\epsilon_1}, \widetilde{p, \ldots, p}, qp^{\epsilon_2}, \widetilde{p, \ldots, p})\}), \text{ where } \epsilon_i = 0 \text{ or } 1 \text{ and}$$

 $2r + s_1 + s_2 = \frac{2g + (2 - \epsilon_1 - \epsilon_2)(p - 1)}{q(p - 1)}, \quad G/\langle \varphi \rangle = D_q.$

(III) $(0, +, [\overline{p, \ldots, p}, 2p^{\epsilon_1}], \{(qp^{\epsilon_2}, \overline{p, \ldots, p})\}), \text{ where } \epsilon_i = 0 \text{ or } 1 \text{ and } 2r + s = \frac{g + (1 - q\epsilon_1 - \epsilon_2)(p-1)}{q(p-1)}, \quad G/\langle \varphi \rangle = D_q \rtimes C_2.$

(IV)
$$(0, +, [p, \ldots, p], \{(2p^{\epsilon_1}, p, \ldots, p, 2p^{\epsilon_2}, p, \ldots, p, qp^{\epsilon_3}, p, \ldots, p)\}),$$

where $\epsilon_i = 0$ or 1 and $2r + s_1 + s_2 + s_3 = \frac{2g + (2 - q\epsilon_1 - q\epsilon_2 - 2\epsilon_3)(p-1)}{2q(p-1)}.$
 $G/\langle \varphi \rangle = D_q \times C_2.$

$$(V) \ (0, \ +, \ [\overrightarrow{p, \dots, p}], \{(2p^{\epsilon_1}, \ \overrightarrow{p, \dots, p}, 3p^{\epsilon_2}, \ \overrightarrow{p, \dots, p}, 3p^{\epsilon_3}, \ \overrightarrow{p, \dots, p})\}), \\ where \ \epsilon_i \ = \ 0 \ or \ 1 \ and \ 2r + s_1 + s_2 + s_3 \ = \ \frac{g + (1 - 3\epsilon_1 - 2\epsilon_2 - 2\epsilon_3)(p-1)}{6(p-1)}. \\ G/\langle\varphi\rangle \ = \ S_4. \\ (VI) \ (0, \ +, \ [\overrightarrow{p, \dots, p}, 3p^{\epsilon_1}], \{(2p^{\epsilon_2}, \overrightarrow{p, \dots, p})\}), where \ \epsilon_i \ = \ 0 \ or \ 1 \ and \ 2r + s \ = \ \frac{g + (1 - 4\epsilon_1 - 3\epsilon_2)(p-1)}{6(p-1)}. \\ G/\langle\varphi\rangle \ = \ A_4 \ \rtimes C_2. \\ (VII) \ (0, \ +, \ [\overrightarrow{p, \dots, p}], \ \{(2p^{\epsilon_1}, \overrightarrow{p, \dots, p}, 3p^{\epsilon_2}, \ \overrightarrow{p, \dots, p}, 4p^{\epsilon_3}, \ \overrightarrow{p, \dots, p})\}), \\ where \ \epsilon_i \ = \ 0 \ or \ 1 \ and \ 2r + s_1 \ + s_2 \ + s_3 \ = \ \frac{g + (1 - 6\epsilon_1 - 4\epsilon_2 - 3\epsilon_3)(p-1)}{12(p-1)}. \\ G/\langle\varphi\rangle \ = \ S_4 \ \asymp C_2. \\ (VIII) \ (0, \ +, \ [\overrightarrow{p, \dots, p}], \ \{(2p^{\epsilon_1}, \ \overrightarrow{p, \dots, p}, 3p^{\epsilon_2}, \ \overrightarrow{p, \dots, p}, \ 4p^{\epsilon_3}, \ \overrightarrow{p, \dots, p})\}), \\ where \ \epsilon_i \ = \ 0 \ or \ 1 \ and \ 2r \ + \ s_1 \ + \ s_2 \ + \ s_3 \ = \ \frac{g + (1 - 6\epsilon_1 - 4\epsilon_2 - 3\epsilon_3)(p-1)}{12(p-1)}. \\ G/\langle\varphi\rangle \ = \ S_4 \ \asymp C_2. \\ (VIII) \ (0, \ +, \ [\overrightarrow{p, \dots, p}], \ \{(2p^{\epsilon_1}, \ \overrightarrow{p, \dots, p}, \ 3p^{\epsilon_2}, \ \overrightarrow{p, \dots, p}, \ 5p^{\epsilon_3}, \ \overrightarrow{p, \dots, p})\}), \\ where \ \epsilon_i \ = \ 0 \ or \ 1 \ and \ 2r \ + \ s_1 \ + \ s_2 \ + \ s_3 \ = \ \frac{g + (1 - 6\epsilon_1 - 4\epsilon_2 - 3\epsilon_3)(p-1)}{12(p-1)}. \\ (VIII) \ (0, \ +, \ [\overrightarrow{p, \dots, p}], \ \{(2p^{\epsilon_1}, \ \overrightarrow{p, \dots, p}, \ 3p^{\epsilon_2}, \ \overrightarrow{p, \dots, p}, \ 5p^{\epsilon_3}, \ \overrightarrow{p, \dots, p})\}), \\ where \ \epsilon_i \ = \ 0 \ or \ 1 \ and \ 2r \ + \ s_1 \ + \ s_2 \ + \ s_3 \ = \ \frac{g + (1 - 6\epsilon_1 - 4\epsilon_2 - 3\epsilon_3)(p-1)}{12(p-1)}. \\ (VIII) \ (0, \ +, \ [\overrightarrow{p, \dots, p}], \ (1 \ s_1 \ s_2 \ s_3 \ s_3 \ s_3))), \\ (VIII) \ (0, \ +, \ [\overrightarrow{p, \dots, p}], \ (1 \ s_1 \ s_2 \ s_3 \ s_3 \ s_3))), \\ (0, \ +, \ [\overrightarrow{p, \dots, p}], \ (1 \ s_1 \ s_2 \ s_3 \ s_3 \ s_3)))), \\ (0, \ +, \ (1 \ s_1 \ s_2 \ s_3 \ s_3 \ s_3))), \\ (0, \ +, \ (1 \ s_1 \ s_1 \ s_2 \ s_3 \ s_3 \ s_3))), \\ (0, \ +, \ (1 \ s_1 \ s_1 \ s_2 \ s_3 \ s_3 \ s_3 \ s_3 \ s_3 \ s_3 \ s_3))), \\ (0, \ +, \ (1 \ s_1 \ s_2 \ s_3 \ s_3$$

(VIII) $(0, +, [p, \ldots, p], \{(2p^{\epsilon_1}, p, \ldots, p, 3p^{\epsilon_2}, p, \ldots, p, 5p^{\epsilon_3}, p, \ldots, p)\}),$ where $\epsilon_i = 0 \text{ or } 1 \text{ and } 2r + s_1 + s_2 + s_3 = \frac{g + (1 - 15\epsilon_1 - 10\epsilon_2 - 6\epsilon_3)(p-1)}{30(p-1)}.$ $G/\langle \varphi \rangle = A_5 \times C_2.$

Notice that in cases (VII) and (VIII) the factor group C_2 of $G/\langle \varphi \rangle$ is generated by the antipodal map.

Proof. Consider the chain of coverings $X = \mathcal{H}/\Gamma \to X/\langle \varphi \rangle = \mathcal{H}/\Delta^+ \to X/G = \mathcal{H}/\Lambda$ with uniformising groups $\Gamma \leq \Delta^+ \leq \Lambda$, where $s(\Delta^+) = \rho$ $(0, +, [\overline{p, \dots, p}], \{\})$ and $s(\Lambda) = (h, \pm, [m_1, \dots, m_r], \{(n_{11}, \dots, n_{1s_1}), \dots, (n_{k_1}, \dots, n_{ks_k})\})$. Furthermore by Lemma 2.1 in [1] the group $\langle \varphi \rangle$ is a normal subgroup of G. By Theorem 1 the factor group $\overline{G} = G/\langle \varphi \rangle$ is a finite group of conformal and anticonformal automorphisms of the Riemann sphere. (See also [12].)

In other words, we have an epimorphism $\theta : \Lambda \to \overline{G}$ with $\operatorname{Ker} \theta = \Delta^+$. This yields the signature of the group Λ in terms of the signature of Δ^+ and the group \overline{G} . Let p_i and q_{ij} be the orders in \overline{G} of $\theta(x_i)$ and $\theta(c_{ij-1}c_{ij})$ respectively, where x_i , c_{ij} are generators in the canonical presentation of Λ associated to the signature (2.1). By [3] and [5] each proper period m_i induces $\frac{|\overline{G}|}{p_i}$ proper periods $\frac{m_i}{p_i}$ in $s(\Delta^+)$. Each link-period n_{ij} induces $\frac{|\overline{G}|}{2q_{ij}}$ proper periods $\frac{n_{ij}}{q_{ij}}$ in $s(\Delta^+)$. But $\frac{m_i}{p_i} = p$ or $\frac{m_i}{p_i} = 1$ and $\frac{n_{ij}}{q_{ij}} = p$ or $\frac{n_{ij}}{q_{ij}} = 1$, since Δ^+ is the group of the Riemann sphere with conic points of prime order p. We denote $K_1 = \{i \mid |\frac{m_i}{p_i} = 1\}, K_p = \{i \mid |\frac{m_i}{p_i} = p\}, H_1 = \{(i,j) \mid |\frac{n_{ij}}{q_{ij}} = 1\}$ and $H_p = \{(i,j) \mid |\frac{n_{ij}}{q_{ij}} = p\}$. Thus $\rho = \sum_{i \in K_p} \frac{|\overline{G}|}{p_i} + \sum_{(i,j) \in H_p} \frac{|\overline{G}|}{2q_{ij}}$ Using the Riemann-Hurwitz formula $|\overline{G}| = \mu(\Delta^+)/\mu(\Lambda)$ we obtain

$$(2.6) \qquad -2 + \left(\sum_{i \in K_p} \frac{|\overline{G}|}{p_i} + \sum_{(i,j) \in H_p} \frac{|\overline{G}|}{2q_{ij}}\right) \frac{(p-1)}{p} \\ = |\overline{G}|(\alpha h - 2 + k) + \sum_{i \in K_p} |\overline{G}| \left(1 - \frac{1}{pp_i}\right) + \sum_{i \in K_1} |\overline{G}| \left(1 - \frac{1}{p_i}\right) \\ + \sum_{(i,j) \in H_p} \frac{|\overline{G}|}{2} \left(1 - \frac{1}{pq_{ij}}\right) + \sum_{(i,j) \in H_1} \frac{|\overline{G}|}{2} \left(1 - \frac{1}{q_{ij}}\right),$$

therefore h = 0, k = 1, $s(\Lambda) = (0, +, [pp_1, \dots, pp_r], \{(pq_1, \dots, pq_s)\})$, where $p_i, q_j \in \{1, p\}$. By setting K_1, K_p, H_1 and H_p in Equation (2.6) we obtain that p_i, q_j satisfy the equation

(2.7)
$$|\overline{G}| - 2 = \sum_{1}^{r} |\overline{G}| \left(1 - \frac{1}{p_i}\right) + \sum_{1}^{s} \frac{|\overline{G}|}{2} \left(1 - \frac{1}{q_j}\right).$$

To find $s(\Lambda)$ it is enough to find the nontrivial solutions of (2.7). We divide the study of (2.7) in eight cases according to the factor group \overline{G} in the epimorphism $\theta : \Lambda \to \overline{G}$ with Ker $(\theta) = \Delta^+$:

(I) $\overline{G} = C_q \times C_2$, where $C_2 = \langle \overline{\sigma} \rangle$. The solution of Equation (2.7) is $p_1 = q$. Applying Riemann-Hurwitz formula to the covering $X \to X/G$ we obtain the signature $(0, +, [\overline{p, \dots, p}, qp^{\epsilon}], \{(\overline{p, \dots, p})\})$, where $\epsilon = 0$ or 1 and $2r + s = \frac{2g + 2(1-\epsilon)(p-1)}{q(p-1)}$.

(II) $\overline{G} = D_q$. The solution of (2.7) is $q_{j_1} = q_{j_2} = q$. Therefore $s(\Lambda) = (0, +, [\overline{p, \dots, p}], \{(qp^{\epsilon_1}, \overline{p, \dots, p}, qp^{\epsilon_2}, \overline{p, \dots, p})\})$, where $\epsilon_i = 0$ or 1 and $2r + s_1 + s_2 = \frac{2g + (2 - \epsilon_1 - \epsilon_2)(p - 1)}{q(p - 1)}$.

(III) $\overline{G} = D_q \rtimes C_2$. The solution of (2.7) is $p_1 = 2$, and $q_1 = q$. Thus $s(\Lambda)$ becomes $(0, +, [\overrightarrow{p, \dots, p}, 2p^{\epsilon_1}], \{(qp^{\epsilon_2}, \overrightarrow{p, \dots, p})\})$, where $\epsilon_i = 0$ or 1 and $2r + s = \frac{g + (1 - q\epsilon_1 - \epsilon_2)(p-1)}{q(p-1)}$.

(IV) $\overline{G} = D_q \times C_2$. The solution in this case is $q_{j_1} = q_{j_2} = 2$ and $q_{j_3} = q$. This yields $s(\Lambda) = (0, +, [\overline{p, \dots, p}], \{(2p^{\epsilon_1}, \overline{p, \dots, p}, 2p^{\epsilon_2}, \overline{p, \dots, p}, qp^{\epsilon_3}, \overline{p, \dots, p})\})$, where $\epsilon_i = 0$ or 1 and $2r + s_1 + s_2 + s_3 = \frac{2g + (2 - q\epsilon_1 - q\epsilon_2 - 2\epsilon_3)(p-1)}{2q(p-1)}$.

$$\begin{array}{l} (\mathbf{V}) \ \overline{G} = S_4. \ \text{The solution of } (2.7) \ \text{is } q_{j_1} = 2, \ q_{j_2} = q_{j_3} = 3. \ \text{Then } s(\Lambda) = \\ (0,+,[\overrightarrow{p,\ldots,p}],\{(2p^{\epsilon_1},\overrightarrow{p,\ldots,p},3p^{\epsilon_2},\overrightarrow{p,\ldots,p},3p^{\epsilon_3},\overrightarrow{p,\ldots,p})\}), \ \text{where } \epsilon_i = 0 \\ \text{or } 1 \ \text{and } 2r + s_1 + s_2 + s_3 = \frac{g+(1-3\epsilon_1-2\epsilon_2-2\epsilon_3)(p-1)}{6(p-1)}. \end{array} \\ (\mathbf{VI}) \ \overline{G} = A_4 \rtimes C_2. \ \text{The solution of } (2.7) \ \text{is } p_1 = 3, \ \text{and } q_1 = 2. \ \text{Thus } s(\Lambda) \\ \text{becomes } (0,+,[\overrightarrow{p,\ldots,p},3p^{\epsilon_1}],\{(2p^{\epsilon_2},\overrightarrow{p,\ldots,p})\}), \ \text{where } \epsilon_i = 0 \ \text{or } 1 \ \text{and } 2r + s = \frac{g+(1-4\epsilon_1-3\epsilon_2)(p-1)}{6(p-1)}. \end{aligned} \\ (\mathbf{VII}) \ \overline{G} = S_4 \times C_2. \ \text{The solution in this case is } q_{j_1} = 2, \ q_{j_2} = 3 \ \text{and } q_{j_3} = 4. \\ \text{This yields } s(\Lambda) = (0, +, [\overrightarrow{p,\ldots,p}], \{(2p^{\epsilon_1}, \overrightarrow{p,\ldots,p}, 3p^{\epsilon_2}, \overrightarrow{p,\ldots,p}, 3p^{\epsilon_2}, \overrightarrow{p,\ldots,p}, 4p^{\epsilon_3}, \overrightarrow{p,\ldots,p})\}), \ \text{where } \epsilon_i = 0 \ \text{or } 1 \ \text{and } 2r + s_1 + s_2 + s_3 = \frac{g+(1-6\epsilon_1-4\epsilon_2-3\epsilon_3)(p-1)}{12(p-1)}. \end{aligned}$$

$$(\mathbf{VII}) \ \overline{G} = A_5 \times C_2. \ \text{The solution now is } q_{j_1} = 2, \ q_{j_2} = 3 \ \text{and } q_{j_3} = 5. \ \text{This yields } s(\Lambda) = (0, +, [\overrightarrow{p,\ldots,p}], \{(2p^{\epsilon_1}, \overrightarrow{p,\ldots,p}, 3p^{\epsilon_2}, \overrightarrow{p,\ldots,p}, 5p^{\epsilon_3}, \overrightarrow{p,\ldots,p})\}), \ \text{where } \epsilon_i = 0 \ \text{or } 1 \ \text{and } 2r + s_1 + s_2 + s_3 = \frac{g+(1-6\epsilon_1-4\epsilon_2-3\epsilon_3)(p-1)}{12(p-1)}. \end{aligned}$$

3. Species of symmetries of real cyclic *p*-gonal Riemann surfaces.

Let X be a real cyclic p-gonal Riemann surface X with real equation. In the next theorem we study the topological types of the possible real forms of X.

Theorem 3. Let X be a real cyclic p-gonal Riemann surface with p-gonal automorphism φ admitting a symmetry σ with fixed points and such that $\langle \sigma, \varphi \rangle = D_p$, p prime. If τ is another symmetry of X, then possible species of τ are (and all cases occur):

- (1) $s(\Lambda)$ as in (I).
 - a) $q \equiv 1 \mod (2)$. $\Sigma_{\sigma} = \Sigma_{\tau}$. If $r + \epsilon > 0$, then $\Sigma_{\sigma} = -1$. If $r + \epsilon = 0$, then $\Sigma_{\sigma} \in \{-1, +1\}$.
 - b) $q \equiv 0 \mod (2)$. $\Sigma_{\tau} = \Sigma_{\sigma}$ as in case (1a) or $\Sigma_{\tau} = 0$.
- (2) $s(\Lambda)$ as in (II).
 - a) $q \equiv 1 \mod (2)$. $\Sigma_{\sigma} = \Sigma_{\tau} \text{ and } \Sigma_{\sigma} = -1$.
 - b) $q \equiv 0 \mod (2), q \neq 2$. $\Sigma_{\sigma} = -1$ and $\Sigma_{\tau} = -1$ or $\Sigma_{\tau} = +p, +1$.
- (3) $s(\Lambda)$ as in (III). $\Sigma_{\tau} = 0$ or $\Sigma_{\sigma} = \Sigma_{\tau}$, besides $\Sigma_{\sigma} = -1$.
- (4) $s(\Lambda)$ as in (IV).
 - a) $q \equiv 1 \mod (2)$. $\{\Sigma_{\sigma}, \Sigma_{\tau}\} \subset \{\Sigma_1, \Sigma_2\}$, where $\Sigma_1 \in \{-1, +1, +p\}$. $\Sigma_2 \in \{-1, +1, +p\}$. In both cases $\Sigma_{\sigma} \neq +p$ and $\Sigma_{\sigma} \neq +1$ if σ is of the first type.

b) $q \equiv 0 \mod (2), q \neq 2$. $\{\Sigma_{\sigma}, \Sigma_{\tau}\} \subset \{\Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4\}, where \Sigma_4 = 0, and \Sigma_2 \in \{-1, +1, +p\} and \Sigma_1, \Sigma_3 \in \{-1, +1, +p\}.$ In all cases $\Sigma_{\sigma} \neq +p$ and $\Sigma_{\sigma} = +1$ if σ is of the second type. q = 2. $\{\Sigma_{\sigma}, \Sigma_{\tau}\} \subset \{\Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4\}, where \Sigma_4 = 0, and \Sigma_i \in \{-1, +1, +p\} for 1 \leq i \leq 3$. In all cases $\Sigma_{\sigma} \neq +p$. (5) $s(\Lambda)$ as in (V). $\Sigma_{\tau} = 0$ or $\Sigma_{\sigma} = \Sigma_{\tau}, with \Sigma_{\sigma} = -1$. (6) $s(\Lambda)$ as in (VI). $\Sigma_{\tau} = 0$ or $\Sigma_{\sigma} = \Sigma_{\tau}, with \Sigma_{\sigma} = -1$. (7) $s(\Lambda)$ as in (VII). $\{\Sigma_{\sigma}, \Sigma_{\tau}\} \subset \{\Sigma_1, \Sigma_2, 0\}.$ $\Sigma_1 \in \{-1, +1, +p\}$ and $\Sigma_2 \in \{-1, +1, +p\}, but \Sigma_{\sigma} = -1$. (8) $s(\Lambda)$ as in (VIII). $\Sigma_{\tau} = 0$ or $\Sigma_{\sigma} = \Sigma_{\tau}, with \Sigma_{\sigma} = -1$.

Proof. Consider the following chain of epimorphisms: $\theta : \Lambda \xrightarrow{\theta} G \xrightarrow{\phi} \overline{G}$. The symmetries of X are symmetries τ in G which are lifts of symmetries $\overline{\tau}$ in \overline{G} . The species of τ is given by the conjugacy classes of reflections in $\overline{\Lambda} = \overline{\theta}^{-1} \langle \varphi, \tau \rangle = \overline{\theta}^{-1} \langle \overline{\tau} \rangle = \theta^{-1} \langle \overline{\tau} \rangle$ and the orientability of $\mathcal{H}/\overline{\Lambda}$. Notice that $\langle \varphi, \tau \rangle$ is either a cyclic group C_{2p} or a dihedral group D_p of order 2p.

As in Theorem 2 we divide the proof in eight cases corresponding to the different types of groups \overline{G} of conformal and anticonformal automorphisms of the Riemann sphere. The signature of Λ in each case is given by the corresponding case in Theorem 2.

(1a) $\overline{G} = C_q \times C_2, q \equiv 1 \mod (2)$. In this case \overline{G} contains just one conjugacy class of symmetries and so does G: The one represented by σ . Moreover $D_p = \langle \varphi, \sigma \rangle$ is a normal subgroup of index q in G. By [5] the signature of $\overline{\theta}^{-1}(\langle \varphi, \sigma \rangle)$ is $(0, +, [\overline{p, \dots, p}], \{(\overline{p, \dots, p})\})$. By [14] (see also [4]) $\Sigma_{\sigma} = \pm 1$ as $D_p = \langle \varphi, \sigma \rangle$. The sign + can only occur if $\overline{\theta}^{-1}(\langle \varphi, \sigma \rangle)$ has no proper periods, i.e., $r + \epsilon = 0$. If s = 0, then $r + \epsilon > 0$, the possible species is -1.

(1b) $\overline{G} = C_q \times C_2 = \langle \hat{\rho}, \overline{\sigma} | \hat{\rho}^q, \overline{\sigma}^2, \hat{\rho}^{-1} \overline{\sigma} \hat{\rho} \overline{\sigma} \rangle$, with $q \equiv 0 \mod (2)$. In this case \overline{G} contains two conjugacy classes of symmetries, with representatives namely $\overline{\sigma}$ and $\hat{\rho}^{q/2} \overline{\sigma} = \overline{\tau}$, and so does G. To find the species of the symmetries we have to consider the normal subgroups $\overline{\theta}^{-1}(\langle \varphi, \sigma \rangle)$ and $\overline{\theta}^{-1}(\langle \varphi, \tau \rangle)$ of Λ with factor group C_q . By [5] they have signatures $(0, +, [\overline{p, \dots, p}], \{(\overline{p, \dots, p})\})$ and $(0, +, [\overline{p, \dots, p}], \{-\})$ respectively. So species Σ_{σ} is as in (1a) and $\Sigma_{\tau} = 0$.

(2a) $\overline{G} = D_q = \langle \hat{\rho}, \overline{\sigma} | \hat{\rho}^q, \overline{\sigma}^2, (\hat{\rho}\overline{\sigma})2 \rangle$, with $q \equiv 1 \mod (2)$. The group \overline{G} contains one conjugacy class of symmetries and so does G. By the epimorphism $\theta : \Lambda \to D_q$ the images of reflections in Λ leave one fixed coset in D_q , so

 $rq + s_1 \frac{q-1}{2} + s_2 \frac{q-1}{2}$ $s_1 + s_2 + \epsilon_1 + \epsilon_2$ we get that $\overline{\Lambda}_{\sigma}$ has signature $(0, +, [\overbrace{p, \dots, p}], \{(\overbrace{p, \dots, p}])\})$. Now, $s_1 + s_2 + r > 0$ since Λ is a NEC group, then $\Sigma_{\sigma} = -1$ by [4] and [14].

(2b) $\overline{G} = D_q = \langle \hat{\rho}, \overline{\sigma} | \hat{\rho}^q, \overline{\sigma}^2, (\hat{\rho}\overline{\sigma})^2 \rangle$, with $q \equiv 0 \mod (2)$. The group \overline{G} (and the group G) contains two conjugacy classes of symmetries, with representatives namely $\overline{\sigma}$ and $\hat{\rho}\overline{\sigma} = \overline{\tau}$. To find Σ_{σ} and Σ_{τ} we have to study the images of reflections by an epimorphism $\theta : \Lambda \to D_q$. Each of these images leaves either 2 $\overline{\sigma}$ -cosets fixed and none from $\overline{\tau}$ or the other way round. $rq + s_1 \frac{q-2}{2} + s_2 \frac{q}{2}$

 $\epsilon_1 + 2s_1 + \epsilon_2$ Thus the signatures of $\overline{\Lambda}_{\sigma}$ and $\overline{\Lambda}_{\tau}$ are $(0, +, [\overline{p, \ldots, p}], \{(\overline{p, \ldots, p})\})$ and

 $(0,+,[\overbrace{p,\ldots,p}^{rq+s_1\frac{q}{2}+s_2\frac{q-2}{2}}],\{(\overbrace{p,\ldots,p}^{\epsilon_1+2s_2+\epsilon_2})\})$. Now σ has 1 oval and does not separate because $\overline{\theta}^{-1}(\langle \varphi, \sigma \rangle)$ contains proper periods since $s_1 + s_2 + r > 0$ and q > 2. If $\epsilon_1 + s_2 + \epsilon_2 > 0$, then $\langle \varphi, \tau \rangle = D_p$ and as before $\Sigma_\tau = -1$. If $\epsilon_1 + s_2 + \epsilon_2 = 0$ $(2r+s_1)\frac{q}{2}$ the signature of $\overline{\theta}^{-1}(\langle \varphi, \tau \rangle)$ becomes $(0, +, [\overline{p, \ldots, p}], \{(-)\})$. Thus $\Sigma_{\tau} = -1$, if $\langle \varphi, \tau \rangle = D_p$, and $\Sigma_{\tau} = +p, +1$ if $\langle \varphi, \tau \rangle = C_{2p}$.

(3) $\overline{G} = D_q \rtimes C_2 = \langle \overline{\rho}, \overline{\sigma_1}, \overline{\sigma_2} | \overline{\rho}^2, \overline{\sigma_1}^2, \overline{\sigma_2}^2, (\overline{\sigma_1 \sigma_2})^q, \overline{\rho \sigma_1 \rho \sigma_2} \rangle$. The group \overline{G} (and G) contains two conjugacy classes of symmetries, with representatives namely $\overline{\sigma} = \overline{\sigma}_1$ and $\overline{\rho\sigma} = \overline{\tau}$. The images of reflections in Λ are all mapped to conjugate reflections in \overline{G} . They are conjugate to $\overline{\sigma}$ as we know that σ has fixed points. Thus $\Sigma_{\tau} = 0$. On the other hand $\overline{\Lambda}_{\sigma}$ has always proper periods. Therefore $\Sigma_{\sigma} = -1$.

(4) $\overline{G} = D_a \times C_2 = \langle \overline{\sigma_1}, \overline{\sigma_2}, \overline{\sigma_3} | \overline{\sigma_i}^2, (\overline{\sigma_1 \sigma_2}) 2, (\overline{\sigma_2 \sigma_3}) 2, (\overline{\sigma_3 \sigma_1})^q \rangle$, with $\overline{\sigma_2}$ central in \overline{G} . First of all the group $\langle \varphi, \sigma_2 \rangle$ is a normal subgroup of G with factor group $D_q = \langle \overline{\sigma}_1, \overline{\sigma}_3 \rangle$.

(4a) $q \equiv 1 \mod (2)$. In this case G has two conjugacy classes of reflections with representatives with images $\overline{\sigma}_1$ and $\overline{\sigma}_2$. Then there are two possible species for a symmetry of X: $\Sigma_{\sigma_1}, \Sigma_{\sigma_2}$. The possible signatures for $\overline{\theta}^{-1}(\langle \varphi, \sigma_i \rangle)$ are given by the epimorphism $\Lambda \xrightarrow{\hat{\theta}} D_q$. By this epimorphism the images of c_0 and c_{s_1+i} , for $i \geq 2$, are conjugated to $\overline{\sigma_1}$ and the image of c_1, \ldots, c_{s_1+1} is the identity (representing the central symmetry). Therefore c_0, c_1, c_{s+1} and c_{s+2} fixes $q \langle \overline{\sigma_2} \rangle$ -cosets and one $\langle \overline{\sigma_1} \rangle$ -coset each, each c_1, \ldots, c_{s_1+1} fixes $2q \langle \overline{\sigma_2} \rangle$ -cosets (and none $\langle \overline{\sigma_1} \rangle$ -coset), and finally each $c_{s_1+i}, i \geq 2$ fixes two $\langle \overline{\sigma_1} \rangle$ -cosets (and none $\langle \overline{\sigma_1} \rangle$ -coset) in \overline{G} . Thus $\overline{\Lambda_1}$ and $\overline{\Lambda_2}$ have signatures

$$\begin{array}{c} 2rq + qs_1 + (q-1)(s_2 + s_3) + \frac{q-1}{2}(\epsilon_1 + \epsilon_2) & \epsilon_2 + 2s_2 + 2\epsilon_3 + \epsilon_1 + 2s_3 \\ (0, +, [\overbrace{p, \dots, p}^{2rq + qs_2 + \epsilon_3 + qs_3} q\epsilon_1 + 2qs_1 + q\epsilon_2 \\ (0, +, [\overbrace{p, \dots, p}^{2rq + qs_2 + \epsilon_3 + qs_3}], \{(\overbrace{p, \dots, p}^{q\epsilon_1 + 2qs_1 + q\epsilon_2})\}) & \text{and} \\ \end{array}$$

Altogether we have that Σ_1 is -1 if $s_2 + s_3 + \epsilon_1 + \epsilon_2 + \epsilon_3 > 0$, and Σ_1 is +p, +1 if $s_2 + s_3 + \epsilon_1 + \epsilon_2 + \epsilon_3 = 0$ and $\langle \varphi, \sigma_1 \rangle$ is C_{2p} . On the other hand Σ_2 is -1 if $s_1 + \epsilon_1 + \epsilon_2 > 0$ and and $r + s_2 + s_3 + \epsilon_3 > 0$, Σ_2 is +1 if $s_1 + \epsilon_1 + \epsilon_2 > 0$ and $r = s_2 = s_3 = \epsilon_3 = 0$, and finally Σ_2 is +p, +1 if $s_1 + \epsilon_1 + \epsilon_2 = 0$ and $\langle \varphi, \sigma_2 \rangle = C_{2p}$. In both cases $\Sigma_{\sigma} \neq +p$ since $\langle \varphi, \sigma \rangle = D_p$ and if σ is conjugate to σ_1 then again $\Sigma_{\sigma} \neq +1$. No further restrictions exist.

(4b) $q \equiv 0 \mod (2)$. In this case G has four conjugacy classes of reflections with representatives with homomorphic images $\overline{\sigma}_1, \overline{\sigma}_2, \overline{\sigma}_3$ and $(\overline{\sigma}_3\overline{\sigma})^{q/2}\overline{\sigma}_2 = \overline{\sigma}_4$. Then there are four possible species for a symmetry of X: $\Sigma_i, 1 \leq i \leq 4$. The species are also given by the epimorphism $\Lambda \xrightarrow{\hat{\theta}} D_q$. By this epimorphism the images of c_0 and $c_{s_1+s_2+i}$, for $i \geq 3$, are conjugated to $\overline{\sigma}_1$, the image of c_1, \ldots, c_{s_1+1} is the identity (representing the central symmetry), and the images of c_{s_1+i} , for $2 \leq i \leq s_2 + 2$, are conjugate to $\overline{\sigma}_3$. First of all $\Sigma_4 = 0$ since no images of reflections by $\hat{\theta}$ are conjugate to $\overline{\sigma}_4$.

If q = 2, then all the 3 symmetries are central and, as in (4a) the possible species for them are -1, +1 and +p.

If $q \neq 2$ then with the same procedure as in (4a) we get the following signatures for $\overline{\Lambda_1}$, $\overline{\Lambda_2}$ and $\overline{\Lambda_3}$:

$$\begin{array}{c} 2rq+q(s_{1}+s_{2})+\frac{q-2}{2}s_{3}+\frac{q-2}{2}\epsilon_{1}+\frac{q}{2}\epsilon_{2} & 2\epsilon_{3}+2\epsilon_{1}+4s_{3}\\ (0,+,[\overbrace{p,\ldots,p}^{2rq+qs_{2}+\epsilon_{3}+qs_{3}} q\epsilon_{1}+2qs_{1}+q\epsilon_{2} \\ (0,+,[\overbrace{p,\ldots,p}^{2rq+q(s_{1}+s_{3})+\frac{q-2}{2}}s_{2}+\frac{q-2}{2}\epsilon_{2}+\frac{q}{2}\epsilon_{1} & 2\epsilon_{3}+2\epsilon_{2}+4s_{2} \\ (0,+,[\overbrace{p,\ldots,p}^{2rq+q(s_{1}+s_{3})+\frac{q-2}{2}}s_{2}+\frac{q-2}{2}\epsilon_{2}+\frac{q}{2}\epsilon_{1} & 2\epsilon_{3}+2\epsilon_{2}+4s_{2} \\ (0,+,[\overbrace{p,\ldots,p}^{2rq+q(s_{1}+s_{3})+\frac{q-2}{2}}s_{2}+\frac{q-2}{2}\epsilon_{2}+\frac{q}{2}\epsilon_{1} & 2\epsilon_{3}+2\epsilon_{2}+4s_{2} \\ (0,+,[\overbrace{p,\ldots,p}^{2rq+q(s_{1}+s_{3})+\frac{q-2}{2}}s_{2}+\frac{q-2}{2}\epsilon_{2}+\frac{q}{2}\epsilon_{1} & 2\epsilon_{3}+2\epsilon_{4}+4s_{3} \\ (0,+,[\overbrace{p,\ldots,p}^{2rq+q(s_{1}+s_{3})+\frac{q-2}{2}}s_{2}+\frac{q-2}{2}\epsilon_{2}+\frac{q}{2}\epsilon_{1} & 2\epsilon_{3}+2\epsilon_{4}+4s_{3} \\ (0,+,[\overbrace{p,\ldots,p}^{2rq+q(s_{1}+s_{3})+\frac{q-2}{2}}s_{2}+\frac{q-2}{2}\epsilon_{2}+\frac{q}{2}\epsilon_{1} & 2\epsilon_{3}+2\epsilon_{4}+4s_{3} \\ (0,+,[\overbrace{p,\ldots,p}^{2rq+q(s_{1}+s_{3})+\frac{q-2}{2}}s_{2}+\frac{q-2}{2}\epsilon_{2}+\frac{q}{2}\epsilon_{1} & 2\epsilon_{3}+2\epsilon_{4}+4s_{4} \\ (0,+,[\overbrace{p,\ldots,p}^{2rq+q(s_{1}+s_{3})+\frac{q-2}{2}}s_{2}+\frac{q-2}{2}\epsilon_{2}+\frac{q}{2}\epsilon_{1} & 2\epsilon_{3}+2\epsilon_{4}+4s_{4} \\ (0,+,[\overbrace{p,\ldots,p}^{2rq+q(s_{1}+s_{3})+\frac{q-2}{2}}s_{2}+\frac{q-2}{2}\epsilon_{2}+\frac{q}{2}\epsilon_{1} & 2\epsilon_{3}+2\epsilon_{4}+4s_{4} \\ (0,+,[\overbrace{p,\ldots,p}^{2rq+q(s_{1}+s_{3})+\frac{q-2}{2}}s_{2}+\frac{q-2}{2}\epsilon_{2}+\frac{q}{2}\epsilon_{1} & 2\epsilon_{3}+2\epsilon_{4}+4s_{4} \\ (0,+,[\overbrace{p,\ldots,p}^{2rq+q(s_{1}+s_{3})+\frac{q-2}{2}}s_{2}+\frac{q-2}{2}\epsilon_{2}+\frac{q-2}{2}\epsilon_{2}+\frac{q}{2}\epsilon_{1} & 2\epsilon_{3}+2\epsilon_{4}+4s_{4} \\ (0,+,[\overbrace{p,\ldots,p}^{2rq+q(s_{1}+s_{3})+\frac{q-2}{2}}s_{2}+\frac{q-2}{2}\epsilon_{2}+\frac{q-2}{2}\epsilon_{2}+\frac{q-2}{2}\epsilon_{4}+\frac{q$$

Both Λ_1 and Λ_3 must have proper periods because otherwise all parameters in the signature of Λ except ϵ_3 are 0 and then Λ is a spherical group. Therefore Σ_1 is -1 if $s_3 + \epsilon_1 + \epsilon_3 > 0$, Σ_1 is +p, +1 if $s_3 + \epsilon_1 + \epsilon_3 = 0$ and $\langle \varphi, \sigma_1 \rangle = C_{2p}$. Σ_2 is -1 if $s_1 + \epsilon_1 + \epsilon_2 > 0$ and $r + s_2 + s_3 + \epsilon_3 > 0$, Σ_2 is +1 if $s_1 + \epsilon_1 + \epsilon_2 > 0$ and $r = s_2 = s_3 = \epsilon_3 = 0$, and finally Σ_2 is +p, +1 if $s_1 + \epsilon_1 + \epsilon_2 = 0$ and $\langle \varphi, \sigma_2 \rangle = C_{2p}$. Finally Σ_3 is -1 if $s_2 + \epsilon_2 + \epsilon_3 > 0$, Σ_3 is +p, +1 if $s_2 + \epsilon_2 + \epsilon_3 = 0$ and $\langle \varphi, \sigma_3 \rangle = C_{2p}$. In all cases $\Sigma_{\sigma} \neq +p$ since $\langle \varphi, \sigma \rangle = D_p$. Again $\Sigma_{\sigma} \neq +1$ if σ is conjugate to σ_1 or σ_3 . No further restrictions exist. (5) and (8) $\overline{G} = \langle \overline{\sigma_1}, \overline{\sigma_2}, \overline{\sigma_3} | \overline{\sigma_i}^2, (\overline{\sigma_1 \sigma_2})^2, (\overline{\sigma_2 \sigma_3})^3, (\overline{\sigma_3 \sigma_1})^q \rangle$, where q = 3 in (5) and q = 5 in (8). \overline{G} , and thus G, contains two conjugacy classes of symmetries, with representatives namely $\overline{\sigma} = \overline{\sigma_1}$ and $\overline{\tau}$, with $\overline{\tau}$ conjugated to the antipodal map. Then $\Sigma_{\sigma} = \Sigma_{\sigma_1}$ and $\Sigma_{\tau} = 0$. As in case (2a), by [10] and [14], given the epimorphism $\overline{\theta}$, all the generating reflections of Λ induce reflections in $\overline{\theta}^{-1}(\langle \sigma_1 \rangle)$. So $\Sigma_{\sigma} = -1$ as they induce also proper periods.

(6) $\overline{G} = A_4 \rtimes C_2 = \langle \overline{\rho}, \overline{\sigma_1}, \overline{\sigma_2} | \overline{\rho}^3, \overline{\sigma_1}^2, \overline{\sigma_2}^2, (\overline{\sigma_1 \sigma_2})^2, \overline{\rho \sigma_1 \rho \sigma_2} \rangle$, where C_2 is generated by the antipodal map. With the same arguments as in (3) we obtain that G has two types of symmetries with representatives σ and τ where $\Sigma_{\tau} = 0$ and $\Sigma_{\sigma} = -1$.

(7) $\overline{G} = \langle \overline{\sigma_1}, \overline{\sigma_2}, \overline{\sigma_3} | \overline{\sigma_i}^2, (\overline{\sigma_1 \sigma_2})^2, (\overline{\sigma_2 \sigma_3})^3, (\overline{\sigma_3 \sigma_1}) 4 \rangle = S_4 \times C_2$. This case is as case (4b) where the central symmetry is conjugated to the antipodal map and $\overline{\sigma_1}$ is conjugated to $\overline{\sigma_2}$. There are 3 conjugacy classes of symmetries with species 0, $\Sigma_1 = \Sigma_{\sigma_3}$ and $\Sigma_2 = \Sigma_{\sigma_2}$. Now Σ_1 is -1 if $s_3 + \epsilon_1 + \epsilon_3 > 0$, Σ_1 is +p, +1 if $s_3 + \epsilon_1 + \epsilon_3 = 0$ and $\langle \varphi, \sigma_3 \rangle$ is C_{2p} . On the other hand Σ_2 is -1 if $s_1 + s_2 + \epsilon_1 + \epsilon_2 + \epsilon_3 > 0$, Σ_2 is +p if $s_1 + s_2 + \epsilon_1 + \epsilon_2 + \epsilon_3 = 0$ and $\langle \varphi, \sigma_2 \rangle = C_{2p}$. $\Sigma_{\sigma} \neq +p, +1, 0$ since $\langle \varphi, \sigma \rangle = D_p$ and σ has fixed points.

To finish we show the existence of surfaces with the desired symmetries by listing appropriate groups G and epimorphisms θ . The *p*-gonal surfaces with the desired symmetries will be uniformised by the groups Ker (θ). We distinguish the same eight cases as in Theorem 2.

(1) Let $G = \langle \varphi, \rho, \sigma | \varphi^t, \rho^q, \sigma^2, (\varphi\sigma)^2, (\varphi\rho)^{pq}, \rho^{-1}\sigma\rho\sigma \rangle$ and let $\theta : \Lambda \to G$ be defined by $\theta(x_i) = \varphi^{v_i}, 1 \leq i \leq r, \ \theta(x_{r+1}) = \rho\varphi^{\epsilon+v_{r+1}}, \ \theta(c_{2j-1}) = \sigma, \ \theta(c_{2j}) = \varphi\sigma, \ \theta(e) = \rho^{-1}\varphi^l$, where $j_1 + \cdots + j_r + \epsilon + v_{r+1} + l \equiv 0 \mod p$.

(2) Let $G = \langle \varphi, \tau, \sigma | \varphi^p, \sigma^2, \tau^2, (\varphi\sigma)^2, (\sigma\tau)^q, (\varphi\tau)^2 \rangle$. Let $\theta : \Lambda \to G$ be defined by $\theta(x_i) = \varphi^{v_i}, 1 \leq i \leq r, \ \theta(c_0) = \tau, \ \theta(c_j) = \sigma\varphi^{u_j}$ for $1 \leq j \leq s_1 + 1$, where $u_1 = \epsilon_1$ and $u_j = 1 - u_{j-1}, \ \theta(c_j) = \tau\varphi^{u_j}$, with $s_1 + 2 \leq j \leq s_1 + s_2 + 2$ where $u_{s_1+2} = \epsilon_2 + 1 - u_{s_1+1}$ and $u_j = 1 - u_{j-1}, \ \theta(e) = \varphi^l$, where $v_1 + \cdots + v_r + l \equiv 0 \mod p$.

To obtain the species $\Sigma_{\tau} = +p, +1$ we consider groups G with presentation $G = \langle \varphi, \tau, \sigma | \varphi^p, \sigma^2, \tau^2, (\varphi \sigma)^2, (\sigma \tau)^q, \varphi^{-1} \tau \varphi \tau \rangle.$

(3) Let $G = \langle \varphi, \rho, \tau, \sigma | \varphi^p, \rho^2, \tau^2, \sigma^2, \rho \sigma \rho \tau, (\varphi \rho)^2 (\varphi \sigma)^2, (\sigma \tau)^q, (\varphi \tau)^2 \rangle$. Let $\theta : \Lambda \to G$ be defined by $\theta(x_i) = \varphi^{v_i}, 1 \leq i \leq r, \ \theta(x_{r+1}) = \rho \varphi^{\epsilon_1 + v_{r+1}}, \\ \theta(c_0) = \tau, \ \theta(c_j) = \sigma \varphi^{u_j} \text{ for } 1 \leq j \leq s_1 + 1, \text{ where } u_1 = \epsilon_1 \text{ and } u_j = 1 - u_{j-1}, \\ \theta(e) = \rho \varphi^l, \text{ where } v_1 + \dots + v_{r+1} + \epsilon_1 + l \equiv 0 \mod p.$

(4) $G = \langle \varphi, \sigma_1, \sigma_2, \sigma_3 | \sigma_i^2, (\sigma_1 \sigma_2)^2, (\sigma_2 \sigma_3)^2, (\sigma_3 \sigma_1)^q, \varphi^p, (\varphi \sigma_i)^2 \rangle$. Let $\theta : \Lambda \to G$ be defined by $\theta(x_i) = \varphi^{v_i}, 1 \le i \le r, \theta(c_0) = \sigma_1, \theta(c_j) = \sigma_2 \varphi^{u_j}$ for $1 \le j \le s_1 + 1$, where $u_1 = \epsilon_1$ and $u_j = 1 - u_{j-1}, \theta(c_j) = \sigma_3 \varphi^{u_j}$, with $s_1 + 2 \le j \le s_1 + s_2 + 2$ where $u_{s_1+2} = \epsilon_2 + 1 - u_{s_1+1}$ and $u_j = 1 - u_{j-1}, \theta(c_j) = \sigma_1 \varphi^{u_j}$, with $s_1 + s_2 + 3 \le j \le s_1 + s_2 + s_3 + 3$ where $u_{s_1+s_2+3} = \theta(c_j) = \sigma_1 \varphi^{u_j}$.

 $\epsilon_3 + 1 - u_{s_1+s_2+2}$ and $u_j = 1 - u_{j-1}, \ \theta(e) = \varphi^l$, where $v_1 + \dots + v_r + l \equiv 0 \mod p$.

To obtain the species +p, +1 one or two of the relations $(\varphi \sigma_i)^2$ in the presentation of G must be substituted by relations $\varphi^{-1}\sigma_i\varphi\sigma_i$.

(5) and (8) $G = \langle \varphi, \sigma_1, \sigma_2, \sigma_3 | \sigma_i^2, (\sigma_1 \sigma_2)^2, (\sigma_2 \sigma_3)^3, (\sigma_3 \sigma_1)^q, \varphi^p, (\varphi \sigma_i)^2 \rangle$, where q = 3 in (5) and q = 5 in (8) and let $\theta : \Lambda \to G$ be defined as in (4).

(6) $G = \langle \varphi, \rho, \sigma_1, \sigma_2 \mid \varphi^p, \rho^3, \sigma_1^2, \sigma_2^2, (\sigma_1\sigma_2)^2, \rho^2\sigma_1\rho\sigma_2, (\varphi\sigma_1)^2, (\varphi\sigma_2)^2, (\varphi\rho)^{3p} \rangle$. Let $\theta : \Lambda \to G$ be defined as $\theta(x_i) = \varphi^{v_i}, 1 \leq i \leq r, \theta(x_{r+1}) = \rho\varphi^{\epsilon_1 + v_{r+1}}, \theta(c_0) = \sigma_1, \theta(c_j) = \sigma_2\varphi^{u_j}$ for $1 \leq j \leq s+1$, where $u_1 = \epsilon_2$ and $u_j = 1 - u_{j-1}, \theta(e) = \rho^2\varphi^l$, where $v_1 + \cdots + v_{r+1} + \epsilon_1 + l \equiv 0 \mod p$.

(7) $G = \langle \varphi \sigma_1, \sigma_2, \sigma_3 | \sigma_i^2, (\sigma_1 \sigma_2)^2, (\sigma_2 \sigma_3)^3, (\sigma_3 \sigma_1)^4, \varphi^p, (\varphi \sigma_i)^2 \rangle$ and let θ : $\Lambda \to G$ be defined as in (4). To obtain the species +p, +1 either the relations $(\varphi \sigma_1)^2$ and $(\varphi \sigma_1)^2$ or the relation $(\varphi \sigma_3)^2$ in the presentation of G must be changed to the corresponding commuting relation.

The kernels of the above epimorphisms will uniformise surfaces with a symmetry with species -1 for general groups Λ . The same epimorphisms yield the species +1 in cases 1 and 4 under the restrictions on Λ given in the first part of the theorem. Again, the same epimorphisms yield the species +p, +1 under the corresponding restrictions on Λ given in the first part of the theorem.

The authors wish to thank to the referee for several helpful suggestions.

References

- R.D.M. Accola, On cyclic trigonal Riemann surfaces, I, Trans. Amer. Math. Soc., 283 (1984) 423-449, MR 85j:14052, Zbl 0584.14016.
- [2] _____, A classification of trigonal Riemann surfaces, Kodai Math. J., 23 (2000) 81-87, MR 2001b:14051, Zbl 0966.14021.
- [3] E. Bujalance, Normal NEC signatures, Ill. J. Math., 26 (1982), 519-530, MR 84i:20049, Zbl 0483.20028.
- [4] E. Bujalance, A.F. Costa and D. Singerman, Application of Hoare's theorem to symmetries of Riemann surfaces, Ann. Acad. Sci. Fenn., 18 (1993), 307-322, MR 94i:20087, Zbl 0794.30029.
- [5] E. Bujalance, J.J. Etayo, J.M. Gamboa and G. Gromadzki, Automorphism Groups of Compact Bordered Klein Surfaces, Lect. Notes in Math., 1439, Springer-Verlag, Berlin, 1990, MR 92a:14018, Zbl 0709.14021.
- [6] M. Cornalba, Systèmes pluricanoniques sur l'espace des modules des courbes et diviseurs de courbes k-gonales (d'après Harris et Mumford), Asterisque, 121-122 (1985), 7-24, MR 86c:14021, Zbl 0551.14014.
- [7] A.F. Costa and M. Izquierdo, On real trigonal Riemann surfaces, submitted.
- [8] G. González Díez, On prime Galois coverings of the Riemann sphere, Ann. Mat. Pura Appl., 168 (1995), 1-15, MR 97c:14033, Zbl 0846.30029.

- [9] B.H. Gross and J. Harris, *Real algebraic curves*, Ann. Scient. Ec. Norm. Sup., 14 (1981), 157-182, MR 83a:14028, Zbl 0533.14011.
- [10] A.H.M. Hoare, Subgroups of NEC groups and finite permutation groups, Quart. J. Math. Oxford, 41 (1990), 45-59, MR 91d:20055, Zbl 0693.20044.
- [11] A.H.M. Hoare and D. Singerman, *The orientability of subgroups of plane groups*, in 'Groups, St. Andrews', London Math. Soc. Lecture Note Ser., **71**, Cambridge Univ. Press, Cambridge, 1982, 221-227, MR 85g:20061, Zbl 0489.20036.
- [12] N. Ishii, Coverings over d-gonal curves, Tsukuba J. Math., 16 (1992), 173-189, MR 93g:14032, Zbl 0771.30042.
- [13] _____, Remarks on d-gonal cures, Tsukuba J. Math., 19 (1995), 329-345, MR 96k:14023, Zbl 0876.14019.
- [14] M. Izquierdo and D. Singerman, Pairs of symmetries of Riemann surfaces, Ann. Acad. Sci. Fenn., 23 (1998), 3-24, MR 98m:20065, Zbl 0914.30029.

Received May 21, 2002 and revised May 8, 2003. The first author is partially supported by Ministerio de Ciencia y Tecnologia BFM2002-04801. The second author thanks the hospitality of UNED.

DEPTO. MATEMÁTICAS FUNDAMENTALES UNED, C/ SENDA DEL REY 9 28040 MADRID SPAIN *E-mail address*: acosta@mat.uned.es

MATEMATISKA INSTITUTIONEN LINKÖPINGS UNIVERSITET 581 83 LINKÖPING SWEDEN *E-mail address*: miizq@mai.liu.se