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A closed Riemann surface X which can be realised as a
p-sheeted covering of the Riemann sphere is called p-gonal,
and such a covering is called a p-gonal morphism. A p-gonal
Riemann surface is called real p-gonal if there is an anticon-
formal involution (symmetry) o of X commuting with the
p-gonal morphism. If the p-gonal morphism is a cyclic regu-
lar covering the Riemann surface is called real cyclic p-gonal,
otherwise it is called real generic p-gonal. The species of the
symmetry o is the number of connected components of the
fixed point set Fix (o) and the orientability of the Klein sur-
face X/(o). In this paper we find the species for the possible
symmetries of real cyclic p-gonal Riemann surfaces by means
of Fuchsian and NEC groups.

1. Introduction.

A closed Riemann surface X which can be realised as a p-sheeted covering of
the Riemann sphere is called p-gonal, and such a covering is called a p-gonal
morphism. The p-gonal Riemann surfaces have been extensively studied, see
(1], [2], [6], [8], [9], [12] and [13]. A p-gonal Riemann surface is called real p-
gonal if there is an anticonformal involution (symmetry) o of X commuting
with the p-gonal morphism.

Let X, be a real p-gonal Riemann surface of genus g > 2. A symmetry
o of X, is an anticonformal involution of X,. The topological type of a
symmetry is determined by the number of connected components, called
ovals, of the fixed-point set Fix (o) and the orientability of the Klein surface
X/(o). We say that o has species ¥, = +k if Fix (o) consists of k ovals
and X/(o) is orientable, and ¥, = —k if Fix (o) consists of k ovals and
X /(o) is non-orientable. The set Fix (o) corresponds to the real part of a
complex algebraic curve representing X, which admits an equation with real
coefficients.

If the p-gonal morphism is a cyclic regular covering, then the Riemann
surface is called real cyclic p-gonal. When p = 2 the surface X, is called
hyperelliptic. A Riemann surface represented by an algebraic curve given
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by an equation of the form

(1.1) y = H(x—ai)H(x—bj)2~--H(m—mj)p_1

where the coefficients of the polynomial [[(x — a;) - - - [[(x — m;)P~! are real
is a real cyclic p-gonal Riemann surface. The complex conjugation induces
a symmetry on the above curve. A natural problem is to study and classify
all possible symmetries of such a Riemann surface up to conjugacy, as they
will produce non-isomorphic real models of the complex algebraic curve.

In Section 2 we characterise real cyclic p-gonal Riemann surfaces, where
p is an odd prime, in terms of signatures of Fuchsian and NEC groups.
In Section 3 we determine all possible symmetries of a real cyclic p-gonal
Riemann surface represented by an algebraic curve with equation (1.1).

2. Signatures of real cyclic p-gonal Riemann surfaces.

Let X, be a compact Riemann surface of genus g > 2. The surface X, can
be represented as a quotient X, = H/I" of the upper half plane H under
the action of a surface Fuchsian group I', that is, a cocompact orientation-
preserving subgroup of the group G = Aut(H) of conformal and anticonfor-
mal automorphisms of H without elliptic elements. A discrete, cocompact
subgroup I' of Aut(H) is called an NEC (non-euclidean crystallographic)
group. The subgroup of I' consisting of the orientation-preserving elements
is called the canonical Fuchsian subgroup of T', it is denoted by I'*. The
algebraic structure of an NEC group and the geometric structure of its quo-
tient orbifold are given by the signature of I':

(2.1)  s(I) = (h, £, [m1,....,me], {(n11, ..., n1sy), ooy (ME1, -, Ts, ) })-

The orbit space H /T is an orbifold with underlying surface of genus h, having
r cone points and k boundary components, each with s; > 0 corner points.
The signs "+" and ”—" correspond to orientable and non-orientable orbifolds
respectively. The integers m; are called the proper periods of I' and they
are the orders of the cone points of H/I". The brackets (n;i,...,nis,) are
the period cycles of I and the integers n;; are the link periods of I' and the
orders of the corner points of H/I'. The group I' is called the fundamental
group of the orbifold H/T.

A group T' with signature (2.1) has a canonical presentation with gener-
ators:

(22) T1yeeoy Tpy€ly.ns€k, G, 1 <1<k, 1<j<s;+1, and
alyblu"'vah)bh
if H/I" is orientable, or
dy. ... dy
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otherwise, and relators:
(2.3) i, i=1,...,r,
2 ngj -1 . .
Cij» (cij—1€i5)"7, cioe; cisei, i=1,....kj=2,...,8+1

and x1---x.€7 - -ekalblal_lbl_l e ahbha,zlbgl Or XL1-  Tp€p--- ekd% e di
according to whether H /T is orientable or not. This last relation is called
the long relation.

The hyperbolic area of the orbifold H/T" coincides with the hyperbolic
area of an arbitrary fundamental region of I' and equals:

(2.4) () =2 |ch— 2+k+z<1—> ZZ<1—> ,

=1 =1 j=1

where e = 2 if there is a”+” sign and € = 1 otherwise. If I is a subgroup of I"
of finite index then I'” is an NEC group and the following Riemann-Hurwitz
formula holds:

(2.5) T 7] = u(I”) /().

An NEC group I' without elliptic elements is called a surface group and
it has signature (h; £;[-],{(=),.*.,(=)}). In such a case H/I" is a Klein
surface, i.e., a surface with a dianalytic structure of topological genus h,
orientable or not according to the sign ”+" or ”—", and having k& boundary
components. Conversely, a Klein surface whose complex double has genus
greater than one can be expressed as H /I for some NEC surface group T'.
Furthermore, given a Riemann (resp. Klein) surface represented as the orbit
space X = H/T', with T" a surface group, a finite group G is a group of
automorphisms of X if and only if there exists an NEC group A and an
epimorphism 6 : A — G with ker(6) = I" (see [5]). The NEC group A is
the lifting of G to the universal covering © : H — H/I' and is called the
universal covering transformation group of (X, Q).

Definition 1. For a prime p, a real cyclic p-gonal Riemann surface is a
triple (X, f,0) where o is a symmetry of X, f is a cyclic p-gonal morphism
and foo =co f, and ¢ is the complex conjugation.

Notice that by Lemma 2.1 in [1] the condition foo = co f is automatically
satisfied for genera g > (p — 1)2 + 1, since the p-gonal morphism is unique.
From now on, the genera will satisfy the condition above. As a consequence
of the assumption g > (p — 1)2 + 1 for the genera of the p-gonal surface
X, we have that the group C), generated by the p-gonal morphism is a
normal subgroup of Aut™(X,). Notice the the classification method fails
for surfaces with genera in the range 2 < g < (p — 1)2. For instance, there
are two 7-gonal surfaces of genus 3. One of them, X3, is the Klein’s quartic
with Aut®(X3) ~ PSLy(7), in this case C7 is non-normal in PSLy(7).
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We give now a characterisation of real cyclic p-gonal Riemann surfaces
represented by real equations via NEC groups.

Theorem 1 ([7]). Let X be a Riemann surface with genus g. The surface
X admits a symmetry o and a meromorphic function f such that (X, f,o)
is a real cyclic p-gonal Riemann surface represented by a curve with real
equation yP = [[(x — a;) -+ [[(z — m;)P~L if and only if there are an NEC
group A with signature (0,4, [p,...,p],{(p,...,p)}) and an epimorphism
6 : A — D, such that X is conformally equivalent to H/Ker 6 and Ker 6 is
an NEC Fuchsian surface group.

Let (X, f,0) be a real cyclic p-gonal Riemann surface uniformised by a
Fuchsian surface group I'. Consider the automorphism ¢ : X — X such that
X/{p) is the Riemann sphere and ¢ is a deck-transformation of the covering
f. Notice that the group A is the universal covering transformation group
of (X, ¢, 0), that D, = (p, o) and that the canonical Fuchsian subgroup A™
is the universal covering transformation group of (X, ¢). Thus X/(y) is a
sphere with conic points of order p . Let & be the symmetry in the Riemann
sphere X /() induced by o. Since the triple (X, ¢, o) is represented by the
equation y? = [[(x — a;) - - - [[(z — m;)P~1, the symmetry o is given by the
map o : X — X defined by o : (z,y) — (Z,7y). The set of real solutions
of 1.1 is the set Fix (0). Thus @ is conjugated to the complex conjugation.
Then X/ (p,0) = X/ {(p)/(F) is a disc with corner(s) and conic points of
order p.

With the above notation:

Theorem 2. Let X be a real cyclic p-gonal Riemann surface such that
(p,0) is isomorphic to D,. If G is the group of conformal and anticon-
formal automorphisms of X, then X/G is uniformised by an NEC group A
such that there is a surface Fuchsian subgroup I' < A uniformising X and

the group A has one of the following signatures:
T S

(D) (0,+,[,...,p,q0),{(D,...,p)}), where e =0 or 1 and

2 = iAo /() £ 0, x
r S1 S9

(In) (0,+,,...,p), {(gp*,D,...,P,q0p%,D,...,p)}), where ¢, =0 or 1 and

2r 4 51+ sy = 2D G/(p) = D,

(IIT) (0,+,[D,-..,p,2p], {(qp*%,D,...,P)}), where ¢, =0 or 1 and 2r+s =

g+(1—ga:i§)(z’—l). G/(p) = Dy x Cs.

r S1 89 s3

—— e N € N €3 N
V) (0, +, [p, .-, pl, {20, D, ..., D, 2%, D, .oy Dy @D, Dy- - D)})s
where ¢, = 0 or 1 and 2r + s1 + sg + s3 = 2g+(2_q65q_(;1ff1_)263)(p_1).
G/(p) = Dy x Cs.
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T S1 S9 S3

N N —— —
(V) (07 +? [p7"'?p:|?{(2p€17 p?"'7p73p62? p""7p73p637 p?"'7p)})

where ¢, = 0 or 1 and 2r 4+ s1 + so + s3 = g+(- 3616(3)621)253)(? DY

G/(¢) = Si.

(VD) (0,+,[p,...,p,3p],{(2p%,D,...,D)}), where ¢, =0 or 1 and 2r+s =
(

g+(1—4€1—3627) p—1) . G/<<,D> = A4 X CQ.

6(p—1)
r S1 S2 S3

N —— —— —
(VII) (07 +7 [ ottt p]? {(2p61’p’ ttt p73p627 p7 ctt p7 4p€37 p?"'7p)})
g+(1—6€1 —4ex—3e3) (p— 1)

S

where ¢, = 0 or 1 and 2r + s1 + sy + s3 = 50p—T)
G/<(p> = 54 X CQ.
r S1 ED) S3
— —— —— —
(VIII) (O’ +’ 7"'7p]? {(2p617 p""?p’ 3p€27 p?"'?p? 5p637 p""7p)})
where ¢; = 0 or 1 and 2r + s1 + sy + s3 = 971= 15630(1;)521)663)(17 by

G/((p) = A5 X CQ.

Notice that in cases (VII) and (VIII) the factor group C2 of G/{p) is
generated by the antipodal map.

Proof. Consider the chain of coverings X = H/T' — X/{(p) = H/AT —
X/G = H/A with uniformising groups I' < AT < A, where s(AT) =

0, +, [ ...,p] {}) and s(A) = (h,x,[m1,...,m;],{(n11,...,n15,),-- -,
(Pk1s .-, Ngs,)}). Furthermore by Lemma 2.1 in [1] the group (p) is a
normal subgroup of G. By Theorem 1 the factor group G = G/{p) is a
finite group of conformal and anticonformal automorphisms of the Riemann
sphere. (See also [12].)

In other words, we have an epimorphism 6 : A — G with Kerf = A*,
This yields the signature of the group A in terms of the signature of AT
and the group G. Let p; and g;; be the orders in G of 6(z;) and 0(c;j—1¢;5)
respectively, where z;, ¢;; are generators in the canonical presentation of
A associated to the signature (2.1). By [3] and [5] each proper period m;
induces U proper periods mj in s(AT). Each link—period n;j induces 2‘%

”u — g __

proper perlods ?]J, in s(A™1). But Sr=por i =1and 2 =por o ,

since AT is the group of the Rlemann sphere Wlth conic pOlIltb of prime order

p. We denote K; = {i |1;1; =1}, K, ={i \’;iz =p}, Hy ={(i,7) |ZTZJJ_:
M ij G G
1} and Hy, = {(i,5) |52 =p}. Thus p= e, X+ 50 200
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Using the Riemann-Hurwitz formula |G| = (A1) /u(A) we obtain

(2.6) —24 Z@+ Z 161 p_l)

Z ’L

1€Kp (4,7)€Hp
_ 1 — 1
= |Gl(ah =2+ k) + |G< ) > 1G] (1—'>
i€ K, Ppi €Ky pi
G 1 G 1
Cy B L),y B,
(ir))EHy bgij (i.)E H qij

therefore h = 0, k = 1, s(A) = (0, +, [pp1,- .., ppr], {(Pq1,- -, pgs)}), where
pi,q; € {1,p}. By setting Ky, K,, H; and H, in Equation (2.6) we obtain
that p;, g; satisfy the equation

2.7) |G|—2:§Z:|G|<1—;>+§j:‘§’<l—qu).

To find s(A) it is enough to find the nontrivial solutions of (2.7). We divide
the study of (2.7) in eight cases according to the factor group G in the
epimorphism 6 : A — G with Ker (§) = A*:

(I) G = C,; x Cy, where Cy = (). The solution of Equation (2.7) is p1 = q.
Applying Riemann-Hurwitz formula to the covering X — X/G we obtain
T S
the signature (0,+, [p,...,D,qp],{(D,...,D)}), wheree =0 or 1 and 2r+s =
2g+2(1—€)(p—1)
q(p—1) '

(Il) G = D The solution of (2.7) is ¢, = ¢j, = ¢q. Therefore s(A) =

S1 52
(07+7[p7 i ] {(qp ’p"'"p’qp627p7"’7p)})7 Where elzoor]‘and 2,r+
2g+(2 c1—e)(p—l)

51+ 52 = a(p—1)

(II) G = D, x Cy. The solution of (2.7) is p1 = 2, and ¢; = ¢. Thus

s(A) becomes (0,+, [p,...,p,2p"],{(¢gp®,D,...,D)}), where ¢, = 0 or 1 and
o 4+ g = 9= q? %)(p 1)
a(p—

(IV) G = D,;xCy. The solution in this case is ¢j, = ¢j, = 2 and ¢;, = ¢. This
r S1 s2 s3

. N €1 N 0 6 N o N

ylelds S(A) = (07—"_7[ 7"'7p]7{(2p17p7"'7p72p27p7'"7p7qp37p7"'7p)})7

where ¢;, = 0 or 1 and 2r + $1 + s2 + s3 = 29+(2*q6§;(;1f_21*)263)(p*1).
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(V) G = S4 The solution of (2.7) is q]1 =2, qj, = q]3 = 3. Then s(A) =
S1
A — /—M z—’A
(07+7[7"'7p]’{(2p 7p7"'7p73p 7p7""p?3p637p7"'7p)})’ Where 61:0

_ g+(1—3e1—2e2—2€3)(p—1)
or 1 and 2r + s1 + 89 + 53 = 16(])—21) 3 .

(VI) G = Ay x Cy. The solution of (2.7) is p1 = 3, and ¢ = 2. Thus
T S

(A) becomes (0 + [ g 7p7 3p61]7{<2p627p7 e 7p)})7 Where € = 0 or 1 a'nd
o + g = gt(izda— —3ea) (p— 1)
6(p—1)

(VII) G = Sy x Ca. The solution in this case is ¢j, = 2, ¢;, = 3 and ¢, = 4.
S1 52

T

This yields s(A) = (0, +, [p, ..., p], {(2p*, B D, 30, D, dpee,
83
_ gt+(1—6e1—4ea— 363)(1)71).

Dy...,D)}), where ¢, = 0 or 1 and 2r + s; + s2 + s3 = 5-1)

(VIII) G = As x Cy. The solution now is g;, = 2, ¢;, = 3 and gj, = 5. This
r s1 s9 s3

. N — — "
yle]ds S(A) = (07—"_7[ 7"'7p]7{(2p617p7"'7p73p627p7'"7p75p637p7"'7p)})7
where ¢, = 0 or 1 and 2r + s; + so + 53 = g+(1=15a1—10c3—6es)(p—1) = g

30(p-1)
finishes the proof.

3. Species of symmetries of real cyclic p-gonal Riemann surfaces.

Let X be a real cyclic p-gonal Riemann surface X with real equation. In
the next theorem we study the topological types of the possible real forms
of X.

Theorem 3. Let X be a real cyclic p-gonal Riemann surface with p-gonal
automorphism ¢ admitting a symmetry o with fized points and such that
(0,0) = Dy, p prime. If T is another symmetry of X, then possible species
of T are (and all cases occur):

(1) s(A) as in (I).
a) ¢=1 mod (2). Xp =%;. Ifr+€>0, then ¥, = —1. Ifr+e=0,
then ¥, € {—1,+1}.

b) ¢ =0 mod (2). X, =3, as in case (1la) or ¥, = 0.
(2) s(A) as in (II).

a) ¢=1 mod (2). EU—E and X,

b) ¢=0 mod (2), ¢ #2. ¥, =-1 andZ =—1o0rX%, =+p,+1.
(3) s(A) as in (III). ¥ =0 or E =X, besides ¥, = —
(4) s(A) as in (IV).

a) ¢ =1 mod (2). {X,,%;} C {X1,22}, where 1 € {—1,+1, +p}.

Yo € {—1,41,4+p}. In both cases ¥y # +p and X, # +1 if o is of

the first type.
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b) ¢ =0 mod (2), ¢ #2. {3,,5:} C{X1,%2,33,%4}, where ¥y =0,
and Yo € {—1,4+1,4p} and £1,%3 € {—1,+1,+p}. In all cases
Yo # +p and X, = 41 if o is of the second type.
g = 2. {3;,5:} C {X1,%2,%3,34}, where ¥4y = 0, and ¥; €
{=1,+1,4p} for 1 <i<3. In all cases ¥, # +p.
(5) s(A) asm( ). X, =0 o0r X, =%,, with ¥, = —1.
(6) s(A) as in (VI). ¥, =0 or X, = X, with ¥, = —1.
(7) s(A) as in (VII). {¥,,3;} C {¥1,%2,0}. Xy € {-1,41,4+p} and
Yo € {—1,+1, +p}, butZU—— )
(8) s(A) as in (VIII). ¥, =0 or ¥, = ¥,, with ¥, = —1.

Proof. Consider the following chain of epimorphisms: 6 : A LNYe! LA G.
The symmetries of X are symmetries 7 in G which are lifts of symmetries
7 in G. The species of 7 is given by the conjugacy classes of reflections in
A= 5_1<90, T) = g_lgb_l(?) = §~1(7) and the orientability of H/A. Notice
that (p, 7) is either a cyclic group Cy), or a dihedral group D, of order 2p.

As in Theorem 2 we divide the proof in eight cases corresponding to the
different types of groups G of conformal and anticonformal automorphisms
of the Riemann sphere. The signature of A in each case is given by the
corresponding case in Theorem 2.

(la) G = CyxCs, ¢=1 mod (2). In this case G contains just one conjugacy
class of symmetries and so does G: The one represented by o. Moreover

D, = (¢,0) is a normal subgroup of index ¢ in G. By [5] the signature of
rq+e qs

—-1 . —— [ =

5 () 5 (0.4, o A5 DD By [14] (see also [4]) 2, = +1
as D, = (p,0). The sign + can only occur if § " ({¢,0)) has no proper
periods, i.e., r + € =0. If s =0, then r + € > 0, the possible species is —1.

(1b) G = Cy x Oy = (p,7 | p?, 52, p~ L5 po), with ¢ =0 mod (2). In this case
G contains two conjugacy classes of symmetries, with representatives namely
7 and $?25 =7 , and so does G. To find the species of the symmetries we

have to consider the normal subgroups 971(@, o)) and @71((90, 7)) of A with
rq+e€ qs
factor group C, . By [5] they have signatures (0,4, [p,...,pl,{(P,...,P)})
rq+et+sq/2
and (0,4+,[D,...,p],{—}) respectively. So species ¥, is as in (la) and

¥r=0.

(2a) G = D, = (p,7| p,52, (p7)2), with ¢ =1 mod (2). The group G con-
tains one conjugacy class of symmetries and so does GG. By the epimorphism
0 : A — D, the images of reflections in A leave one fixed coset in Dy, so
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TQ+51%1+52% s1+s2+ter1te
we get that A, has signature (0,+,[ 9,...,p0 [,{( D,-.-.p )}). Now,

s1+ s2+ 17 > 0 since A is a NEC group, then ¥, = —1 by [4] and [14].

(2b) G = D, = {p, 7| p?,52, (p5)?), with ¢ =0 mod (2). The group G (and
the group GG) contains two conjugacy classes of symmetries, with represen-
tatives namely o and g = 7. To find ¥, and ¥, we have to study the
images of reflections by an epimorphism 6 : A — D,. Each of these im-
ages leaves either 2 7-cosets fixed and none from 7 or the other way round.

TQ+51%+32% €1+2s1+e€2
Thus the signatures of A, and A, are (0, +, [ oD 1, {( oD )}) and
rq+s1%+32% €1+2s2+€2
0,+,] m 1, {( m )}). Now o has 1 oval and does not separate

because 5_1(@0, o)) contains proper periods since s1 + sa+7 > 0 and ¢ > 2.
If €14+ s24€2 > 0, then (¢, 7) = D, and as before ¥, = —1. If e;+s2+€2 =0

(2r+s1)4

the signature ofé_l((cp, 7)) becomes (0,+, [D, ..., p],{(—)}). Thus X, = —1,

if <9077-> = Dpa and ¥, = +p, +1 if <(P77—> = CQP.

(3) G = Dy x Cy = (p,o1,02| p*,01°, 02, (5102)%, po1poz). The group G
(and G) contains two conjugacy classes of symmetries, with representatives
namely @ = 71 and pg = 7. The images of reflections in A are all mapped
to conjugate reflections in G. They are conjugate to & as we know that o
has fixed points. Thus ¥, = 0. On the other hand A, has always proper
periods. Therefore ¥, = —1.

(4) G = DyxCy = (51,03,03 | 5:2, (6102)2, (6203)2, (7307)4), with & central
in G. First of all the group (¢, 09) is a normal subgroup of G with factor
group D, = (G1,73).

(4a) ¢ =1 mod (2). In this case G has two conjugacy classes of reflections
with representatives with images o1 and o3. Then there are two possi-
ble species for a symmetry of X: X, ,3,,. The possible signatures for

5_1(@, 0;)) are given by the epimorphism A LA D,. By this epimorphism
the images of ¢y and ¢, 44, for ¢ > 2, are conjugated to o7 and the image

of ¢1,...,¢s,41 is the identity (representing the central symmetry). There-
fore ¢g,c1,cs41 and cs19 fixes ¢ (G2)-cosets and one (77)-coset each, each
Cly...,Cs4+1 fixes 2q (o3)-cosets (and none (o7) -coset), and finally each

Csy1i, 1 > 2 fixes two (G7)-cosets (and none (o7)-coset) in G. Thus A; and
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A5 have signatures

2rq+gs1+(g—1)(s2+s3)+ q%l (e1te2) €2+259+2€34+€1+2s3

(0, + [ b, LAC Pop )} and

2rq+qs2+e€3+gss3 qe1+2qs1+qez
—_—— —_———
O,+,[ p...,p L,{( D,-..,p )}), see[10].

Altogether we have that 1 is —1 if so + 53+ €1 + €3+ €3 > 0, and X4
is +p,+1 if s9 + s3+ € + €2+ €3 = 0 and (p,01) is Cyp. On the other
hand Y9 is —1 if 51+ €1 + €2 > 0 and and r + s9 + s3 +€3 > 0, Mg is +1
if s1+€ +€ >0and r =s2 = s3 =€ =0, and finally 3o is +p, +1 if
s1+ €1+ € =0 and (p,02) = Cyp. In both cases X, # +p since (¢, 0) = D),
and if o is conjugate to o1 then again ¥, # +1. No further restrictions
exist.

(4b) ¢ =0 mod (2). In this case G has four conjugacy classes of reflections
with representatives with homomorphic images 71, 72, o3 and (635)‘1/ 25y =
74. Then there are four possible species for a symmetry of X: ¥;, 1 <

1 < 4. The species are also given by the epimorphism A 9, D,. By this
epimorphism the images of ¢y and ¢, 1s,+i, for ¢« > 3, are conjugated to oy,
the image of ¢y, .. ., ¢s, 41 is the identity (representing the central symmetry),
and the images of cs,+; , for 2 <4 < 59 4 2, are conjugate to o3. First of all
>4 = 0 since no images of reflections by g are conjugate to o4.

If ¢ = 2, then all the 3 symmetries are central and, as in (4a) the possible
species for them are —1, +1 and +p.

If ¢ # 2 then with the same procedure as in (4a) we get the following
signatures for Ay, Ao and As:

2rq+q(s1+s2)+952s3+ 9521+ deo 2e3+2¢1+4s3

— —
(0,+,] Do LACD, 0 )b,
2rq+qs2+e3+gs3 ge1+2gs1+qe2

O,+[ p,-.csp LA Do sp )}

2rq+q(si+ss)+ 95252+ 52 ot de1 2e542e0+4sn
—N —
(0, +, DD LACD, P )}

Both A; and A3 must have proper periods because otherwise all param-
eters in the signature of A except €3 are 0 and then A is a spherical group.
Therefore 31 is —1 if s3+ €1 +€3 > 0, X1 is +p, +1 if s3+ €1 + €3 = 0 and
(p,01) = Cop. Eois —1if s1+ € +e2>0and r+s9+s3+€3 >0, X is
+1if s+ €1 4+€ >0and r = sy = s3 =€e3 =0, and finally Xs is +p, +1
if s1 4+ €1+ e =0 and (p,02) = Cyp. Finally X3 is —1 if s9 + €2 + €3 > 0,
Y3 is +p,+1 if so + €2 + €3 = 0 and (p,03) = Cyp. In all cases ¥, # +p
since (p,0) = D). Again ¥, # +1 if ¢ is conjugate to o1 or o3 . No further
restrictions exist.
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(5) and (8) G = (71,02,03 |02, (102)2, (6203)3, (6301)4), where ¢ = 3 in
(5) and ¢ = 5 in (8). G, and thus G, contains two conjugacy classes of
symmetries, with representatives namely ¢ = &1 and 7, with 7 conjugated
to the antipodal map. Then ¥, = ¥,, and ¥, = 0. As in case (2a), by [10]
and [14], given the epimorphism 6, all the generating reflections of A induce

reflections in 5_1((01)). So ¥, = —1 as they induce also proper periods.
(6) G = Ay x Cy = (p,71,02| p°,01°,02%, (G102)?, po1poz), where Cy is
generated by the antipodal map. With the same arguments as in (3) we

obtain that G has two types of symmetries with representatives ¢ and 7
where ¥, =0 and X, = —1.

(7) G = <071,072,073|7i2, (0102)2, (020'3)3, (O’301)4> = 84 x Cy. This case is as
case (4b) where the central symmetry is conjugated to the antipodal map
and &7 is conjugated to g3. There are 3 conjugacy classes of symmetries
with species 0, X1 = Y5, and X9 = ¥;,. Now X is —1if s3 + €1 + €3 > 0,
Yy is +p,+1 if s34+ €1 + €3 = 0 and (p, 03) is Cgp. On the other hand ¥ is
—lifsi+so+€e+ea+e3 >0, Xois +pif 514+ 50+ €1 + €2+ €3 =0 and
(p,02) = Cop. Xy # +p,+1,0 since (p,0) = D, and o has fixed points.

To finish we show the existence of surfaces with the desired symmetries
by listing appropriate groups G and epimorphisms 6. The p-gonal surfaces
with the desired symmetries will be uniformised by the groups Ker (6). We
distinguish the same eight cases as in Theorem 2.

(1) Let G = {p,p,0| ¢, p?, 0%, (pa)?, (pp)Pd, p~tops) and let 0 : A — G
be defined by 0(:6,) = <p Vi 1 < i <1y O(pgr) = pptUrt 0(cojo1) = o,
0(c2;j) = o, O(e) = , where j; +---+j, +€+v.01+1=0 mod p.

(2) Let G = (p,T, a\gop 02,72 (pa)?, (o7)9, (¢7)?). Let § : A — G be
defined by 6(z;) = ¢¥, 1 < i < r, 9(60) =7, 0(cj) = op for 1 < j <
s1+ 1, where u1 = €1 and uj = 1 —u;_1, 0(¢c;) = 7", with s +2 < j <
51+ 82+ 2 where ug, 4o = €+ 1 —ug 41 and uj = 1 —u;_1, O(e) = ¢!, where
vi+---+v-+1=0 mod p.

To obtain the species > = +p, +1 we consider groups G with presentation
G =(p,1.0|¢? 0% 7% (p0)? (o7)7, o~ Teo7).
(3) Let G = (p,p,7,0|¢P, p?, 72,07, popr, (pp)*(p0)?, (07)%, (p7)?). Let
6 : A — G be defined by 0(z;) = ¢V, 1 < i < 1, O(xp41) = ppStTir+1,
O(co) =T, 0(cj) =op"™ for 1 <j <s;+1, where u; =€ and u; = 1 —u;_1,
6(e) = po!, where vy + -+ v, 41 + € +1=0 mod p.
4

(4) G = {p,01,02,03]| 02, (0102)?, (0203)?, (0301)%, ¢, (p0;)?). Let 6 : A —
G be defined by 6(x;) = ¢¥, 1 < i <1, 0(co) = o1, 0(c;) = 029" for
1 <j<s1+1, where uy = € and u; = 1 — uj_1, 0(¢;) = 039", with
s1+2 <7 <51+ 52+ 2 where ug, 49 =€ +1—ug 41 and u; =1 —uj_q,
0(cj) = 019", with s1 + 52 +3 < j < 514 52+ s34+ 3 where ug, 45,43 =
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€3+ 1 —Ug yopq2 and uj =1 —u;_q, 0(e) = o, where v1 + -4+ v, +1=0
mod p.

To obtain the species +p,+1 one or two of the relations (pc;)? in the
presentation of G must be substituted by relations ¢ ~!o;p0;.

(5) and (8) G = <g07 g1, 02, 03 | 0',?, (0-10-2)27 (0-20-3)37 (U3Ul)qa SOP’ ((,00'i)2>,
where ¢ =3 in (5) and ¢ =5 in (8) and let  : A — G be defined as in (4).

(6) G = (907 p, 01, 02 ’ ©F, p37 U%v 0%, (0102)27 p201p02, (900'1)27 (9002)27

(pp)®P). Let 0 : A — G be defined as 0(x;) = ¢¥, 1 < i <7, O(z,41) =
pe Tl f(co) = o1, 0(cj) = oap™ for 1 < j < s+ 1, where u; = €3 and
uj=1—wuj_1,0(e) = o, where v1 4 - + 41 + €1 +1=0 mod p.

(7) G = (po1,09,03| 02, (0102)%, (0203)3, (0301)%, ¢P, (p0;)?) and let @ :
A — G be defined as in (4). To obtain the species +p,+1 either the re-
lations (po1)? and (po1)? or the relation (¢o3)? in the presentation of G
must be changed to the corresponding commuting relation.

The kernels of the above epimorphisms will uniformise surfaces with a
symmetry with species —1 for general groups A. The same epimorphisms
yield the species 41 in cases 1 and 4 under the restrictions on A given in the
first part of the theorem. Again, the same epimorphisms yield the species
+p, +1 under the corresponding restrictions on A given in the first part of
the theorem.

The authors wish to thank to the referee for several helpful suggestions.
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