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We give descriptions of the moduli of representations with
Borel mold for free monoids as fibre bundles over the con-
figuration spaces. By using the associated Serre spectral se-
quences, we study the cohomology rings of the moduli. Also
we calculate the virtual Hodge polynomials of them.

1. Introduction.

A representation for a group or a monoid is called a representation with
Borel mold if it can be normalized to a representation in upper triangular
matrices whose image of the group or monoid generates the algebra of upper
triangular matrices. In [Na2] the moduli of representations with Borel mold
has been constructed for each group or monoid. The moduli of representa-
tions with Borel mold has simpler structure than the moduli of absolutely
irreducible representations constructed in [Na1]. In the present paper, for
the free monoid case we describe the moduli of representations with Borel
mold explicitly, and calculate its cohomology ring.

The moduli of representations with Borel mold has a fibre bundle struc-
ture over the configuration space of the affine space, and hence its cohomol-
ogy ring can be calculated. We also calculate the virtual Hodge polynomial
of the moduli of representations with Borel mold, which will be used for
calculating the virtual Poincaré polynomial of the moduli of absolutely ir-
reducible representations of degree 2 for the free monoid case in [Na3]. By
calculating the cohomology ring of the moduli, we can consider characteristic
classes for representations with Borel mold on a scheme. The construction
of characteristic classes and its application will be presented in other papers.

By global representation theory we understand theory of representations
on (arbitrary) schemes. The global representation theory is geometric rather
than the local representation theory, that is, the representation theory over
fields or local rings. For example, each representation of degree n with Borel
mold for a group (or a monoid) Γ on a scheme X has a unique Γ-invariant
complete flag of On

X (see [Na2]). The Γ-invariant complete flag is not always
trivial on X, although if X is the spectrum of a field or a local ring, then the
flag is trivial. Non-triviality of the Γ-invariant flag is an interesting feature
of the theory of representations over schemes.
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As above, the global representation theory has a geometric aspect. For
developing the global representation theory, in particular, the theory of rep-
resentations with Borel mold, we need to consider topology of the moduli
of representations with Borel mold. If we intend to construct characteristic
classes of representations with Borel mold on schemes (which seems to be
an important tool for the global representation theory in the future), then
we have to calculate the (ordinary) cohomology of the moduli. That is our
main motivation. In this article, we deal with only the free monoid case.
The free monoid case is a fundamental case for considering the moduli of
representations with Borel mold.

Let us go into details on our main results. There is a 1-1 correspondence
between the representations with Borel mold of the free monoid of rank
m and the m-matrices of size n × n which generate the algebra of upper
triangular matrices. We study the condition form-upper triangular matrices
to generate the algebra and it gives us a description of the moduli Chn(m)B
of representations with Borel mold for the free monoid of rank m as a fibre
bundle over the configuration space Fn(Am

Z ) of the affine space Am
Z .

Theorem 1.1 (Proposition 3.8). The moduli Chn(m)B of representations
with Borel mold is a fibre bundle over the configuration space Fn(Am

Z ) of the
affine space Am

Z with fibre (Pm−2
Z )n−1 × (Am−1

Z )(n−2)(n−1)/2 with respect to
Zariski topology.

Thereby we can calculate the cohomology rings of Chn(m)B and related
varieties which are regarded as algebraic schemes over C by tensoring with
C. The description of Chn(m)B as a fibre bundle gives us the Serre spectral
sequence converging to the cohomology ring of Chn(m)B. The structure
of the cohomology ring of the configuration space Fn(Cm) is well-known
(cf. [Co1] and [Co2]). Then it is easy to show that the spectral sequence
collapses from the E2-term.

Theorem 1.2 (Theorem 5.2). The cohomology ring of Chn(m)B is given
by

H∗(Chn(m)B) ∼= H∗(Fn(Cm))⊗ Z[t1, . . . , tn−1]/(tm−1
1 , . . . , tm−1

n−1 ),

where the degree |tj | = 2 for 1 ≤ j ≤ n− 1.

From Deligne’s mixed Hodge theory ([De1] and [De2]), we have an in-
variant of algebraic varieties over C called the virtual Hodge polynomial
which is a generalization of the Hodge polynomial for smooth projective va-
rieties over C. The virtual Hodge polynomial has a good property for fibre
bundles with respect to Zariski topology. We calculate the virtual Hodge
polynomials of Chn(m)B and related varieties.
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Theorem 1.3 (Proposition 7.8). The virtual Hodge polynomial of the mod-
uli Chn(m)B is given by

H(Chn(m)B) =
(zm−1 − 1)n−1

(z − 1)n−1
z(m−1)(n−2)(n−1)/2

n−1∏
k=0

(zm − k).

The organization of this paper is as follows: In §2 we review the mod-
uli of representations with Borel mold. In §3 we give descriptions of the
moduli schemes Bn(m)B,Chn(m)B and Repn(m)B. We show that Bn(m)B
and Chn(m)B are fibre bundles over the configuration space Fn(Am

Z ), and
Repn(m)B is a fibre bundle over the flag scheme Flag(An

Z) with respect
to Zariski topology. From the descriptions as fibre bundles, we study the
associated Serre spectral sequences and calculate the cohomology rings of
Bn(m)B,Chn(m)B and Repn(m)B in §§4, 5, 6. In §7 we calculate the vir-
tual Hodge polynomials of Bn(m)B,Chn(m)B and Repn(m)B. In §8 we
define Bn(∞)B,Chn(∞)B and Repn(∞)B to be the homotopy direct limits
of natural inclusions respectively, and study the homotopy types and the
cohomology rings of them.

2. Survey: The moduli of representations with Borel mold.

In this section, we make a survey of the moduli of representations with Borel
mold. We use [Na2] as our main reference.
2.1. Representations with Borel mold. Let Γ be a group or a monoid.
Let X be a scheme. By a representation of degree n for Γ on X we
understand a group (resp. monoid) homomorphism Γ → GLn(Γ(X,OX))
(resp. Γ → Mn(Γ(X,OX))).

For two representations ρ, ρ′ of degree n for Γ on X, we say that ρ and
ρ′ are equivalent (or ρ ∼ ρ′) if there exists a Γ(X,OX)-algebra isomorphism
σ : Mn(Γ(X,OX)) → Mn(Γ(X,OX)) such that σ(ρ(γ)) = ρ′(γ) for each
γ ∈ Γ.

By a mold of degree n on a scheme X we understand a subsheaf of OX -
algebras of Mn(OX) which is also a subbundle of Mn(OX). By two molds
A and B of degree n on X, we say that A and B are locally equivalent
if there exist an open covering X = ∪i∈I Ui and Pi ∈ GLn(Γ(Ui,OX))
such that P−1

i (A |Ui)Pi = B |Ui . We define the mold Bn on Spec Z by
Bn := {(bij) ∈ Mn(Z) | bij = 0 for each i > j}. For a mold A of degree n on
X we say that A is a Borel mold of degree n if A and Bn ⊗Z OX are locally
equivalent.

Under the above preparations, we introduce the notion of representations
with Borel mold.

Definition 2.1. For a representation ρ of degree n for a group (or a monoid)
Γ on a scheme X we say that ρ is a representation with Borel mold if the
subsheaf OX [ρ(Γ)] of Mn(OX) generated by ρ(Γ) is a Borel mold.
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2.2. Review of the moduli of representations with Borel mold. Let
Γ be a group or a monoid. The following functor is representable by an
affine scheme:

Repn(Γ) : (Sch)o → (Sets)
X 7→ {representations of degree n for Γ on X}.

The affine scheme Repn(Γ) is called the representation variety of degree n
for Γ.

Definition 2.2. We define the locally closed subscheme Repn(Γ)B of the
affine scheme Repn(Γ) which represents the functor

Repn(Γ)B : (Sch)o → (Sets)

X 7→
{
ρ ∈ Repn(Γ)(X)

∣∣∣∣ ρ : representation
with Borel mold

}
.

Definition 2.3. We define the closed subscheme Bn(Γ) of Repn(Γ) which
represents the functor

Bn(Γ) : (Sch)o → (Sets)

X 7→

 the (i, j)-entry of
ρ ∈ Repn(Γ)(X) ρ(γ) = 0 for each i > j

and for each γ ∈ Γ

 .

We also define the open subscheme Bn(Γ)B of Bn(Γ) by Bn(Γ)B := Bn(Γ)∩
Repn(Γ)B.

The group scheme PGLn acts on the schemes Repn(Γ) and Repn(Γ)B by
ρ 7→ P−1ρP . Let Bn be the closed subgroup scheme of PGLn defined by
Bn := {(bij) ∈ PGLn | bij = 0 for each i > j}. The group scheme Bn acts
on the schemes Bn(Γ) and Bn(Γ)B by ρ 7→ bρb−1.

We define two group actions on Bn(Γ)B × PGLn: One is the action of
PGLn defined by (ρ, P ) 7→ (ρ, PQ), and the other is one of Bn defined by
(ρ, P ) 7→ (bρb−1, bP ). Defining the morphism Bn(Γ)B ×PGLn → Repn(Γ)B
by (ρ, P ) 7→ P−1ρP , we obtain the following diagram which is a fibre prod-
uct:

Bn(Γ)B × PGLn → Repn(Γ)B
↓ ↓

Bn(Γ)B → Chn(Γ)B.

We denote the universal geometric quotient Bn(Γ)B/Bn = Repn(Γ)B/PGLn
by Chn(Γ)B (the existence of the universal geometric quotient has been
proved in [Na2]). The morphism Bn(Γ)B × PGLn → Bn(Γ)B is the first
projection. The two down arrows are PGLn-principal fibre bundles, and the
two right arrows are Bn-principal fibre bundles.

Under the above situation, we have the following theorem:
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Theorem 2.4 ([Na2]). The scheme Chn(Γ)B represents the sheafification
of the following functor with respect to Zariski topology:

EqBn(Γ) : (Sch)o → (Sets)
X 7→ Repn(Γ)B(X)/ ∼ .

In other words, the scheme Chn(Γ)B is the moduli of representations with
Borel mold.

By introducing the following notation, we end this section:

Notation 2.5. Let Υm be the free monoid of rank m. For Repn(Υm)B,
Bn(Υm)B, Chn(Υm)B, we also write Repn(m)B, Bn(m)B, Chn(m)B, respec-
tively. These are schemes over Z, however in §4–§8 we use these notations
for Repn(m)B ⊗Z C, Bn(m)B ⊗Z C, and Chn(m)B ⊗Z C, respectively.

3. Description of the moduli.

In this section, we describe the moduli of representations with Borel mold
of degree n for free monoids by using the configuration spaces. Considering
the 1-1 correspondence between representations of the free monoid Υm and
m matrices of size n× n, we see that Bn(m)B is isomorphic to{

(A1, . . . , Am)
∣∣∣∣ A1, . . . , Am generate the algebra

of upper triangular matrices

}
.

Hence we will investigate the latter space.

3.1. Preliminaries. In this subsection, we study the condition that m up-
per triangular matrices generate the algebra of upper triangular matrices.

Let k be a field. We define the k-algebra Bn(k) by

Bn(k) := {(aij) ∈ Mn(k) | aij = 0 for each i > j}.
For n ≥ 2 and 1 ≤ i 6= j ≤ n, we define the k-linear map

pij : Bn(k) → B2(k)
(ast)1≤s,t≤n 7→ (ast)s,t=i,j .

We also define the k-algebra homomorphism φn by

φn : Bn(k) → kn

(ast)1≤s,t≤n 7→ (a11, a22, . . . , ann).

Lemma 3.1. For a k-subalgebra A ⊆ B2(k), it is equal to B2(k) if and only
if A is a non-commutative algebra.

Proof. Easy. �

Lemma 3.2. For a k-subalgebra A ⊆ Bn(k) with n ≥ 3, A = Bn(k) if and
only if φn |A is surjective and pi,i+1 |A: A → B2(k) is surjective for each
1 ≤ i ≤ n− 1.
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Proof. The “only if” part is obvious. Let us show the “if” part. Put J :=
Ker(φn|A) = {(aij) ∈ A | a11 = a22 = · · · = ann = 0}. First we claim that
for each 1 ≤ i ≤ n − 1 there exists Pi = (aist) ∈ J such that aii,i+1 = 1
and aij,j+1 = 0 for each j(6= i). Since pi,i+1 |A is surjective, there exists
P ′ = (bst) ∈ A such that bii = bi+1,i+1 = 0 and bi,i+1 = 1. By the surjectivity
of φn |A we also have Q := (cst) ∈ A such that cii = 1 and cjj = 0 for each
j(6= i). Then the matrix Pi := Q2P ′ is what we want.

Next let Pi be as above. For 1 ≤ i < j ≤ n, put Xij := PiPi+1 · · ·Pj−1.
Then Xij ’s form a basis of Ker(φn : Bn(k) → kn). Using the surjectivity of
φn |A again, we have A = Bn(k). �

Lemma 3.3. Let k be a field. Let v1, v2, . . . , vm be m elements of the k-
algebra kn. Then v1, v2, . . . , vm generate kn as a k-algebra if and only if
for each 1 ≤ i 6= j ≤ n there exists v` whose i-th entry and j-th entry are
distinct.

Proof. Let A be the subalgebra of kn generated by v1, v2, . . . , vm. First we
show the “if” part. From the assumption, for each 1 ≤ i ≤ n and for j 6= i
we have wij ∈ A whose i-th entry and j-th entry are 1 and 0, respectively.
Since

∏
j 6=iwij is ei = (0, . . . , 1, . . . , 0), we see that A = kn.

Next we show that the “only if” part. Suppose that A = kn and that
there exist 1 ≤ i 6= j ≤ n such that the i-th entry and the j-th entry of any
v` coincide. Then A is contained in {(a1, . . . , an) ∈ kn | ai = aj}, which is a
contradiction. �

Let A1, . . . , Am be m upper triangular matrices of Mn(k). Put

Ai =


a(i)11 a(i)12 a(i)13 · · · a(i)1n

0 a(i)22 a(i)23 · · · a(i)2n

0 0 a(i)33
. . .

...
...

...
. . . . . .

...
0 0 0 0 a(i)nn

 .(1)

We define the vectors wi,j for 1 ≤ i ≤ j ≤ n by

wi,j = (a(1)i,j , a(2)i,j , . . . , a(m)i,j).(2)

Under this situation, we have the following proposition:

Proposition 3.4. For m upper triangular matrices A1, . . . , Am of Mn(k),
they generate Bn(k) if and only if w11, w22, . . . , wnn are distinct vectors, and
two vectors wii − wi+1,i+1 and wi,i+1 are linearly independent for 1 ≤ i ≤
n− 1.

Proof. By Lemma 3.2 we see that m upper triangular matrices A1, . . . , Am
generate Bn(k) if and only if φn(A1), . . . , φn(Am) generate kn and pi,i+1(A1),
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. . . , pi,i+1(Am) generate B2(k) for each 1 ≤ i ≤ n − 1. From Lemma 3.3,
φn(A1), . . . , φn(Am) generate kn if and only if w11, w22, . . . , wnn are distinct
vectors. By using Lemma 3.1 we easily check that pi,i+1(A1), . . . , pi,i+1(Am)
generate B2(k) if and only if wii − wi+1,i+1 and wi,i+1 are linearly indepen-
dent. Hence we can prove the statement. �

3.2. Description of Bn(m)B. In this subsection, we describe Bn(m)B
explicitly by using the configuration space of the affine space. Note that
Bn(m)B is the scheme of m upper triangular n×n matrices which generate
the algebra of upper triangular matrices.

Definition 3.5. We define the configuration space Fn(X) of a scheme X
by

Fn(X) := {(p1, p2, . . . , pn) ∈ Xn | pi 6= pj for i 6= j}.
For example, we denote by Fn(Am

Z ) the configuration space of ordered dis-
tinct n-points in Am

Z .

Let A1, A2, . . . , Am, wi,j be as in (1) and (2). We define the morphism
Φn,m : Bn(m)B → Fn(Am

Z ) by (A1, . . . , Am) 7→ (w11, w22, . . . , wnn). The
morphism Φn,m is well-defined by Proposition 3.4. Let us denote Bn(Υm)
by Bn(m). We define the isomorphism Ξn,m : Bn(m) → (Am

Z )n× (Am
Z )n−1×

(Am
Z )(n−1)(n−2)/2 by

(A1, . . . , Am) 7→ ((w11, w22, . . . , wnn), (w12, w23, . . . , wn−1,n), (wi,j)|i−j|≥2).

Under these preparations, we obtain:

Proposition 3.6. Let n be an integer with n ≥ 2. The morphism Φn,m :
Bn(m)B → Fn(Am

Z ) is a fibre bundle with fibre (Am
Z \A1

Z)n−1×Am(n−2)(n−1)/2
Z .

More precisely, there exists a Zariski open covering Fn(Am
Z ) = ∪i∈IUi such

that Φ−1
n,m(Ui) ∼= Ui × (Am

Z \ A1
Z)n−1 × (Am

Z )(n−2)(n−1)/2 and the structure
group is G := G0 × · · · ×G0︸ ︷︷ ︸

n−1

, where

G0 :=




1 ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗

 ∈ GLm

 .

Proof. Set Am
Z \A1

Z := {(t1, t2, . . . , tm) ∈ Am
Z | (t2, . . . , tm) 6= (0, . . . , 0)}. Let

G0 act on Am
Z \ A1

Z by t(t1, t2, . . . , tm) 7→ A t(t1, t2, . . . , tm). Then we define
the action of G on (Am

Z \ A1
Z)n−1 × (Am

Z )(n−2)(n−1)/2 by

((z1, . . . , zn−1), (wij)|i−j|≥2) 7→ ((A1z1, . . . , An−1zn−1), (wij)|i−j|≥2)

for (A1, . . . , An−1) ∈ G = G0 × · · · ×G0.
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For each point of Fn(Am
Z ), we have a neighbourhood U such that there

exist n− 1 bases

{v1 − v2, u(1)2, . . . , u(1)m},
{v2 − v3, u(2)2, . . . , u(2)m},

· · ·
{vn−1 − vn, u(n− 1)2, . . . , u(n− 1)m}

of U -valued points of Am
Z for (v1, . . . , vn) ∈ U . We define the isomorphism

U × (Am
Z \ A1

Z)n−1 × (Am
Z )(n−2)(n−1)/2 → Φ−1

n,m(U) by

((v1, . . . , vn), (t(i)1, . . . , t(i)m)1≤i≤n−1, (wij)|i−j|≥2)

7→ Ξ−1
n,m((v1, . . . , vn), (w12, . . . , wn−1,n), (wij)|i−j|≥2),

where wi,i+1 := t(i)1(vi−vi+1)+t(i)2u(i)2+· · ·+t(i)mu(i)m for 1 ≤ i ≤ n−1.
Thus we easily see that Φn,m is a fiber bundle with the structure groupG. �

Remark 3.7. We remark that if m = 1, then Bn(1)B is empty. Hence
Chn(1)B and Repn(1)B are also empty. If n = 1, then Rep1(m) = B1(m)B =
Ch1(m)B = Am

Z . Therefore in the sequel we assume that n,m ≥ 2.

3.3. Description of Chn(m)B. In this subsection, we describe the moduli
of representations with Borel mold Chn(m)B explicitly.

The morphism Φn,m : Bn(m)B → Fn(Am
Z ) is Bn-equivariant. Here the

group scheme Bn acts on Fn(Am
Z ) trivially. Hence Φn,m induces Ψn,m :

Chn(m)B → Fn(Am
Z ). For each point of Fn(Am

Z ), we take an open neigh-
bourhood U as in the proof of Proposition 3.6.

Let us consider the action of Bn on Φ−1
n,m(U) ∼= U × (Am

Z \ A1
Z)n−1 ×

Am(n−2)(n−1)/2
Z . Let x = ((v1, . . . , vn), (t(i)1, . . . , t(i)m)1≤i≤n−1, (wij)|i−j|≥2)

∈ U × (Am
Z \A1

Z)n−1 ×Am(n−2)(n−1)/2
Z . For B = (bij) ∈ Bn, set B−1 = (b′ij).

We denote B · x by ((v′1, . . . , v
′
n), (t

′(i)1, . . . , t′(i)m)1≤i≤n−1, (w′ij)|i−j|≥2).
Then we have

v′i = vi,

t′(i)1 = − bi,i+1

bi+1,i+1
+

bii
bi+1,i+1

t(i)1,

t′(i)2 =
bii

bi+1,i+1
t(i)2,

· · ·

t′(i)m =
bii

bi+1,i+1
t(i)m,

w′ij =
∑

i≤k≤`≤j
bikwk`b

′
`j .



TOPOLOGY OF MODULI OF REPRESENTATIONS 373

By calculating w′ij , we have

w′ij = biiwijb
′
jj +

∑
i≤k≤j

bikwkkb
′
kj + (the other terms)

= biiwijb
′
jj − bijb

′
jj(wj−1,j−1 − wjj)

−(bi,j−1b
′
j−1,j + bijb

′
jj)(wj−2,j−2 − wj−1,j−1)

−(bi,j−2b
′
j−2,j + bi,j−1b

′
j−1,j + bijb

′
jj)(wj−3,j−3 − wj−2,j−2)− · · ·

−(bi,i+1b
′
i+1,j + · · ·+ bijb

′
jj)(wii − wi+1,i+1) +

 ∑
i≤k≤j

bikb
′
kj

wii

+(the other terms)
= biiwijb

′
jj − bijb

′
jj(vj−1 − vj)− (bi,j−1b

′
j−1,j + bijb

′
jj)(vj−2 − vj−1)

−(bi,j−2b
′
j−2,j + bi,j−1b

′
j−1,j + bijb

′
jj)(vj−3 − vj−2)− · · ·

−(bi,i+1b
′
i+1,j + · · ·+ bijb

′
jj)(vi − vi+1) + (the other terms).

Here we used the equality
∑

i≤k≤j bikb
′
kj = δij = 0 and we denoted vk by

wkk.

We define a morphism Φ−1
n,m(U) ∼= U × (Am

Z \A1
Z)n−1 ×Am(n−2)(n−1)/2

Z →
U × (Pm−2

Z )n−1 × (Am−1
Z )(n−2)(n−1)/2 by

((v1, . . . , vn), (t(i)1, . . . , t(i)m)1≤i≤n−1, (wij)|i−j|≥2)

7→ ((v1, . . . , vn), (t(i)2 : · · · : t(i)m)1≤i≤n−1, (wij)|i−j|≥2),

where wij ∈ Am−1
Z = 〈uij(2), . . . , uij(m)〉 ⊂ Am

Z = 〈(vj−1 − vj), uij(2), . . . ,
uij(m)〉 is defined as follows: We take (vj−1 − vj), uij(2), . . . , uij(m) as
a basis of U × Am

Z over U . The above calculation follows that w′ij =
biiwijb

′
jj − bijb

′
jj(vj−1 − vj) + · · · , and hence by choosing suitable bij , we

can assume that w′ij ∈ 〈uij(2), . . . , uij(m)〉. Then we put wij = w′ij . Let
Bn act on U × (Pm−2

Z )n−1 × (Am−1
Z )(n−2)(n−1)/2 trivially. Then the above

morphism is Bn-equivariant. Since the pull-back Ψ−1
n,m(U) ⊆ Chn(m)B

of U is a universal geometric quotient of Φ−1
n,m(U) by Bn, the morphism

Φ−1
n,m(U) → U × (Pm−2

Z )n−1 × (Am−1
Z )(n−2)(n−1)/2 induces a morphism ϕ :

Ψ−1
n,m(U) → U × (Pm−2

Z )n−1 × (Am−1
Z )(n−2)(n−1)/2. We can easily check that

ϕ gives a bijection between geometric points. The schemes Ψ−1
n,m(U) and

U × (Pm−2
Z )n−1 × (Am−1

Z )(n−2)(n−1)/2 are smooth over Z. Because ϕ is bi-
rational, it is an isomorphism by Zariski’s Main Theorem. Therefore we
have:

Proposition 3.8. The morphism Ψn,m : Chn(m)B → Fn(Am
Z ) is a fibre

bundle with fibre (Pm−2
Z )n−1 × (Am−1

Z )(n−2)(n−1)/2.
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Remark 3.9. The morphism Ψn,m : Chn(m)B → Fn(Am
Z ) can be inter-

preted as follows: Let Ch1(m) be the moduli of characters for the free monoid
Υm of rank m. The scheme Fn(Am

Z ) is isomorphic to the configuration
space Fn(Ch1(m)) of Ch1(m) defined by Fn(Ch1(m)) := {(χ1, . . . , χn) ∈
Ch1(m) | χi 6= χj for i 6= j}, since Ch1(m) ∼= Am

Z . For ρ ∈ Bn(m)B we
can define (ρ11, ρ22, . . . , ρnn) ∈ Fn(Ch1(m)). This correspondence induces
Ψn,m : Chn(m)B → Fn(Am

Z ) ∼= Fn(Ch1(m)). The fibre Ψ−1
n,m(χ1, . . . , χn)

corresponds to the equivalence classes of representations with Borel mold
which are extensions of characters (χ1, . . . , χn).

In the case n = 2, Proposition 3.8 says that Ψ2,m : Ch2(m)B → F2(Am
Z )

is a fibre bundle with fibre Pm−2
Z . In particular, Ch2(2)B is isomorphic to

F2(A2
Z) ∼= A2

Z × (A2
Z \ {0}). Let us describe the Pm−2

Z -bundle over F2(Am
Z )

more precisely.
The configuration space F2(Am

Z ) is isomorphic to Am
Z × (Am

Z \ {0}) by
(v1, v2) 7→ (v1, v1 − v2). We denote by f the composition of morphisms

F2(Am
Z ) ∼= Am

Z × (Am
Z \ {0}) → Am

Z \ {0} → Pm−1
Z .

Let us consider the short exact sequence

0 → OPm−1
Z

(−1) → O⊕m
Pm−1

Z
→ TPm−1

Z
(−1) → 0(3)

on Pm−1
Z . Put E := f∗TPm−1

Z
(−1). The morphism Ψ2,m : Ch2(m)B →

F2(Am
Z ) is described as follows:

Proposition 3.10. The moduli Ch2(m)B is isomorphic to Proj E∨ over
F2(Am

Z ).

Proof. Recall that the morphism Ψ2,m : Ch2(m)B → F2(Am
Z ) is given by

[(A1, . . . , Am)] 7→ (w11, w22), where Ai, wij are as in (1) and (2). Let us
consider the pull-back of (3) by f ◦Ψ2,m:

0 → (f ◦Ψ2,m)∗OPm−1
Z

(−1) w11−w22−→ O⊕m
Ch2(m)B

→ Ψ∗
2,mE → 0.

The vectors w12 and w11−w22 are linearly independent. For B = (bij) ∈ B2,
the w12 vector of B ·(A1, . . . , Am) is given by −b12/b22 ·(w11−w22)+b11/b22 ·
w12. From these facts, the vector w12 determines a sub-line bundle L of
Ψ∗

2,mE . Hence we have the surjection Ψ∗
2,mE∨ → L∨ → 0. The surjec-

tive homomorphism of algebras S(Ψ∗
2,mE∨) → S(L∨) induces Ch2(m)B →

Ch2(m)B × Proj E∨ proj.−→ Proj E∨. We can easily check that this is an
isomorphism. �

3.4. Description of Repn(m)B. In this subsection, we describe Repn(m)B.
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In §2 we obtained a diagram which is a fibre product:

Bn(m)B × PGLn
f→ Repn(m)B

↓ p1 ↓ π
Bn(m)B

π′→ Chn(m)B,

where f : Bn(m)B × PGLn → Repn(m)B is given by (ρ, P ) 7→ P−1ρP and
p1 is the first projection. The group scheme Bn acts on Bn(m)B × PGLn
by (ρ, P ) 7→ (QρQ−1, QP ). The morphism f is a Bn-principal fibre bundle.
Hence we conclude that Bn(m)B ×Bn PGLn ∼= Repn(m)B.

The universal representation with Borel mold on Repn(m)B induces the
action of the free monoid Υm on the trivial bundle O⊕n

Repn(m)B
. In [Na2] we

obtained a unique complete flag 0 ⊂ E1 ⊂ · · · ⊂ En−1 ⊂ O⊕n
Repn(m)B

such that
Ei is a unique Υm-invariant subbundle of rank i. Then we get a morphism
Repn(m)B → Flag(An

Z) associated to the complete flag, where Flag(An
Z) is

the flag scheme consisting of complete flags of the rank n trivial bundle.

Proposition 3.11. The morphism Repn(m)B → Flag(An
Z) is a fibre bundle

with fibre Bn(m)B.

Proof. For each x ∈ Flag(An
Z), we can choose an open neighbourhood U of

x and n sections si (1 ≤ i ≤ n) of O⊕n
U such that ⊕ki=1OU · si is the rank k

subbundle of the universal flag on U . We denote by Ũ the inverse image of U
by Repn(m)B → Flag(An

Z). Let E∗ be the pull-back of the universal flag on
Ũ . Let s̃i be the pull-back of si. Then we define a morphism U×Bn(m)B →
Ũ by corresponding (E∗, ρ) to the representation ρ with respect to the basis
{s̃i} (not the canonical basis!). We can easily check that U ×Bn(m)B → Ũ
is an isomorphism, which completes the proof. The statement can be also
verified by the fact that Bn(m)B ×Bn PGLn ∼= Repn(m)B. �

4. Cohomology of Bn(m)B.

In §3.2 we described the scheme Bn(m)B over Z as a fibre bundle over the
configuration space Fn(Am

Z ). In the rest of this paper we abbreviate the C-
valued point of Bn(m)B with classical topology to Bn(m)B. In this section
we calculate the cohomology ring of Bn(m)B for m ≥ 2 by using the Serre
spectral sequence associated with the fibre bundle. For a topological space
X, we denote by Hq(X) the integral cohomology group Hq(X; Z).

First, we recall the cohomology ring of the configuration space Fn(Rm)
(cf. [Co1] and [Co2]). Let Fn(Rm) be the configuration space of ordered
distinct n-points in Rm:

Fn(Rm) = {(x1, . . . , xn) ∈ (Rm)n| xi 6= xj (i 6= j)}.
Since F2(Rm) is homotopy equivalent to the (m− 1)-sphere Sm−1, we have
H∗(F2(Rm)) ∼= Λ(s) where the degree |s| = m − 1. For i 6= j, we define
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the map πi,j : Fn(Rm) → F2(Rm) given by πi,j(x1, . . . , xn) = (xi, xj). Let
s(i, j) = π∗i,j(s). Then we have s(i, j)2 = 0 and s(j, i) = (−1)ms(i, j).

Theorem 4.1 (cf. [Co1] and [Co2]). The cohomology ring of the configu-
ration space Fn(Rm) is a graded commutative associative ring generated by
s(i, j) for 1 ≤ i < j ≤ n with a complete set of relations:

s(i, j)2 = 0,
s(i, k)s(j, k) = s(i, j)s(j, k)− s(i, j)s(i, k) for i < j < k.

By Proposition 3.6, there is a fibre bundle

YB
i−→ Bn(m)B

Φn,m−→ Fn(Cm),(4)

where the fibre YB is (Cm−C1)n−1×Cm(n−1)(n−2)/2. Since YB is homotopy
equivalent to the product of spheres:

YB '

n−1︷ ︸︸ ︷
S2m−3 × · · · × S2m−3,

the cohomology of the fibre YB is given by

H∗(YB) ∼= Λ(s′1, . . . , s
′
n−1),

where the degree of s′j is 2m− 3 for j = 1, . . . , n− 1.

Lemma 4.2. Bn(m)B is (2m− 4)-connected.

Proof. Note that the configuration space Fn(Cm) is (2m − 2)-connected.
Then the lemma follows from the long exact sequence of homotopy groups
associated with the fibre bundle (4). �

There is a Serre spectral sequence associated with the fibre bundle (4)

Ep,q2 = Hp(Fn(Cm);Hq(YB)) =⇒ Hp+q(Bn(m)B).

Note that the coefficient system is trivial, since Fn(Cm) is (2m−2)-connected
(m ≥ 2). Since H∗(Fn(Cm)) and H∗(YB) are free over Z, we have an
isomorphism

Ep,q2
∼= Hp(Fn(Cm))⊗Hq(YB).

By Theorem 4.1, Hp(Fn(Cm)) = 0 for 1 ≤ p ≤ 2m− 2. Hence this spectral
sequence collapses from E2-term. In particular, H∗(Bn(m)B) is free over
Z. Since i∗ : H2m−3(Bn(m)B) → H2m−3(YB) is an isomorphism, there is
sj ∈ H2m−3(Bn(m)B) such that i∗(sj) = s′j for j = 1, . . . , n − 1. By using
the ring homomorphism Φ∗n,m : H∗(Fn(Cm)) → H∗(Bn(m)B), we regard
H∗(Bn(m)B) as an algebra over H∗(Fn(Cm)).

Theorem 4.3. The cohomology ring of Bn(m)B is an exterior algebra gen-
erated by s1, . . . , sn−1 over H∗(Fn(Cm)):

H∗(Bn(m)B) ∼= H∗(Fn(Cm))⊗ Λ(s1, . . . , sn−1).
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Proof. Since H∗(Bn(m)B) is free over Z, s2j = 0 for j = 1, . . . , n− 1. There
is a ring homomorphism φ : Λ(s1, . . . , sn−1) → H∗(Bn(m)B). Then φ is
injective since i∗ ◦ φ is an isomorphism. We consider the following ring
homomorphism:

Φ∗n,m ⊗ φ : H∗(Fn(Cm))⊗ Λ(s1, . . . , sj) −→ H∗(Bn(m)B).

Then it is easy to see that Φ∗n,m ⊗ φ is an isomorphism. �

For (A1, . . . , Am) ∈ Bn(m)B, we recall that a(i)k,l is the (k, l)-entry
of the ith matrix Ai. Then they define a vector wk,l in Cm by wk,l =
(a(1)k,l, . . . , a(m)k,l). We set wk = wk,k−wk+1,k+1 for k = 1, . . . , n− 1. Let
Bn(m)′B be the subspace of Bn(m)B defined as follows:

Bn(m)′B

=

(A1, . . . , Am) ∈ Bn(m)B

∣∣∣∣∣∣
a(i)k,l = 0 (1 ≤ i ≤ m, l > k + 1),
(wk, wk,k+1) = 0 (1 ≤ k ≤ n− 1),
||wk,k+1|| = 1 (1 ≤ k ≤ n− 1)

 ,

where (−,−) is the standard Hermitian inner product and || − || is the

associated norm. Let Tn be the n-dimensional torus

n︷ ︸︸ ︷
S1 × · · · × S1. Then

there is a homomorphism from Tn into the diagonal matrices of Bn(C). We
denote by TR the image of this homomorphism. Then Bn(m)′B is a TR-
equivariant subspace of Bn(m)B where the action of TR on Bn(m)B is a
restriction of the action of Bn(C). We note that TR acts on Bn(m)′B freely.
Then the following lemma is easy:

Lemma 4.4. Bn(m)′B ↪→ Bn(m)B is a TR-equivariant homotopy equiva-
lence.

The map from Bn(m)′B to Fn(Cm) gives a fibre bundle

Y ′B −→ Bn(m)′B −→ Fn(Cm),

where the fibre Y ′B is the product of spheres:

Y ′B =

n−1︷ ︸︸ ︷
S2m−3 × · · · × S2m−3 .

There is a map of fibre bundles from Y ′B → Bn(m)′B → Fn(Cm) to YB →
Bn(m)B → Fn(Cm) which induces homotopy equivalences:

Y ′B −→ Bn(m)′B −→ Fn(Cm)y '
y ' ‖

YB −→ Bn(m)B −→ Fn(Cm).
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5. Cohomology of Chn(m)B.

In the rest of this paper we abbreviate the C-valued point of Chn(m)B
with classical topology to Chn(m)B. In §3.3 we obtained a description of
the scheme Chn(m)B over Z as a fibre bundle over the configuration space
Fn(Am

Z ). By using the Serre spectral sequence of the fibre bundle, we calcu-
late the cohomology ring of Chn(m)B for m ≥ 2.

The space Chn(m)B is defined to be the quotient space of Bn(m)B by the
free action of Bn(C). The torus TR ⊂ Bn(C) also acts on Bn(m)B. There is
a fibre bundle

Bn(C)/TR −→ Bn(m)B/TR −→ Chn(m)B.

Since the fibre Bn(C)/TR is contractible, the projection Bn(m)B/TR →
Chn(m)B is a weak homotopy equivalence. By Lemma 4.4, there is a TR-
subspace Bn(m)′B of Bn(m)B such that the inclusion is a TR-equivariant
homotopy equivalence. Let Chn(m)′B be the quotient space Bn(m)′B/TR.
Hence we have the following lemma:

Lemma 5.1. Chn(m)B is weakly homotopy equivalent to Chn(m)′B.

By Lemma 5.1, the natural map Chn(m)′B → Chn(m)B induces an iso-
morphism of cohomology rings. Hence we calculate the cohomology of
Chn(m)′B. There is a map from Chn(m)′B to Fn(Cm) which gives a fibre
bundle

Y ′C
i′−→ Chn(m)′B

Ψ′
n,m−→ Fn(Cm).(5)

Note that we have a commutative diagram of fibre bundles

Y ′C
i′−→ Chn(m)′B

Ψ′
n,m−→ Fn(Cm)y '

y ' ‖

YC
i−→ Chn(m)B

Ψn,m−→ Fn(Cm)

such that the vertical arrows are weak homotopy equivalences. The fibre Y ′C
is the product of complex projective spaces:

Y ′C =

n−1︷ ︸︸ ︷
CPm−2 × · · · × CPm−2 .

Hence we have

H∗(Y ′C) ∼= Z[t′1, . . . , t
′
n−1]/(t

′
1
m−1

, . . . , t′n−1
m−1),

where the degree of t′j is 2 for j = 1, . . . , n − 1. There is a Serre spectral
sequence associated with the fibre bundle (5)

Ep,q2 = Hp(Fn(Cm);Hq(Y ′C)) =⇒ Hp+q(Chn(m)′B).
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The coefficient system is trivial by the same reason as in the case of Bn(m)B.
Note that there is an isomorphism

Ep,q2
∼= Hp(Fn(Cm))⊗Hq(Y ′C),

since H∗(Fn(Cm)) and H∗(Y ′C) are free over Z. By Theorem 4.1, we have
Hp(Fn(Cm)) = 0 for 1 ≤ p ≤ 2m − 2. Then the homomorphism i∗ :
Hq(Chn(m)B) → Hq(YC) is an isomorphism for q ≤ 2m − 2. Let tj be an
element of H2(Chn(m)B) such that i∗(tj) = t′j for j = 1, . . . , n − 1. Then
we have tjm−1 = 0 for j = 1, . . . , n− 1.

We regard H∗(Chn(m)B) as an algebra over H∗(Fn(Cm)) by using the
ring homomorphism Ψ∗

n,m : H∗(Fn(Cm)) → H∗(Chn(m)B).

Theorem 5.2. The cohomology ring of Chn(m)B is a truncated polynomial
algebra generated by tj , (j = 1, . . . , n− 1) over H∗(Fn(Cm)):

H∗(Chn(m)B) ∼= H∗(Fn(Cm))⊗ Z[t1, . . . , tn−1]/(tm−1
1 , . . . , tm−1

n−1 ).

Proof. By the above argument, we have a ring homomorphism

ψ : Z[t1, . . . , tn−1]/(tm−1
1 , . . . , tm−1

n−1 ) −→ H∗(Chn(m)B).

Then the ring homomorphism

H∗(Fn(Cm))⊗ Z[t1, . . . , tn−1]/(tm−1
1 , . . . , tm−1

n−1 )
Ψ∗

n,m⊗ψ−→ H∗(Chn(m)B)

gives an isomorphism. �

6. Cohomology of Repn(m)B.

In §3.4 we described the scheme Repn(m)B over Z as a fibre bundle over the
flag scheme Flag(An

Z). In the following we abbreviate the C-valued points of
Repn(m)B with classical topology to Repn(m)B. In this section we consider
the cohomology of Repn(m)B for m ≥ 2 by using the Serre spectral sequence
associated with the fibre bundle.

First, we recall the cohomology ring of the flag manifold U(n)/Tn. We
say that a sequence (L1, . . . , Ln−1) of subvector spaces in Cn is a complete
flag if Li ⊂ Li+1 for i = 1, . . . , n − 2 and dimCLi = i for i = 1, . . . , n −
1. Let Flag(Cn) be the set of all complete flags in the vector space Cn.
Then PGLn(C) acts on Flag(Cn) transitively. Let Ci be the subspace of Cn

spanned by the first i canonical basis vectors for i = 1, . . . , n − 1. Then
we see that the stabilizer of the complete flag (C1, . . . ,Cn−1) is Bn(C). We
regard Flag(Cn) as a manifold by means of the isomorphism Flag(Cn) ∼=
PGLn(C)/Bn(C). Let U(n) be the unitary group of size n and let Tn be a
maximal torus of U(n) consisting of the diagonal matrices. Then U(n) also
acts on Flag(Cn) transitively and the stabilizer group of (C1, . . . ,Cn−1) is
Tn. Hence we get an isomorphism Flag(Cn) ∼= U(n)/Tn. Let πi : Tn → T 1
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be the ith projection for i = 1, . . . , n. Then we have a line bundle Ei over
Flag(Cn):

U(n)×πi C −→ Flag(Cn).

We denote by ti the first Chern class of the line bundle Ei:

ti = c1(Ei) ∈ H2(Flag(Cn)).

Then we have the following well-known lemma:

Lemma 6.1. The cohomology ring of Flag(Cn) is given by

H∗(Flag(Cn)) = Z[t1, . . . , tn]/(c1, . . . , cn),

where ci is the ith symmetric function for i = 1, . . . , n.

We note that H i(Flag(Cn)) = 0 for i > n2 − n since Flag(Cn) is a closed
manifold of real dimension n2 − n.

The space Repn(m)B is defined as Bn(m)B×Bn(C)PGLn(C). We note that
there is an isomorphism Repn(m)B ∼= Bn(m)B ×TR PU(n) where PU(n)
is the projective unitary group and TR is its maximal torus. We define
Repn(m)′B as Bn(m)′B ×TR PU(n).

Lemma 6.2. There is a homotopy equivalence Repn(m)B ' Repn(m)′B.

Proof. This follows from Lemma 4.4. �

By Lemma 6.2, the natural map Repn(m)′B → Repn(m)B induces an
isomorphism of cohomology rings. Hence we calculate the cohomology of
Repn(m)′B. There is a fibre bundle

Bn(m)′B −→ Repn(m)′B −→ Flag(Cn).

Then we obtain the associated Serre spectral sequence

Ep,q2 = Hp(Flag(Cn);Hq(Bn(m)′B)) =⇒ Hp+q(Repn(m)′B).

Since Flag(Cn) is simply connected, the coefficient system is trivial. By The-
orem 4.3 and Lemma 6.1, the cohomology group of Bn(m)′B and Flag(Cn)
are free over Z. Hence we have an isomorphism

Ep,q2
∼= Hp(Flag(Cn))⊗Hq(Bn(m)′B).

We recall that there is a map Bn(m)′B → Fn(Cm) which is a fibre bundle
with fibre Y ′B.

Lemma 6.3. Let c ∈ H∗(Bn(m)′B). If c is in the image of the homomor-
phism H∗(Fn(Cm)) → H∗(Bn(m)′B), then c is a permanent cycle.

Proof. This follows from the fact that there is a map Repn(m)′B → Fn(Cm)
which factors through Bn(m)′B → Fn(Cm). �

Corollary 6.4. The E∗,∗∗ is a spectral sequence of H∗(Fn(Cm))-modules.
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Proposition 6.5. If m > (n2−n)/2+1, then the spectral sequence collapses
from E2-term. In this case we have

H∗(Repn(m)′B) ∼= H∗(Fn(Cm))⊗H∗(Flag(Cn))⊗ Λ(s1, . . . , sn−1)

as algebras where the degree of si is 2m− 3 for i = 1, . . . , n− 1.

Proof. Since Bn(m)′B is (2m− 4)-connected, we have d2 = · · · = d2m−3 = 0.
Then the proposition follows from the fact that H i(Flag(Cn)) = 0 for i >
n2 − n. �

The first nontrivial differential d2m−2 is given by

d2m−2(si) = (ti − ti+1)m−1 for 1 ≤ i < n.

Let C be a differential graded algebra given by

C = Z[t1, . . . , tn]/(c1, . . . , cn)⊗ Λ(s1, . . . , sn−1),

where the cohomological degree of ti is 0 for i = 1, . . . , n and the coho-
mological degree of si is 1 for i = 1, . . . , n − 1. The differential is defined
by

d(si) = (ti − ti+1)m−1, i = 1, . . . , n− 1.

We denote by H(C) the cohomology algebra of C.

Lemma 6.6. The E2m−1-term of the Serre spectral sequence of the fibre
bundle Bn(m)′B → Repn(m)′B → Fn(Cm) is H(C)⊗H∗(Fn(Cm)).

In the rest of this section we calculate the cohomology of Repn(m) for
small n.

6.1. The case n = 2. If n = 2, the flag manifold Flag(C2) is the 2-
sphere S2 and PU(2) is the real projective space RP3. We recall that
Rep2(2)′B = B2(2)′B ×TR PU(2). It is easy to see that the action of TR is
free and the quotient map B2(2)′B → B2(2)′B/TR is identified with the fibre
bundle B2(2)′B → F2(C2). Hence B2(2)′B → F2(C2) is a principal TR-bundle.
Since TR ∼= S1 and F2(C2) is 2-connected, the principal bundle is trivial and
B2(2)′B ∼= F2(C2) × TR. This implies that Rep2(2)′B ∼= F2(C2) × PU(2). It
is also easy to construct an isomorphism explicitly.

Proposition 6.7. If n = 2 and m = 2, we have a homotopy equivalence
Rep2(2)B ' F2(C2)× RP3. Hence its cohomology ring is given by

H∗(Rep2(2)B) ∼= H∗(F2(C2))⊗H∗(RP3).

If n = 2 and m ≥ 3, we have

H∗(Rep2(m)B) ∼= H∗(F2(Cm))⊗H∗(Flag(C2))⊗ Λ(s)

where |s| = 2m− 3.
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Proof. The case m = 2 follows from Lemma 6.2. The case m = 3 follows
from Proposition 6.5. �

Remark 6.8. There exists a unique Υm-invariant sub-line bundle Lm of
O⊕2

Rep2(m)B
on Rep2(m)B. The line bundle Lm is obtained by the pull back of

E1 of the universal flag by Rep2(m)B → Flag(C2) in §3.4. In the case m = 2,
we see that 0 6= c1(L2) ∈ H2(Rep2(2)B) ∼= Z/2Z by [Na2] Proposition 4.5.
We also see that L⊗2

2
∼= ORep2(2)B

by [Na2] Proposition 4.7. In the case
m ≥ 3, we have c1(Lm) = t1 ∈ H2(Rep2(m)B) = H2(Flag(C2)) ∼= Z.
6.2. The case n = 3. By Lemma 6.6, the E2m−1-term of the Serre spectral
sequence of the fibre bundle B3(m)′B → Rep3(m)′B → Flag(C3) is given by

E2m−1
∼= H(C)⊗H∗(F3(Cm)).

Then the next nontrivial differential is d4m−5. Since H∗(Flag(C3)) is con-
centrated in even degrees, we see that d4m−5(H(C)) = 0. Hence we obtain
the following proposition:

Proposition 6.9. If n = 3, then we have H∗(Rep3(m)B; k) ∼= H∗(C⊗k)⊗
H∗(F3(Cm); k) as H∗(F3(Cm); k)-modules for any field k.

7. Virtual Hodge polynomial.

For every algebraic scheme over C we can define its virtual Hodge polyno-
mial by virtue of Deligne’s mixed Hodge theory ([De1] and [De2]). In this
section, we calculate the virtual Hodge polynomials of the algebraic vari-
eties Bn(m)B, Chn(m)B, and Repn(m)B over C. By these calculations we
can determine the virtual Poincaré polynomials of the moduli of absolutely
irreducible representations of degree 2 for free monoids (See [Na3]).
7.1. Definition of virtual Hodge polynomial. In this subsection, we
give a survey on virtual Hodge polynomials. More precisely, see [DK],
[Ch1], [Ch2] and so on.

For an algebraic scheme X over C, we can define the virtual Hodge poly-
nomial H(X;x, y) of X in Z[x, y] which satisfies the following properties:

(1) For a smooth projective variety X over C,

H(X;x, y) =
∑
p,q

hp,q(X)xpyq,

where hp,q(X) is the (p, q)-th Hodge number of X.
(2) Let U be a Zariski open subset of X. Set Z := X \ U . Then we have

H(X;x, y) = H(U ;x, y) +H(Z;x, y).

(3) Let f : E → B be a fibre bundle with fibre F which has a local
trivialization with respect to Zariski topology. Then we have

H(E;x, y) = H(B;x, y)H(F ;x, y).
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(4) For a bijective morphism f : X → Y , H(X;x, y) = H(Y ;x, y).

Remark 7.1. For the virtual Hodge polynomial H(X;x, y) of an algebraic
scheme X over C, we call the polynomial H(X; t, t) ∈ Z[t] the virtual
Poincaré polynomial of X. See also [Fu] §4.5 for virtual Poincaré poly-
nomials.

Example 7.2. By the above properties we easily obtain

H(Pn;x, y) = 1 + xy + x2y2 + · · ·+ xnyn,

H(Cn;x, y) = xnyn.

Notation 7.3. In the sequel, we put z = xy.

Let us calculate several virtual Hodge polynomials.

Example 7.4. The virtual Hodge polynomial of GLn(C) can be calculated
as follows: The group GLn(C) acts on Pn−1 canonically. The stabilizer of
(1 : 0 : · · · : 0) is isomorphic to GLn−1(C)×GL1(C)× Cn−1 as an algebraic
scheme. By considering the fibre bundle GLn−1(C) × GL1(C) × Cn−1 →
GLn(C) → Pn−1, we have

H(GLn(C)) = H(GLn−1(C))H(GL1(C))H(Cn−1)H(Pn−1).

Since H(GL1(C)) = z − 1, we obtain

H(GLn(C)) = z(n−1)n/2
n∏
k=1

(zk − 1)

by induction. We also have

H(PGLn(C)) = z(n−1)n/2
n∏
k=2

(zk − 1)

by the fibre bundle GL1(C) → GLn(C) → PGLn(C).

Let X be an algebraic scheme over C. We calculate the virtual Hodge
polynomial of the configuration space Fn(X) ofX. The following proposition
has been proved in [FM] Proposition 2.1, essentially.

Proposition 7.5. Let H(X) be the virtual Hodge polynomial of X. Then
the virtual Hodge polynomial H(Fn(X)) of Fn(X) is given by

H(Fn(X)) =
n−1∏
k=0

(H(X)− k).

Proof. We prove the statement by induction on n. If n = 1, then it is obvious
since F1(X) = X. Suppose that the statement is true until n−1. The scheme
X ×Fn−1(X) is a disjoint union of Fn(X) and (n− 1) pieces of subschemes
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which are isomorphic to Fn−1(X). Hence we have H(X)H(Fn−1(X)) =
H(Fn(X)) + (n− 1)H(Fn−1(X)), which easily follows the statement. �

As a corollary, we have:

Corollary 7.6. The virtual Hodge polynomial H(Fn(Cm)) of the configura-
tion space Fn(Cm) is given by

H(Fn(Cm)) =
n−1∏
k=0

(zm − k).

7.2. The virtual Hodge polynomial of the moduli of representa-
tions with Borel mold. In this subsection, we calculate the virtual Hodge
polynomials of Bn(m)B, Chn(m)B, and Repn(m)B.

By Proposition 3.6 we see that Bn(m)B → Fn(Cm) is a fibre bundle with
fibre (Cm \ C1)n−1 × (Cm)(n−1)(n−1)/2 over C. Hence we have:

Proposition 7.7. The virtual Hodge polynomial H(Bn(m)B) of Bn(m)B is
given by

H(Bn(m)B) = (zm − z)n−1zm(n−2)(n−1)/2
n−1∏
k=0

(zm − k).

Proposition 3.8 follows that Chn(m)B → Fn(Cm) is a fibre bundle with fi-
bre Pm−2×(Cm−1)(n−2)(n−1)/2 over C. We also see that Bn(m)B → Chn(m)B
is a Bn(C)-principal fibre bundle with respect to Zariski topology. From
these facts we have:

Proposition 7.8. The virtual Hodge polynomial H(Chn(m)B) of Chn(m)B
is given by

H(Chn(m)B) =
(zm−1 − 1)n−1

(z − 1)n−1
z(m−1)(n−2)(n−1)/2

n−1∏
k=0

(zm − k).

By the fact that Repn(m)B → Chn(m)B is a PGLn(C)-principal fibre
bundle with respect to Zariski topology, we can calculate H(Repn(m)B) as
follows:

Proposition 7.9. The virtual Hodge polynomial H(Repn(m)B) is given by

H(Repn(m)B) =
(zm − z)n−1

(z − 1)n−1
zm(n−2)(n−1)/2

n−1∏
k=0

(zm − k)
n∏
k=2

(zk − 1).
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8. Remarks on the case m = ∞.

There is a natural inclusion map Bn(m)B ↪→ Bn(m+1)B given by (A1, . . . ,
Am) 7→ (A1, . . . , Am, 0). Then we see that this map also induces natural
inclusion maps Chn(m)B ↪→ Chn(m+ 1)B and Repn(m)B ↪→ Repn(m+1)B.
We define the spaces Bn(∞)B,Chn(∞)B and Repn(∞)B to be the homotopy
direct limits (telescopes) of the following systems, respectively:

Bn(2)B ↪→ Bn(3)B ↪→ · · · ↪→ Bn(m)B ↪→ · · ·

Chn(2)B ↪→ Chn(3)B ↪→ · · · ↪→ Chn(m)B ↪→ · · ·

Repn(2)B ↪→ Repn(3)B ↪→ · · · ↪→ Repn(m)B ↪→ · · · .

In this section we study Bn(∞)B,Chn(∞)B and Repn(∞)B.
The inclusion Cm ↪→ Cm+1 given by (z1, . . . , zm) 7→ (z1, . . . , zm, 0) defines

an inclusion Fn(Cm) ↪→ Fn(Cm+1). We denote by Fn(C∞) the homotopy
direct limit of the system

Fn(C2) ↪→ Fn(C3) ↪→ · · · ↪→ Fn(Cm) ↪→ · · · .

The following lemma follows from Lemma 4.2 and the fact that the con-
figuration space Fn(Cm) is (2m− 2)-connected.

Lemma 8.1. Fn(C∞) and Bn(∞)B are weakly contractible.

We recall that there is a fibre bundle

(CPm−2)n−1 −→ Chn(m)′B −→ Fn(Cm).

By the long exact sequence of homotopy groups associated with the fibre
bundle, (CPm−2)n−1 → Chn(m)′B induces isomorphisms of homotopy groups
up to dimension 2m− 3. There is a commutative diagram

(CPm−2)n−1 −→ Chn(m)′B −→ Chn(m)By y y
(CPm−1)n−1 −→ Chn(m+ 1)′B −→ Chn(m+ 1)B,

where the vertical arrows are natural inclusions. This diagram induces a
map

(CP∞)n−1 −→ Chn(∞)′B −→ Chn(∞)B.

Proposition 8.2. (CP∞)n−1 → Chn(∞)B is a weak homotopy equivalence.

Proof. Since (CPm−2)n−1 → Chn(m)′B is a homotopy equivalence up to
dimension 2m − 3, the map (CP∞)n−1 → Chn(∞)′B is a weak homotopy
equivalence. The homotopy equivalence Chn(m)′B ↪→ Chn(m)B implies that
Chn(∞)′B → Chn(∞)B is a weak homotopy equivalence. �
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The homotopy direct limit of the fibre bundles TR → Bn(m)′B → Chn(m)′B
is a model of universal principal TR-bundle.

Corollary 8.3. The cohomology of Chn(∞)B is given by

H∗(Chn(∞)B) ∼= Z[t1, . . . , tn−1],

where the degree of ti is 2 for i = 1, . . . , n− 1.

We recall that there is a map from Repn(m)B to Flag(Cn) which is com-
patible with the inclusions Repn(m)B ↪→ Repn(m + 1)B. Hence we obtain
a map Repn(∞)B → Flag(Cn).

Proposition 8.4. Repn(∞)B → Flag(Cn) is a weak homotopy equivalence.
Hence the cohomology ring of Repn(∞)B is given by

H∗(Repn(∞)B) ∼= Z[t1, . . . , tn]/(c1, . . . , cn).

Proof. The fibre of Repn(m)B → Flag(Cn) is Bn(m)B. Then the proposition
follows from Lemma 8.1. �
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