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SEPARATION OF GLOBAL SEMIANALYTIC SUBSETS OF
2-DIMENSIONAL ANALYTIC MANIFOLDS

F. BROGLIA AND F. PIERONI

In this paper we prove that two global semianalytic subsets
of a real analytic manifold of dimension two are separable
if and only if there is no analytic component of the Zariski
closure of the boundary which intersects the interior of one
of the two sets and they are separable in a neighbourhood of
each singular point of the boundary.

‘We show also that, unlike in the algebraic case, the obstruc-
tions at infinity are not relevant.

Introduction.

This paper is mainly concerned with the problem of separation for a special
class of semianalytic subsets of an analytic surface M, namely the global
semianalytic sets, i.e., semianalytic subsets admitting a description of the

type

P
S=|J{x € M|fi(z) =0,gu(z) > 0,...,gir,(z) > O}.
i=1
Two such semianalytic subsets A and B are said to be separable if there
exists an analytic function f € O(M) such that f(A) > 0 and f(B) < 0.

If there exists a nonzero analytic function f € O(M) such that f(A4) >0
and f(B) <0, A and B are said to be generically separable, equivalently A
and B are generically separable if there exists a proper global analytic set
Y C M such that A\ Y and B \Y are separable.

Of course A and B cannot be separated if AN B # (), exactly as they
cannot be generically separated if AnB # 0.

As in the algebraic case, it is easy to realize that two open sets, even if
they are disjoint, are in general not separable, as for instance the open sets
as in Figure 1.

The separation problem makes sense also for constructible subsets of the
real spectrum of a ring and this problem has been solved by Brocker in terms
of finite spaces of orderings (see [ABR96]).

In the algebraic setting, in view of the Artin-Lang property, which acts
as a translator between semialgebraic sets and constructible sets in the real
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Figure 1.

spectrum of the ring of regular functions, this result makes it possible to
characterize completely the geometric obstructions to separation.

Unfortunately the Artin-Lang property does not hold in general for the
ring O(M) of global analytic functions (see [AB90]) and it has been proved
only for the field of meromorphic functions on an analytic manifold of di-
mension 2 (see [Cas94al).

One among the reasons is the presence in Spec,O(M) of the so-called
unbounded orderings, whose associated ultrafilter does not converge to a
point.

In this paper we prove that these orderings (at least in dimension 2) have
no role in such type of problems: In fact we prove that A and B can be
separated in a surface M if and only if they are separated in any compact
set: This is essentially because of the fact that we can use in this setting
Whitney approximation theorem.

This is one of main differences between the algebraic and the analytic
cases: In fact it is easy to see that the last statement does not hold for
semialgebraic sets, for instance, if we consider A and B as in Figure 2.

Figure 2.

We handle the separation problem in a rather direct way; we find (see
Theorem 2.3 and Theorem 4.2) that the obstructions lie in the boundary of
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the sets A and B and that it is possible to list them in a similar way as in
the algebraic case. Each one produces an obstruction for the separation of
the associated constructible sets in the real spectrum which does not involve
unbounded orderings.

The same methods apply to the basicness problem.

1. Generic equations for global analytic sets of codimension one.

The aim of this section is to prove the following theorem:

Theorem 1.1. Let M C R" be a connected real analytic manifold and let
Y C M be a global analytic set such that its irreducible components have all
codimension one. Then, there is a global analytic set Y' C M such that the
ideal J(Y UY') = {f € O(M)|fiyuy’ = 0} is principal. Moreover we can
assume Y’ to be smooth and dimY NY’' < dimY'.

Before proving the theorem we recall that a global analytic set Y ad-
mits coherent structures and admits complexifications, i.e., there exists a
coherent ideal sheaf F C O such that Y = Supp Oj;/F and there exists
a complex analytic space Y in a complexification M of M (in the sense of
[Tog67], being M a manifold) such that ¥ N M = Y; moreover this three
properties (being global, admitting a coherent structure, being the real part
of a complex analytic set) are equivalent.

One can prove that among those coherent sheaves there is a largest one,
say still &F; also among those complex analytic sets there is a smallest one,
say still Y. Moreover Jy = F®rC, ie., they define on Y the same structure,
the so called well reduced structure (cf. [ABT75], [Gal76]).

Lemma 1.2. Let J be the sheaf generated by the germs of the elements in
IY) ={f € O(M)|fiy =0}. J is a locally principal coherent sheaf of ideals.

Proof. The fact that J is coherent is known, cf. [Fri67], we want to prove
that it defines on Y the well reduced structure. Indeed, let G C O, be a
coherent ideal sheaf such that Y = Supp O);/G. By Cartan’s Theorem A,
the stalk of G in each point is generated by global sections. Each f € T'(M, 9)
vanishes on Y, and then § C J as wanted.

So, we can find complexifications M, Y of M and Y such that Y has pure
codimension one in M and Jy = J ®g C. Hence J ®g C is locally principal
and this implies the same for J. O

Let’s recall a general result for analytic vector bundles.

Lemma 1.3. Let { = (E,m, M) be an analytic vector bundle of rank k and
let 0 : M — E be a C*® section. Consider C*°(M,E) endowed with the
Whitney topology. Then each neighbourhood U of o in C*°(M, E) contains
a global analytic section.
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Proof. Arguing as in [Tog80] we get finitely many global analytic sections,
g',...,g", such that o = ayg' +---+ang” where ay,...,ay € C°(M,R).
Then, it is possible to find neighbourhoods U; of oy, i« = 1,..., N, such
that Big' + --- + Bng" € U for each ; € U;. Since O(M) is dense in
C*°(M,R) (cf. [Hir94]) we can choose f, ..., Sn analytic and this proves
the claim. O

Proof of Theorem 1.1. By Lemma 1.2 it follows that there exist a locally
finite open covering {U;};c; of M and f; € O(U;) such that J, = f;0, for
each z € Uj; then, f;/f; € O"(U; N U;) for each i, j such that U; NU; # 0.

So, we can construct an analytic line bundle having {U; };cr as its neigh-
bourhoods of trivialization and {f;/f;} as its transition functions. Observe
that a global analytic section of this vector bundle is given by a collection
{si}ier with s; € O(U;) such that s;f; = s;f; on U; N U;j for each i, j such
that U; N U; # 0.

Note that the functions {f;} give a global analytic section f such that
Y = f710) = UV (f;). Let 0 = {o; : U; — R}ics be a C™ section
transverse to the zero section and to the regular part of Y. Such a section
exists by general theory of C* vector bundle, see for instance [Hir94].

By Lemma 1.3 we can appoximate ¢ with a global analytic section g =
{9i}icr with the same properties. This means that Y = U;V (g;) is a smooth
(global) analytic hypersurface of M and it intersects Y in codimension bigger
than one. For each x € Y'NU;, g;, is an irreducible germ such that J(Y”), =
(9i,)0; and f;_,g;, are coprime. We want to prove that Y’ is the global
analytic set we were looking for.

By taking on each open set U; the function h; = f;g; we have a section
of an other line bundle whose transition functions are (f;/fi)% Now, the
exponential map and the associated usual exact sequence

0— O — 0% — O4,/O0%, = Zy — 0,

induce an isomorphism between H!(M,Zs) and H'(M,0};). Under this
isomorphism the image of a line bundle is the cocycle of the signs of its
transition functions, so, this cocycle is trivial and hence the line bundle is
trivial. This means that there exists a zero cocycle {\;} € H°(M,O},)
such that (f;/ fi)? = )\j_l)\i. Then the collection of functions defined on Uj;
by figi\; defines a global analytic function h on M because figi)\i|UimUj =
fi9iAjluinu;. Moreover h generates J(Y U Y'). Indeed, let F' € O(M)
be in J(Y UY”), Lemma 1.2 implies that f; |F, for each z € U; and by
construction it follows that g; |F, for each x € M; since f;, and g;, are
coprime, F' € (h)O(M) as wanted. O

Note that Theorem 1.1 proves that for each global analytic subset Y € M
of codimension one the ideal J(Y') is “generically” principal, i.e., there exists
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a global analytic function, h, vanishing on Y, such that hQ, = J, outside a
global analytic set of dimension strictly lower, that is Y NY”.

Note also that, if H'(M,Zs) = 0, the ideal J(Y) is a principal ideal in
O(M).

As immediate corollaries we have the following propositions:

Proposition 1.4. Let Y C M be a global analytic set such that its irre-
ducible components have all codimension one and let D C M be a discrete
set of points. Then there exists an analytic hypersurface Y' C M such that
Y'ND =0 and (Y UY") C O(M) is principal.

Proof. Choose a C* section o such that o(x) # 0 for each x € D, by
Lemma 1.3 we can approximate it by an analytic section that still has this
property. O

Proposition 1.5. If Y is an irreducible global analytic set of codimension
1 then, the ring O(M) 1 a rank one discrete valuation ring of the field

M(M).

Jo)

Proof. Let Y/ C M be as in Theorem 1.1, and let t € O(M) be a gener-
ator for the ideal J(Y UY’). We want to prove that ¢ generates the ideal
J(Y)O(M)j(y) in O(M)J(Y), moreover each f/g € J(Y)O(M)J(Y) can be
written as t"u with u & J(Y)O(M)j(y) and n € N.

Indeed, let h € O(M) such that h vanishes on Y’ and doesn’t vanish

on Y. We can write fh = ts for some s € O(M); then g = tgih with
s , . . : _
7 € O(M)J(Y). If s doesn’t vanish on Y the claim holds with n = 1.

Otherwise we can repeat the same arguments getting that sh = ts’ for some
s' € O(M), i.e., t?|fh?. Let’s prove that there is a maximun integer n such
that ¢"|fh™. Indeed, choose z € Y such that J(Y;) = (t;) and h(z) # 0,
since Oz 4 is noetherian, there exists a maximum integer n, such that t2*| f,
in particular, being h; a unit, ¢t cannot divide f;h? for n > n, and this
implies our assertion.

Let S € M(M), then f = t"f" and g = t™¢' where f’, ¢’ are units in
g

O(M)j(y). Clearly ; € O(M)J(Y) if and only if n > m and this proves our

claim. 0

2. Separation in a neighbourhood of the boundary.

In this section we will prove some results which make it possible to pass
from separation in a neighbourhood of the boundary to global separation.
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An essential tool is Lojasiewicz’s inequality. It works for compact global
semianalytic sets of any dimension, nevertheless this hypothesis of compact-
ess is not needed in dimension two. The following Theorems 2.1 and 2.2 are
proved in [DC99]:

Theorem 2.1. Let M C RN be a two dimensional real connected analytic
manifold and let S C M be a closed global semianalytic subset. Given f €
O(M) there ezists h € O(M) such that:

L h>0, V() =V(HNS’,
2. h<|f| on S,
3. — extended to zero on V(f) NS is continuous on S.

We shall often use Lojasiewicz’s inequality in the following formulation,
compare [BCR87]| for the algebraic case.

Theorem 2.2. Let S be a closed global semianalytic subset of M, dim M =
2, and let f,g € O(M), then there exists a nonnegative function € € O(M)
such that:

1. (f +eg)(x) has the same sign as f(x), for any x € S,
2. V() CV(ins’.

What follows is the main result of this section:

Theorem 2.3. Let M C RY be a real connected analytic manifold, dim M =
2, and let A, B C M be closed global semianalytic sets such that AN B C
X =Y UD where X is a global analytic set with Y of pure dimension one
and D = {xp }nen discrete.

Assume that there exist a neighbourhood U of Y and a global analytic
function f € O(M) such that

FANU\Y)>0  f(BNU\Y)<O.

Moreover assume that for each n, the semianalytic set germs Ay, \{x,} and
By, \ {xn} are separable, i.e., there exist an open neighbourhood U, of x,
and an analytic function f, € O(U,) such that

fa(AN U\ {zn}) >0 fn(BO U, \ {zn}) <0.

Then there exists F € O(M) that separates A from B outside X, meaning
by this that
F(A\X)>0 F(B\X)<O.

The proof will be done in several steps, the aim being to pass from several
functions separating A and B in a neighbourhood of some piece of X to a
unique global function separating A and B in a neighbourhood of X. Then
we shall pass from the neighbourhood of X to the whole M.
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Lemma 2.4. Let D = {x, }nen be a discrete set of points such that dim(AN
B)., = 0 for each n. Assume that for each n the semianalytic set germs
Az, \{zn} and B, \{zn} are separable. Then, there exists a global analytic
function g € O(M) which separates A from B in a neighbourhood V' of D.

Proof. From the hypothesis, for each n, there exist an open neighbourhood
Uy, of x,, and an analytic function f,, € O(U,,) such that f,(ANU,\{zn}) >0
and f,(BNU, \ {z,}) < 0.

Then, it follows that, on A, U B, , the germ defined by the zero set
V(fn) is contained in {z,}, which is the zero set of ||z — x,||?>. By the local
Lojasiewicz inequality, being A and B closed, there exist an even integer
pn, > 0 and a positive constant ¢ such that

’fn('r)‘ Z CH"L’ - anpn V‘T € Amn U an’

Up to take a bigger p, we can suppose ¢ = 1. Denote by m; the maximal
ideal of the local ring Opr4,. By applying Cartan’s Theorem B we find
a global analytic function g € O(M), such that for all z,, € D we have
g— fn € miﬁ””. Then, there exists an open neighbourhood U, of x,, such
that g(x) has the same sign as f,(x) for any z € (AUB)NU,, so, g separates
A from B in a neighbourhood of D, as wanted. O

Lemma 2.5. Assume there exist a neighbourhood W of X and a global
analytic function ¢ € O(M) such that

ANW\X)>0 ¢BNW\X)<O0.

Then there exists a global analytic function r € O(M) such that g +r sepa-
rates A from B outside X.

Proof. By hypothesis it follows that V(¢) N (AUB)NW C X. Up to shrink
it, we can assume W to be closed. Then, by Theorem 2.1, we can construct
a global analytic function ¢ € O(M) such that t > 0, V(t) = X and ¢ < |g|
on (AUB)NW. We can suppose t < 1 on W.

Let V € V C W be an open neighbourhood of X in M. Since A \ V and
B\V are closed and disjoint, there exists ¢ € C*°(M) such that p(A\V) > 0
and p(B\V) < 0. Let oy : M — R be a C*®-function with o7 *(0) = M\ W,
071 (1) = V and put 03 = 1—01. Then ¢ = o1q+0o2¢ is O and (A\X) > 0
and ¥(B\ X) < 0.

Moreover, since ¥ = g on V the function 7 : M — R defined by

¥(x) —q(z)

2() ifx gV

n(r) =
0 freV

is C'*° and we are to approximate it by an analytic function.
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Take {K,}, a sequence of compact sets in M such that Ky = 0, K,, C
Int(Kp41) and M = U, K,,.

Note that if AUB C V we can take r = 0, so we can suppose (AUB)\V #
0.

Since M = U, K, (AU B) \ V intersects some K,,, and then every K,,
with m > ng. So, after replacing {K,}, by {I}n}n, I?o =0 K, = Kpgin—1,
we can assume ((AU B)\ V)N K41 # 0 for each m.

Set

Sma1 = min{|Y(x)| | v € (AUB)\ V)N Ky} and
tme1 = max{t*(z) | z € (AUB) N Kpy1}.

Note that s;,+1 and t,,+1 are well-defined and strictly positive constants.
Let em+1 € R be a constant such that

K
0 <em+1 <m1n( m+1,1) .
tm—i—l

It is well-defined because t,,+1 > 0.

According to Whitney’s approximation theorem, there exists a global an-
alytic function 7’ such that, for each x € K1\ K, |n(z) —r'(2)| < em1.

We want to prove that r = rt? is the global analytic function we looked
for.

We begin by showing that the analytic function q + r separates A and B
outside V.

For each z € (AU B) \ V we have 9(z) — q(z) = t*(z)n(z) and then, if
x € Ky \ K, we have

[¥(2) = (¢ +7)(@)] = £(@)|(n — ') (@)] < tmrremer < smat.
So g + r has the same sign as ¢ on (AU B) \ V.
Consider now the sign of ¢+ on V. By construction, being n =0 on V,
we have, for each z € V, |r/(z)| < 1 (1 is bigger than e,, for each m).
Soif x € (AUB)NV)\ X we have the following sequence of inequalities:

la(@)] = | () ()] > la(x)] = #*(2) > t(x) — t*(z) > 0.

Note that the first and the last inequalities are strict because ¢(z) # 0 and
t(xz) < 1. It follows that ¢ + r has the same sign as ¢ on (AU B) NV and
this completes the proof. O

Proof of Theorem 2.3. By Lemma 2.4 there is a function g that separates A
and B in a neighbourhood U of D. Then, by Lemma 2.5 it is enough to
glue together the function f of the statement with g, to get a function ¢
separating A and B in a neighbourhood of X.

Let’s see that, up to shrink them, we can assume that U and V are closed
global semianalytic sets. Since D is a discrete set, we can assume U to be
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an union of disjoint balls. Let U = J;c; B; and let f; € O(M) be such
that B; = {f; > 0}. Then the sheaf J, = [];c; fiO, is well-defined and
coherent. We want to prove that J is principal, i.e., there exists a global
analytic function g such that ¢,0, = J, for each x € M. Then we get
U={g>0}orU={g <0}. In order to prove that J is principal we have
to find a locally finite open covering of M, U;, and generators g; for Jjy,,
such that g;/g; is positive on U; N Uj, when U; N U; # (. Choose U; and
gi in this way: Each U; intersects at most a ball, say Bj;); if U; intersects
Bj;) we take g; = fj(;), if it does not intersect any ball and it is contained
in one of them, take g; = 1, else choose g; = —1. The same argument holds
for V because V can be written as a finite union of sets that are unions of
disjoint balls.

h
Let h be a positive equation for Y such that 7 extended to 0 on V(f) N

(AU B)NU, is continuous on (AU B) NU. Such h exists by Theorem 2.1.
Similarly we can find t € O(M), t > 0 and V (t) = D, with the same property
with respect to D and V. We want to prove that the global analytic function

B [, g
q—th<h+t>

has the same sign as i near Y. ht being strictly positive outside X, it is

f

h
assume Y N D = () so, for each z¢p € Y, % is bounded locally at g, while,

x
by construction, lim @

a—wo | h(z)
D. O

enough to prove that )%’ < near Y. It is true because we can clearly

= +o00. Similarly ¢ has the same sign of g near

Remark 2.6. Note that if AN B = D is a discrete set one can remove the
hypothesis on the dimension of M. Indeed, the thesis follows by Lemma 2.4
which holds without any dimension hypothesis and by Lemma 2.5 that, in
this situation, can be proved using only the local Lojasiewicz inequality.

A consequence of these results is the following;:

Proposition 2.7. Let A, B be closed semianalytic subsets of M such that
dimA =1 and dimANB = 0. Then A and B can be separated outside
ANB.

Proof. Tt is enough to prove that, for each x € AN B, there exist a neigh-
bourhood U” of z and f, € O(U”) such that f,(ANU*\ {z}) > 0 and
fz(BNU*\ {z}) <0 and this is true by [Rui84]. O
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3. Generic separation versus separation.

In this section we prove that generic separation and separation are “almost”
equivalent in dimension two, the proof uses essentially the same methods as
in the algebraic and local analytic cases, cf. [ABF96], [ABR96, Chapter
3].

Obviously, separation implies generic separation but the converse is not
true, as it is easily seen by taking for instance the sets in R?:

A = {(z,y)0<z<l,y>0}U{(z,y)|0 <z <1/2,y =0}
B = {(z,y)|0<z<ly<0}U{(x,y)|l/2<x<1,y=0}.

A and B are disjoint global semianalytic sets, they are obviously generically
separable by the function f = y but any function generically separating A
and B must vanish at some points lying in AU B and therefore they cannot
be separated.

Note that any function f which generically separates two global semian-
alytic sets, A and B, must vanish identically on A N B and therefore on
AN EZ. Then a necesssary condition for A and B to be separated is that
AN FZ N (AU B) is empty.

We shall prove that this condition is also sufficient. This result follows
from next theorem which shows that, given two generically separable sets,
there exists a “minimal” set outside which they are separable.

Theorem 3.1. Let A, B be global semianalytic subsets of M, dim M = 2.
Assume they are generically separable, then, there exists f € O(M) such
that

FANANB)>0 f(B\ANB )<o.

Proof. Suppose that f € O(M) separates generically A and B, that is,

there is a proper analytic subset W C M such that f(A\ W) > 0 and

f(B\ W) < 0. After replacing W by {f =0} N (AU B)Z, Wwe may assume

that W =W N (AUB)~
=7z

We write W = ANB UW’'UD where W’ and D are respectively the

union of all the irreducible global components of dimension one and zero not

lying in AN EZ. Suppose first W’ # (). Then, ANW’ and BNW' are global
semianalytic sets of dimension one which intersect each other in dimension
zero. By Proposition 2.7, there exists h € O(M) separating them. Consider
the closed set S = (AN{h <0})U(BN{h>0}). S is global semianalytic
because the closure of a global semianalytic set of M is global, ([CA96]).
By Theorem 2.2 there exists a nonnegative analytic function e € O(M) such
that ¢ = f 4+ eh has the same sign as f on S, and with the zero set of

VA 7
e contained in V(f) NS . Thus we get that g separates A\ ANB and

and f vanishes on W.
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=7z
B\ ANB up to the discrete set D. In order to remove the set D it is

enough to apply two more times Theorem 2.2. We split D as Dy U Dy where
Dy =DnNnAand Dy = DN B. In order to remove Dy apply Theorem 2.2

to the functions g and 1 with respect to B to obtain a function n € O(M)
=7z =z
such that (¢ +7)(A\N\ANB )>0and (9+n)(B\(D2UANB ))<0. A

second application of the same theorem to g+ n and —1 removes Ds, giving
-7
a function £ such that g +n — £ separates A and B outside ANB .

This last argument can be used also when W' = (). O

Corollary 3.2. Let A, B be global semianalytic subsets of M, dim M = 2,
assume that

ZOEZH(AUB):@

Then, A and B are separable if and only if they are generically separable.
In particular if A and B are open they are separable if and only if they are
generically separable.

Proof. Let’s prove the last statement. One implication is trivial, for the
iz
other we have to prove that AN B does not intersect A U B. Since A

and B are open, an analytic component of ZQEZ, say W, intersecting
one of the two sets has to intersect it in dimension one. This contradicts
the hypothesis that A and B are not generically separable. Indeed, let t €
O(M) be an uniformizer for O(M)J(W) (cf. Theorem 1.5), then any possible
function f generically separating A and B can be written as f = t"u,
with u ¢ J(W)O(M)j(w). Since W C ZHEZ, m has to be odd, since W

intersects the interior of one of the two sets m has to be even. O

4. Separation and walls.

Let A, B be global semianalytic subsets in M, dim M = 2, such that ANB =
0.

We recall that the boundary of a global semianalytic subset S C M,
0S8 =8\ S , is a semianalytic set of dimension < 1 contained in the zero set
of the product of the functions appearing in any description of S. Therefore,
0S is global by [Cas94b].

Set Y the Zariski closure of 9A U 9B . Note that 0A U 0B being global,
Y is a proper analytic subset of M.

Definition 4.1. We will call a wall any irreducible component of Y of di-
mension one. We say that a wall W is odd if there is a 1-dimensional subset
W' C W which is contained in AN B. We say that a wall W is even if there

is a 1-dimensional subset W/ C W which is contained in A or B.
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Note that walls may be neither odd nor even, also they can be both odd
and even, as for istance in the proof of Corollary 3.2.

For any odd (resp. even) wall W, let ¢ € O(M) be an uniformizer for
oM )J (W then any possible function f generically separating A and B can
be written as f = t"u, with u ¢ J(W)O(M)j(w)
possibly zero). It is clear that the parity of m doesn’t depend on the choice
of the generator.

In the right-hand of Figure 1 there is an example of an odd and even wall.
Obviously, if some wall W is simultaneously odd and even A and B can not
be generically separable, we want to show that the converse is “almost” true.

and m odd (resp. even,

Theorem 4.2. Let A, B be open global disjoint semianalytic subsets of M,

[E— —_ iz
dimM =2, setY = 9A7 UOB” and Z =ANB . Then A and B can be
separated if and only if the following conditions hold:

1. No wall of A and B is simultaneously odd and even.
2. For every x € Sing Y the semianalytic set germs A, and B, are
(generically) separated.

Denote by Y the union of odd walls of Y. Assuming Conditions 1 and 2
of Theorem 4.2 let’s prove the following:

Lemma 4.3. Let X C M be an analytic set such that J(XUY ) is principal,
X NSing Y is empty, X NY s discrete. Let g € O(M) be a generator for
J(Y°U X) and denote by A9 and BY the sets

A ={zx e Alg(z) >0} U{x € B|g(x) <0}
BY ={z € Alg(xz) <0} U {z € Blg(z) > 0}.

[ —_— iz
Set Y9 = QA9 ZU@BQZ, Z9 = A9N BY |, then the following assertions hold:

1. Y9CXUY.

2. Z9 C X USing Y, in particular for any x ¢ X, dim Z3 < 0.

3. For each x € Sing Y the semianalytic sets germs A9, \ {x} and B9, \
{z} are separable.

Proof. 1. Since X UY is a global analytic set, it is enough to prove that
0A9 U OBY is contained in it.
Fix z € QA9 = A9\ A9. Since A9 C AUB, x € AU B. Suppose
xr €A Ifx g A, x € OA, then x € Y. So we can assume = € A
and this implies g(z) < 0. We want to prove that g(z) = 0. Suppose
g(z) < 0, being A open, we can find a neighbourhood U, of z contained
in AN{g < 0}. Since AN B = (), we have that U, N A9 = ), which
contradicts the hypothesis z € A9. We argue similarly for € B and
for x € 0BY.
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2. Note that Z9 C (YY9)¢ U Sing Y'Y, since Sing Y9 is contained in X U
Sing Y, it is enough to prove that (Y9)¢ is contained in X, i.e., no wall
in Y is odd with respect to A9 and BY.

Take a wall W C Y. If it is odd with respect to A and B then
W C V(g), hence it is even with respect to A9 and BY. It cannot
be odd, because if so the same argument shows that W is even with
respect to (A9)9 = A and (BY)9 = B; this is not the case by hypothesis.
If W is not odd then g does not change sign through W, so W is not
odd with respect to A9 and BY.

The second statement in 2) is clear.

3. Fix x € Sing Y. Since XNSing Y =0, x ¢ X hence dim(A9NBY), < 0.
By hypothesis A, and B, are generically separable, say by f, € O,.
Then, f.g generically separates A% and BJ. This implies that A9/{z}
and BY9/{x} are separable, (cf. [ABR96]).

O

Remark 4.4. Note that A and B are separable if and only if A9 and BY
are so. Note also that, if the ideal of Y¢ is principal, i.e., X = (), A9 and BY
intersect each other only in a discrete set of points contained in Sing Y.

Proof of Theorem 4.2. One implication is trivial, we want to prove the other.
Denote by D the discrete set AN B/Y¢, D C Sing Y. By Theorem 2.3 we
know that it is enough to separate AN U/Y® and BN U/Y® where U is
a neighbourhood of Y€, since A,/{x} and B,/{z} are separeted for any
x € D C Sing Y by hypothesis. By Theorem 3.1, it is enough to separate
ANU and BNU (we can always assume U N D = (). Let X; and X»
be analytic sets as in Lemma 4.3, ie., J(Y°U X;) = (¢:)On, X;NY is a
discrete set, ¢ = 1,2 and X; N Xo N Sing Y = (). Then we have the sets
Al = A% B'=BY% Y'=YY% and Z' = Z9%, i = 1,2. We have that A and
B are separable in U iff A® and B? are separable in U, i = 1,2. As above,
by Thoerem 2.3 and Theorem 3.1, it is enough to prove that (A*NU),/{z}
and (BN U),/{x} are separable for each x € A’ N B*/(Y!)¢ and that A’
and B are separable in U NV}, where V; is a neighbourhood of X;, i = 1,2.
Since the first assertion is verified by Lemma 4.3, A’ and B’ are separable in
U if and only if the second one holds. More precisely, A and B are separable
in U, iff A' and B! are separable in U N V7, iff A2 and B? are separable in
UNVi. But A2NB2NU NV, is empty, up to shrink U and Vi, so A? and
B? are actually separated in U NV} and this in turn implies the thesis. O

As a consequence of our criterion we obtain:

Theorem 4.5. A and B are separable if and only if they are separable in
any compact set.
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This is completely different of what happens in the algebraic case where
the behaviour at infinity is decisive for the separarion of semialgebraic sets,
as the example in Figure 2 shows. It remains true that the important in-
formation is at the boundary but they may be hidden and appear only
after compactifying and doing some blow ups, more precisely in a compact
model of the variety where the semialgebraic sets are at normal crossings,
see [AAB99]. (The field of meromorphic functions on an analytic mani-
fold is not preserved under blowing ups, so there is no special model of M
suitable to study A and B.)

Remark 4.6. We want to justify the assertion in the introduction that
unbounded orderings are not useful. This is clear if the obstruction is a point.
If W is a wall simultaneously odd and even, take two points x1, xo € W such
that W is odd in a neighbourhood of x; and even in a neighbourhood of
x9 and take two orderings in Spec, Frac ((‘)(M)j(w)/ﬂ(W)j(W)) centered

respectively in z; and 3. Since O(M) is a discrete valuation ring, cf.

Jw
Proposition 1.5, arguing as in [ABV94],(it is easy to lift these two orderings
to a four element fan in Spec, M (M) where the corresponding constructible
sets A and B are not separable. By construction the four orderings in this
fan are bounded. Bearing in mind the Artin-Lang property, which holds in

Spec, M (M), we can resume all this in the following:

Theorem 4.7. Two global semianalytic sets A and B in a 2-dimensional
analytic manifold M can be separated if and only if the associated con-
structible sets A, B C Spec,M(M) are separable in any 4-elements fan made
of bounded orderings.

5. Basicness for global semianalytic sets.

We can use the criterion for separation of the above section to prove a
similar result for another kind of problems: Basicness and principality of
global semianalytic sets.

Theorem 5.1. Let S C M be an open global semianalytic set. Then, S is
basic open (resp. principal open) if and only if the following conditions hold:

1. If a wall is simultaneously Oodd and even with respect to S and M \ S

then, it does not intersect S.

2. For each x € Sing 957 the semianalytic set germ S, is basic open.
Resp.

3. No wall is simultaneously odd and even with respect to S and M \ S.
Proof. Let’s prove the statement about basicness. One implication is trivial,

we want to prove the other. Since M \ S is an open global semianalytic set,
it is a finite union of basic open sets, say By U --- U B,., such a description
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is possible by [Cas94b]. We want to prove that S can be separated from
each B;.

Fixie{l,...,r} and set ¥; = %ZUTBZ-Z. It is enough to prove that no
wall in Y; is simultaneously odd and even with respect to S and B; and that,
for each x € Sing Y;, the semianalytic set germs S, and B; , are separable.
Let W C Y; be an odd wall, this means that there exists an arc containgd

in SN B;. If W is even, we can find another arc contained in S or in B;.
The first assertion contradicts Hypothesis 1, the second the basicness of B;.
This proves that no odd wall can be even.

Since two open basic semianalytic set germs in dimension 2 can always
be separated, cf. [ABR96], it is enough to prove that B;, and S, are basic
for each = € Sing Y;. This is true by Hypothesis 2 (note that S, is principal
if = & Sing ﬁz).

Hence, we can find f; € O(M) such that f;(S) > 0 and f;(B;) < 0. Then,
S={f1>0,....,f >0} Indeed, if ¢ S, x € B; for some i € {1,...,7}
and this implies that f;j(z) <0 for some i € {1,...,7}.

As it concerne the statement about principality, with the same argument
we can separate S from M \ S proving that S is principal. O

Arguing as in Remark 4.6, we see that unbounded orderings are again
useless for the basicness and principality properties, more precisely:

Theorem 5.2. i4n open globcﬂ semianalytic set S is basic open (principal)
if and only if #S N F # 3 (#SNF # 1,3) for any 4-elements fan F made
of bounded orderings.
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