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In this paper we prove that two global semianalytic subsets
of a real analytic manifold of dimension two are separable
if and only if there is no analytic component of the Zariski
closure of the boundary which intersects the interior of one
of the two sets and they are separable in a neighbourhood of
each singular point of the boundary.

We show also that, unlike in the algebraic case, the obstruc-
tions at infinity are not relevant.

Introduction.

This paper is mainly concerned with the problem of separation for a special
class of semianalytic subsets of an analytic surface M , namely the global
semianalytic sets, i.e., semianalytic subsets admitting a description of the
type

S =
p⋃

i=1

{x ∈M |fi(x) = 0, gi1(x) > 0, . . . , giki
(x) > 0}.

Two such semianalytic subsets A and B are said to be separable if there
exists an analytic function f ∈ O(M) such that f(A) > 0 and f(B) < 0.

If there exists a nonzero analytic function f ∈ O(M) such that f(A) ≥ 0
and f(B) ≤ 0, A and B are said to be generically separable, equivalently A
and B are generically separable if there exists a proper global analytic set
Y ⊂M such that A \ Y and B \ Y are separable.

Of course A and B cannot be separated if A ∩ B 6= ∅, exactly as they
cannot be generically separated if Å ∩ B̊ 6= ∅.

As in the algebraic case, it is easy to realize that two open sets, even if
they are disjoint, are in general not separable, as for instance the open sets
as in Figure 1.

The separation problem makes sense also for constructible subsets of the
real spectrum of a ring and this problem has been solved by Bröcker in terms
of finite spaces of orderings (see [ABR96]).

In the algebraic setting, in view of the Artin-Lang property, which acts
as a translator between semialgebraic sets and constructible sets in the real
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Figure 1.

spectrum of the ring of regular functions, this result makes it possible to
characterize completely the geometric obstructions to separation.

Unfortunately the Artin-Lang property does not hold in general for the
ring O(M) of global analytic functions (see [AB90]) and it has been proved
only for the field of meromorphic functions on an analytic manifold of di-
mension 2 (see [Cas94a]).

One among the reasons is the presence in SpecrO(M) of the so-called
unbounded orderings, whose associated ultrafilter does not converge to a
point.

In this paper we prove that these orderings (at least in dimension 2) have
no role in such type of problems: In fact we prove that A and B can be
separated in a surface M if and only if they are separated in any compact
set: This is essentially because of the fact that we can use in this setting
Whitney approximation theorem.

This is one of main differences between the algebraic and the analytic
cases: In fact it is easy to see that the last statement does not hold for
semialgebraic sets, for instance, if we consider A and B as in Figure 2.

A

B

Figure 2.

We handle the separation problem in a rather direct way; we find (see
Theorem 2.3 and Theorem 4.2) that the obstructions lie in the boundary of
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the sets A and B and that it is possible to list them in a similar way as in
the algebraic case. Each one produces an obstruction for the separation of
the associated constructible sets in the real spectrum which does not involve
unbounded orderings.

The same methods apply to the basicness problem.

1. Generic equations for global analytic sets of codimension one.

The aim of this section is to prove the following theorem:

Theorem 1.1. Let M ⊂ Rn be a connected real analytic manifold and let
Y ⊂M be a global analytic set such that its irreducible components have all
codimension one. Then, there is a global analytic set Y ′ ⊂M such that the
ideal I(Y ∪ Y ′) = {f ∈ O(M)|f|Y ∪Y ′ = 0} is principal. Moreover we can
assume Y ′ to be smooth and dimY ∩ Y ′ < dimY .

Before proving the theorem we recall that a global analytic set Y ad-
mits coherent structures and admits complexifications, i.e., there exists a
coherent ideal sheaf F ⊂ OM such that Y = Supp OM/F and there exists
a complex analytic space Ỹ in a complexification M̃ of M (in the sense of
[Tog67], being M a manifold) such that Ỹ ∩M = Y ; moreover this three
properties (being global, admitting a coherent structure, being the real part
of a complex analytic set) are equivalent.

One can prove that among those coherent sheaves there is a largest one,
say still F; also among those complex analytic sets there is a smallest one,
say still Ỹ . Moreover IeY = F⊗RC, i.e., they define on Y the same structure,
the so called well reduced structure (cf. [ABT75], [Gal76]).

Lemma 1.2. Let I be the sheaf generated by the germs of the elements in
I(Y ) = {f ∈ O(M)|f|Y = 0}. I is a locally principal coherent sheaf of ideals.

Proof. The fact that I is coherent is known, cf. [Fri67], we want to prove
that it defines on Y the well reduced structure. Indeed, let G ⊂ OM be a
coherent ideal sheaf such that Y = Supp OM/G. By Cartan’s Theorem A,
the stalk of G in each point is generated by global sections. Each f ∈ Γ(M,G)
vanishes on Y , and then G ⊂ I as wanted.

So, we can find complexifications M̃ , Ỹ of M and Y such that Ỹ has pure
codimension one in M̃ and IeY = I ⊗R C. Hence I ⊗R C is locally principal
and this implies the same for I. �

Let’s recall a general result for analytic vector bundles.

Lemma 1.3. Let ξ = (E, π,M) be an analytic vector bundle of rank k and
let σ : M → E be a C∞ section. Consider C∞(M,E) endowed with the
Whitney topology. Then each neighbourhood U of σ in C∞(M,E) contains
a global analytic section.
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Proof. Arguing as in [Tog80] we get finitely many global analytic sections,
g1, . . . , gN , such that σ = α1g

1 + · · ·+αNg
N where α1, . . . , αN ∈ C∞(M,R).

Then, it is possible to find neighbourhoods Ui of αi, i = 1, . . . , N , such
that β1g

1 + · · · + βNg
N ∈ U for each βi ∈ Ui. Since O(M) is dense in

C∞(M,R) (cf. [Hir94]) we can choose β1, . . . , βN analytic and this proves
the claim. �

Proof of Theorem 1.1. By Lemma 1.2 it follows that there exist a locally
finite open covering {Ui}i∈I of M and fi ∈ O(Ui) such that Ix = fiOx for
each x ∈ Ui; then, fi/fj ∈ O∗(Ui ∩ Uj) for each i, j such that Ui ∩ Uj 6= ∅.

So, we can construct an analytic line bundle having {Ui}i∈I as its neigh-
bourhoods of trivialization and {fj/fi} as its transition functions. Observe
that a global analytic section of this vector bundle is given by a collection
{si}i∈I with si ∈ O(Ui) such that sifj = sjfi on Ui ∩ Uj for each i, j such
that Ui ∩ Uj 6= ∅.

Note that the functions {fi} give a global analytic section f such that
Y = f−1(0) = ∪iV (fi). Let σ = {σi : Ui → R}i∈I be a C∞ section
transverse to the zero section and to the regular part of Y . Such a section
exists by general theory of C∞ vector bundle, see for instance [Hir94].

By Lemma 1.3 we can appoximate σ with a global analytic section g =
{gi}i∈I with the same properties. This means that Y ′ = ∪iV (gi) is a smooth
(global) analytic hypersurface of M and it intersects Y in codimension bigger
than one. For each x ∈ Y ′∩Ui, gix is an irreducible germ such that I(Y ′)x =
(gix)Ox and fix , gix are coprime. We want to prove that Y ′ is the global
analytic set we were looking for.

By taking on each open set Ui the function hi = figi we have a section
of an other line bundle whose transition functions are (fj/fi)2: Now, the
exponential map and the associated usual exact sequence

0 → OM → O∗
M → O∗

M/O
+
M = Z2 → 0,

induce an isomorphism between H1(M,Z2) and H1(M,O∗
M ). Under this

isomorphism the image of a line bundle is the cocycle of the signs of its
transition functions, so, this cocycle is trivial and hence the line bundle is
trivial. This means that there exists a zero cocycle {λi} ∈ H0(M,O∗

M )
such that (fj/fi)2 = λ−1

j λi. Then the collection of functions defined on Ui

by figiλi defines a global analytic function h on M because figiλi|Ui∩Uj =
fjgjλj |Ui∩Uj . Moreover h generates I(Y ∪ Y ′). Indeed, let F ∈ O(M)
be in I(Y ∪ Y ′), Lemma 1.2 implies that fix |Fx for each x ∈ Ui and by
construction it follows that gix |Fx for each x ∈ M ; since fix and gix are
coprime, F ∈ (h)O(M) as wanted. �

Note that Theorem 1.1 proves that for each global analytic subset Y ⊂M
of codimension one the ideal I(Y ) is “generically” principal, i.e., there exists
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a global analytic function, h, vanishing on Y , such that hOx = Ix outside a
global analytic set of dimension strictly lower, that is Y ∩ Y ′.

Note also that, if H1(M,Z2) = 0, the ideal I(Y ) is a principal ideal in
O(M).

As immediate corollaries we have the following propositions:

Proposition 1.4. Let Y ⊂ M be a global analytic set such that its irre-
ducible components have all codimension one and let D ⊂ M be a discrete
set of points. Then there exists an analytic hypersurface Y ′ ⊂ M such that
Y ′ ∩D = ∅ and I(Y ∪ Y ′) ⊂ O(M) is principal.

Proof. Choose a C∞ section σ such that σ(x) 6= 0 for each x ∈ D, by
Lemma 1.3 we can approximate it by an analytic section that still has this
property. �

Proposition 1.5. If Y is an irreducible global analytic set of codimension
1 then, the ring O(M)I(Y )

is a rank one discrete valuation ring of the field
M(M).

Proof. Let Y ′ ⊂ M be as in Theorem 1.1, and let t ∈ O(M) be a gener-
ator for the ideal I(Y ∪ Y ′). We want to prove that t generates the ideal
I(Y )O(M)I(Y )

in O(M)I(Y )
, moreover each f/g ∈ I(Y )O(M)I(Y )

can be
written as tnu with u 6∈ I(Y )O(M)I(Y )

and n ∈ N.
Indeed, let h ∈ O(M) such that h vanishes on Y ′ and doesn’t vanish

on Y . We can write fh = ts for some s ∈ O(M); then
f

g
= t

s

gh
with

s

gh
∈ O(M)I(Y )

. If s doesn’t vanish on Y the claim holds with n = 1.

Otherwise we can repeat the same arguments getting that sh = ts′ for some
s′ ∈ O(M), i.e., t2|fh2. Let’s prove that there is a maximun integer n such
that tn|fhn. Indeed, choose x ∈ Y such that I(Yx) = (tx) and h(x) 6= 0,
since OM,x is noetherian, there exists a maximum integer nx such that tnx

x |fx,
in particular, being hx a unit, tnx cannot divide fxh

n
x for n > nx and this

implies our assertion.

Let
f

g
∈ M(M), then f = tnf ′ and g = tmg′ where f ′, g′ are units in

O(M)I(Y )
. Clearly

f

g
∈ O(M)I(Y )

if and only if n ≥ m and this proves our

claim. �

2. Separation in a neighbourhood of the boundary.

In this section we will prove some results which make it possible to pass
from separation in a neighbourhood of the boundary to global separation.



6 F. BROGLIA AND F. PIERONI

An essential tool is  Lojasiewicz’s inequality. It works for compact global
semianalytic sets of any dimension, nevertheless this hypothesis of compact-
ess is not needed in dimension two. The following Theorems 2.1 and 2.2 are
proved in [DC99]:

Theorem 2.1. Let M ⊂ RN be a two dimensional real connected analytic
manifold and let S ⊂ M be a closed global semianalytic subset. Given f ∈
O(M) there exists h ∈ O(M) such that:

1. h ≥ 0, V (h) = V (f) ∩ S Z
,

2. h ≤ |f | on S,

3.
h

f
extended to zero on V (f) ∩ S is continuous on S.

We shall often use  Lojasiewicz’s inequality in the following formulation,
compare [BCR87] for the algebraic case.

Theorem 2.2. Let S be a closed global semianalytic subset of M , dimM =
2, and let f, g ∈ O(M), then there exists a nonnegative function ε ∈ O(M)
such that:

1. (f + εg)(x) has the same sign as f(x), for any x ∈ S,
2. V (ε) ⊆ V (f) ∩ S Z

.

What follows is the main result of this section:

Theorem 2.3. Let M⊂ RN be a real connected analytic manifold, dimM=
2, and let A,B ⊂ M be closed global semianalytic sets such that A ∩ B ⊂
X = Y ∪D where X is a global analytic set with Y of pure dimension one
and D = {xn}n∈N discrete.

Assume that there exist a neighbourhood U of Y and a global analytic
function f ∈ O(M) such that

f(A ∩ U \ Y ) > 0 f(B ∩ U \ Y ) < 0.

Moreover assume that for each n, the semianalytic set germs Axn \{xn} and
Bxn \ {xn} are separable, i.e., there exist an open neighbourhood Un of xn

and an analytic function fn ∈ O(Un) such that

fn(A ∩ Un \ {xn}) > 0 fn(B ∩ Un \ {xn}) < 0.

Then there exists F ∈ O(M) that separates A from B outside X, meaning
by this that

F (A \X) > 0 F (B \X) < 0.

The proof will be done in several steps, the aim being to pass from several
functions separating A and B in a neighbourhood of some piece of X to a
unique global function separating A and B in a neighbourhood of X. Then
we shall pass from the neighbourhood of X to the whole M .
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Lemma 2.4. Let D = {xn}n∈N be a discrete set of points such that dim(A∩
B)xn = 0 for each n. Assume that for each n the semianalytic set germs
Axn \{xn} and Bxn \{xn} are separable. Then, there exists a global analytic
function g ∈ O(M) which separates A from B in a neighbourhood V of D.

Proof. From the hypothesis, for each n, there exist an open neighbourhood
Un of xn and an analytic function fn ∈ O(Un) such that fn(A∩Un\{xn}) > 0
and fn(B ∩ Un \ {xn}) < 0.

Then, it follows that, on Axn ∪ Bxn , the germ defined by the zero set
V (fn) is contained in {xn}, which is the zero set of ‖x− xn‖2. By the local
 Lojasiewicz inequality, being A and B closed, there exist an even integer
pn > 0 and a positive constant c such that

|fn(x)| ≥ c‖x− xn‖pn ∀x ∈ Axn ∪Bxn .

Up to take a bigger pn we can suppose c = 1. Denote by mxn the maximal
ideal of the local ring OM,xn . By applying Cartan’s Theorem B we find
a global analytic function g ∈ O(M), such that for all xn ∈ D we have
g − fn ∈ m2pn+2

xn . Then, there exists an open neighbourhood Un of xn such
that g(x) has the same sign as fn(x) for any x ∈ (A∪B)∩Un, so, g separates
A from B in a neighbourhood of D, as wanted. �

Lemma 2.5. Assume there exist a neighbourhood W of X and a global
analytic function q ∈ O(M) such that

q(A ∩W \X) > 0 q(B ∩W \X) < 0.

Then there exists a global analytic function r ∈ O(M) such that q + r sepa-
rates A from B outside X.

Proof. By hypothesis it follows that V (q)∩ (A∪B)∩W ⊂ X. Up to shrink
it, we can assume W to be closed. Then, by Theorem 2.1, we can construct
a global analytic function t ∈ O(M) such that t ≥ 0, V (t) = X and t ≤ |q|
on (A ∪B) ∩W . We can suppose t < 1 on W .

Let V ⊂ V ⊂ W̊ be an open neighbourhood of X in M . Since A \ V and
B\V are closed and disjoint, there exists ϕ ∈ C∞(M) such that ϕ(A\V ) > 0
and ϕ(B \V ) < 0. Let σ1 : M → R be a C∞-function with σ−1

1 (0) = M \W̊ ,
σ−1

1 (1) = V and put σ2 = 1−σ1. Then ψ = σ1q+σ2ϕ is C∞ and ψ(A\X) > 0
and ψ(B \X) < 0.

Moreover, since ψ = q on V the function η : M → R defined by

η(x) =


ψ(x)− q(x)

t2(x)
if x 6∈ V

0 if x ∈ V

is C∞ and we are to approximate it by an analytic function.
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Take {Kn}n a sequence of compact sets in M such that K0 = ∅, Kn ⊂
Int(Kn+1) and M = ∪nKn.

Note that if A∪B ⊂ V we can take r = 0, so we can suppose (A∪B)\V 6=
∅.

Since M = ∪nKn, (A ∪ B) \ V intersects some Kn0 , and then every Km

with m ≥ n0. So, after replacing {Kn}n by {K̃n}n, K̃0 = ∅ K̃n = Kn0+n−1,
we can assume ((A ∪B) \ V ) ∩Km+1 6= ∅ for each m.

Set

sm+1 = min{|ψ(x)| | x ∈ ((A ∪B) \ V ) ∩Km+1} and

tm+1 = max{t2(x) | x ∈ (A ∪B) ∩Km+1}.
Note that sm+1 and tm+1 are well-defined and strictly positive constants.
Let εm+1 ∈ R be a constant such that

0 < εm+1 < min
(
sm+1

tm+1
, 1

)
.

It is well-defined because tm+1 > 0.
According to Whitney’s approximation theorem, there exists a global an-

alytic function r′ such that, for each x ∈ Km+1 \Km, |η(x)− r′(x)| < εm+1.
We want to prove that r = r′t2 is the global analytic function we looked

for.
We begin by showing that the analytic function q + r separates A and B

outside V .
For each x ∈ (A ∪ B) \ V we have ψ(x) − q(x) = t2(x)η(x) and then, if

x ∈ Km+1 \Km, we have

|ψ(x)− (q + r)(x)| = t2(x)|(η − r′)(x)| < tm+1εm+1 < sm+1.

So q + r has the same sign as ψ on (A ∪B) \ V .
Consider now the sign of q+ r on V . By construction, being η = 0 on V ,

we have, for each x ∈ V , |r′(x)| < 1 (1 is bigger than εm for each m).
So if x ∈ ((A∪B)∩V )\X we have the following sequence of inequalities:

|q(x)| − |r′(x)t2(x)| > |q(x)| − t2(x) ≥ t(x)− t2(x) > 0.

Note that the first and the last inequalities are strict because t(x) 6= 0 and
t(x) < 1. It follows that q + r has the same sign as q on (A ∪ B) ∩ V and
this completes the proof. �

Proof of Theorem 2.3. By Lemma 2.4 there is a function g that separates A
and B in a neighbourhood U of D. Then, by Lemma 2.5 it is enough to
glue together the function f of the statement with g, to get a function q
separating A and B in a neighbourhood of X.

Let’s see that, up to shrink them, we can assume that U and V are closed
global semianalytic sets. Since D is a discrete set, we can assume U to be
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an union of disjoint balls. Let U =
⋃

i∈I Bi and let fi ∈ O(M) be such
that Bi = {fi > 0}. Then the sheaf Ix =

∏
i∈I fiOx is well-defined and

coherent. We want to prove that I is principal, i.e., there exists a global
analytic function g such that gxOx = Ix for each x ∈ M . Then we get
U = {g > 0} or U = {g < 0}. In order to prove that I is principal we have
to find a locally finite open covering of M , Ui, and generators gi for I|Ui

,
such that gi/gj is positive on Ui ∩ Uj , when Ui ∩ Uj 6= ∅. Choose Ui and
gi in this way: Each Ui intersects at most a ball, say Bj(i); if Ui intersects
Bj(i) we take gi = fj(i), if it does not intersect any ball and it is contained
in one of them, take gi = 1, else choose gi = −1. The same argument holds
for V because V can be written as a finite union of sets that are unions of
disjoint balls.

Let h be a positive equation for Y such that
h

f
, extended to 0 on V (f) ∩

(A ∪ B) ∩ U , is continuous on (A ∪ B) ∩ U . Such h exists by Theorem 2.1.
Similarly we can find t ∈ O(M), t ≥ 0 and V (t) = D, with the same property
with respect to D and V . We want to prove that the global analytic function

q = th

(
f

h
+
g

t

)

has the same sign as
f

h
near Y . ht being strictly positive outside X, it is

enough to prove that
∣∣∣g
t

∣∣∣ < ∣∣∣∣fh
∣∣∣∣ near Y . It is true because we can clearly

assume Y ∩ D = ∅ so, for each x0 ∈ Y ,
g

t
is bounded locally at x0, while,

by construction, lim
x→x0

∣∣∣∣f(x)
h(x)

∣∣∣∣ = +∞. Similarly q has the same sign of g near

D. �

Remark 2.6. Note that if A ∩B = D is a discrete set one can remove the
hypothesis on the dimension of M . Indeed, the thesis follows by Lemma 2.4
which holds without any dimension hypothesis and by Lemma 2.5 that, in
this situation, can be proved using only the local  Lojasiewicz inequality.

A consequence of these results is the following:

Proposition 2.7. Let A,B be closed semianalytic subsets of M such that
dimA = 1 and dimA ∩ B = 0. Then A and B can be separated outside
A ∩B.

Proof. It is enough to prove that, for each x ∈ A ∩ B, there exist a neigh-
bourhood Ux of x and fx ∈ O(Ux) such that fx(A ∩ Ux \ {x}) > 0 and
fx(B ∩ Ux \ {x}) < 0 and this is true by [Rui84]. �
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3. Generic separation versus separation.

In this section we prove that generic separation and separation are “almost”
equivalent in dimension two, the proof uses essentially the same methods as
in the algebraic and local analytic cases, cf. [ABF96], [ABR96, Chapter
3].

Obviously, separation implies generic separation but the converse is not
true, as it is easily seen by taking for instance the sets in R2:

A = {(x, y)|0 < x < 1, y > 0} ∪ {(x, y)|0 < x < 1/2, y = 0}
B = {(x, y)|0 < x < 1, y < 0} ∪ {(x, y)|1/2 < x < 1, y = 0}.

A and B are disjoint global semianalytic sets, they are obviously generically
separable by the function f = y but any function generically separating A
and B must vanish at some points lying in A∪B and therefore they cannot
be separated.

Note that any function f which generically separates two global semian-
alytic sets, A and B, must vanish identically on A ∩ B and therefore on

A ∩B
Z

. Then a necesssary condition for A and B to be separated is that

A ∩B
Z
∩ (A ∪B) is empty.

We shall prove that this condition is also sufficient. This result follows
from next theorem which shows that, given two generically separable sets,
there exists a “minimal” set outside which they are separable.

Theorem 3.1. Let A,B be global semianalytic subsets of M , dimM = 2.
Assume they are generically separable, then, there exists f ∈ O(M) such
that

f(A \A ∩B
Z

) > 0 f(B \A ∩B
Z

) < 0.

Proof. Suppose that f ∈ O(M) separates generically A and B, that is,
there is a proper analytic subset W ⊂ M such that f(A \ W ) > 0 and
f(B \W ) < 0. After replacing W by {f = 0} ∩ (A ∪B)

Z
, we may assume

that W = W ∩ (A ∪B)
Z

and f vanishes on W .

We write W = A ∩B
Z
∪W ′ ∪ D where W ′ and D are respectively the

union of all the irreducible global components of dimension one and zero not

lying in A ∩B
Z

. Suppose first W ′ 6= ∅. Then, A∩W ′ and B∩W ′ are global
semianalytic sets of dimension one which intersect each other in dimension
zero. By Proposition 2.7, there exists h ∈ O(M) separating them. Consider
the closed set S = (A ∩ {h ≤ 0}) ∪ (B ∩ {h ≥ 0}). S is global semianalytic
because the closure of a global semianalytic set of M is global, ([CA96]).
By Theorem 2.2 there exists a nonnegative analytic function ε ∈ O(M) such
that g = f + εh has the same sign as f on S, and with the zero set of

ε contained in V (f) ∩ S Z
. Thus we get that g separates A \ A ∩B

Z
and
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B \ A ∩B
Z

up to the discrete set D. In order to remove the set D it is
enough to apply two more times Theorem 2.2. We split D as D1∪D2 where
D1 = D ∩ A and D2 = D ∩ B. In order to remove D1 apply Theorem 2.2
to the functions g and 1 with respect to B to obtain a function η ∈ O(M)

such that (g + η)(A \A ∩B
Z

) > 0 and (g + η)(B \ (D2 ∪A ∩B
Z

)) < 0. A
second application of the same theorem to g+ η and −1 removes D2, giving

a function ξ such that g + η − ξ separates A and B outside A ∩B
Z

.
This last argument can be used also when W ′ = ∅. �

Corollary 3.2. Let A,B be global semianalytic subsets of M , dimM = 2,
assume that

A ∩B
Z
∩ (A ∪B) = ∅.

Then, A and B are separable if and only if they are generically separable.
In particular if A and B are open they are separable if and only if they are
generically separable.

Proof. Let’s prove the last statement. One implication is trivial, for the

other we have to prove that A ∩B
Z

does not intersect A ∪ B. Since A

and B are open, an analytic component of A ∩B
Z

, say W , intersecting
one of the two sets has to intersect it in dimension one. This contradicts
the hypothesis that A and B are not generically separable. Indeed, let t ∈
O(M) be an uniformizer for O(M)I(W )

(cf. Theorem 1.5), then any possible
function f generically separating A and B can be written as f = tmu,

with u 6∈ I(W )O(M)I(W )
. Since W ⊂ A ∩B

Z
, m has to be odd, since W

intersects the interior of one of the two sets m has to be even. �

4. Separation and walls.

Let A,B be global semianalytic subsets in M , dimM = 2, such that Å∩B̊ =
∅.

We recall that the boundary of a global semianalytic subset S ⊂ M ,
∂S = S \ S̊, is a semianalytic set of dimension ≤ 1 contained in the zero set
of the product of the functions appearing in any description of S. Therefore,
∂S is global by [Cas94b].

Set Y the Zariski closure of ∂A ∪ ∂B . Note that ∂A ∪ ∂B being global,
Y is a proper analytic subset of M.

Definition 4.1. We will call a wall any irreducible component of Y of di-
mension one. We say that a wall W is odd if there is a 1-dimensional subset
W ′ ⊂W which is contained in A∩B. We say that a wall W is even if there
is a 1-dimensional subset W ′ ⊂W which is contained in Å or B̊.
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Note that walls may be neither odd nor even, also they can be both odd
and even, as for istance in the proof of Corollary 3.2.

For any odd (resp. even) wall W , let t ∈ O(M) be an uniformizer for
O(M)I(W )

, then any possible function f generically separating A and B can
be written as f = tmu, with u 6∈ I(W )O(M)I(W )

and m odd (resp. even,
possibly zero). It is clear that the parity of m doesn’t depend on the choice
of the generator.

In the right-hand of Figure 1 there is an example of an odd and even wall.
Obviously, if some wall W is simultaneously odd and even A and B can not
be generically separable, we want to show that the converse is “almost” true.

Theorem 4.2. Let A,B be open global disjoint semianalytic subsets of M ,

dimM = 2, set Y = ∂A
Z ∪ ∂B Z and Z = A ∩B

Z
. Then A and B can be

separated if and only if the following conditions hold:

1. No wall of A and B is simultaneously odd and even.
2. For every x ∈ Sing Y the semianalytic set germs Ax and Bx are

(generically) separated.

Denote by Y c the union of odd walls of Y . Assuming Conditions 1 and 2
of Theorem 4.2 let’s prove the following:

Lemma 4.3. Let X ⊂M be an analytic set such that I(X∪Y c) is principal,
X ∩ Sing Y is empty, X ∩ Y is discrete. Let g ∈ O(M) be a generator for
I(Y c ∪X) and denote by Ag and Bg the sets

Ag = {x ∈ A| g(x) > 0} ∪ {x ∈ B| g(x) < 0}
Bg = {x ∈ A| g(x) < 0} ∪ {x ∈ B| g(x) > 0}.

Set Y g = ∂Ag Z∪∂Bg Z , Zg = Ag ∩Bg
Z
, then the following assertions hold:

1. Y g ⊂ X ∪ Y .
2. Zg ⊂ X ∪ Sing Y , in particular for any x /∈ X, dimZg

x ≤ 0.
3. For each x ∈ Sing Y the semianalytic sets germs Ag

x \ {x} and Bg
x \

{x} are separable.

Proof. 1. Since X ∪ Y is a global analytic set, it is enough to prove that
∂Ag ∪ ∂Bg is contained in it.

Fix x ∈ ∂Ag = Ag \ Ag. Since Ag ⊂ A ∪ B, x ∈ A ∪ B. Suppose
x ∈ A. If x 6∈ A, x ∈ ∂A, then x ∈ Y . So we can assume x ∈ A
and this implies g(x) ≤ 0. We want to prove that g(x) = 0. Suppose
g(x) < 0, being A open, we can find a neighbourhood Ux of x contained
in A ∩ {g < 0}. Since A ∩ B = ∅, we have that Ux ∩ Ag = ∅, which
contradicts the hypothesis x ∈ Ag. We argue similarly for x ∈ B and
for x ∈ ∂Bg.
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2. Note that Zg ⊂ (Y g)c ∪ Sing Y g, since Sing Y g is contained in X ∪
Sing Y , it is enough to prove that (Y g)c is contained in X, i.e., no wall
in Y is odd with respect to Ag and Bg.

Take a wall W ⊂ Y . If it is odd with respect to A and B then
W ⊂ V (g), hence it is even with respect to Ag and Bg. It cannot
be odd, because if so the same argument shows that W is even with
respect to (Ag)g = A and (Bg)g = B; this is not the case by hypothesis.
If W is not odd then g does not change sign through W , so W is not
odd with respect to Ag and Bg.

The second statement in 2) is clear.
3. Fix x ∈ Sing Y . SinceX∩Sing Y = ∅, x /∈ X hence dim(Ag∩Bg)x ≤ 0.

By hypothesis Ax and Bx are generically separable, say by fx ∈ Ox.
Then, fxg generically separates Ag

x and Bg
x. This implies that Ag/{x}

and Bg/{x} are separable, (cf. [ABR96]).
�

Remark 4.4. Note that A and B are separable if and only if Ag and Bg

are so. Note also that, if the ideal of Y c is principal, i.e., X = ∅, Ag and Bg

intersect each other only in a discrete set of points contained in Sing Y .

Proof of Theorem 4.2. One implication is trivial, we want to prove the other.
Denote by D the discrete set A ∩ B/Y c, D ⊂ Sing Y . By Theorem 2.3 we
know that it is enough to separate A ∩ U/Y c and B ∩ U/Y c where U is
a neighbourhood of Y c, since Ax/{x} and Bx/{x} are separeted for any
x ∈ D ⊂ Sing Y by hypothesis. By Theorem 3.1, it is enough to separate
A ∩ U and B ∩ U (we can always assume U ∩ D = ∅). Let X1 and X2

be analytic sets as in Lemma 4.3, i.e., I(Y c ∪ Xi) = (gi)OM , Xi ∩ Y is a
discrete set, i = 1, 2 and X1 ∩ X2 ∩ Sing Y = ∅. Then we have the sets
Ai = Agi , Bi = Bgi , Y i = Y gi and Zi = Zgi , i = 1, 2. We have that A and
B are separable in U iff Ai and Bi are separable in U , i = 1, 2. As above,
by Thoerem 2.3 and Theorem 3.1, it is enough to prove that (Ai ∩ U)x/{x}
and (Bi ∩ U)x/{x} are separable for each x ∈ Ai ∩ Bi/(Y 1)c and that Ai

and Bi are separable in U ∩ Vi, where Vi is a neighbourhood of Xi, i = 1, 2.
Since the first assertion is verified by Lemma 4.3, Ai and Bi are separable in
U if and only if the second one holds. More precisely, A and B are separable
in U , iff A1 and B1 are separable in U ∩ V1, iff A2 and B2 are separable in
U ∩ V1. But A2 ∩ B2 ∩ U ∩ V1 is empty, up to shrink U and V1, so A2 and
B2 are actually separated in U ∩ V1 and this in turn implies the thesis. �

As a consequence of our criterion we obtain:

Theorem 4.5. A and B are separable if and only if they are separable in
any compact set.
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This is completely different of what happens in the algebraic case where
the behaviour at infinity is decisive for the separarion of semialgebraic sets,
as the example in Figure 2 shows. It remains true that the important in-
formation is at the boundary but they may be hidden and appear only
after compactifying and doing some blow ups, more precisely in a compact
model of the variety where the semialgebraic sets are at normal crossings,
see [AAB99]. (The field of meromorphic functions on an analytic mani-
fold is not preserved under blowing ups, so there is no special model of M
suitable to study A and B.)

Remark 4.6. We want to justify the assertion in the introduction that
unbounded orderings are not useful. This is clear if the obstruction is a point.
If W is a wall simultaneously odd and even, take two points x1, x2 ∈W such
that W is odd in a neighbourhood of x1 and even in a neighbourhood of
x2 and take two orderings in Specr Frac (O(M)I(W )

/I(W )I(W )
) centered

respectively in x1 and x2. Since O(M)I(W )
is a discrete valuation ring, cf.

Proposition 1.5, arguing as in [ABV94], it is easy to lift these two orderings
to a four element fan in SpecrM(M) where the corresponding constructible
sets Ã and B̃ are not separable. By construction the four orderings in this
fan are bounded. Bearing in mind the Artin-Lang property, which holds in
SpecrM(M), we can resume all this in the following:

Theorem 4.7. Two global semianalytic sets A and B in a 2-dimensional
analytic manifold M can be separated if and only if the associated con-
structible sets Ã, B̃ ⊂ SpecrM(M) are separable in any 4-elements fan made
of bounded orderings.

5. Basicness for global semianalytic sets.

We can use the criterion for separation of the above section to prove a
similar result for another kind of problems: Basicness and principality of
global semianalytic sets.

Theorem 5.1. Let S ⊂ M be an open global semianalytic set. Then, S is
basic open (resp. principal open) if and only if the following conditions hold:

1. If a wall is simultaneously odd and even with respect to S and M \ S
then, it does not intersect S̊.

2. For each x ∈ Sing ∂S Z the semianalytic set germ Sx is basic open.
Resp.

3. No wall is simultaneously odd and even with respect to S and M \ S.

Proof. Let’s prove the statement about basicness. One implication is trivial,
we want to prove the other. Since M \S is an open global semianalytic set,
it is a finite union of basic open sets, say B1 ∪ · · · ∪ Br, such a description
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is possible by [Cas94b]. We want to prove that S can be separated from
each Bi.

Fix i ∈ {1, . . . , r} and set Yi = ∂S
Z ∪∂Bi

Z . It is enough to prove that no
wall in Yi is simultaneously odd and even with respect to S and Bi and that,
for each x ∈ Sing Yi, the semianalytic set germs Sx and Bi,x are separable.
Let W ⊂ Yi be an odd wall, this means that there exists an arc contained
in S ∩ Bi. If W is even, we can find another arc contained in S̊ or in B̊i.
The first assertion contradicts Hypothesis 1, the second the basicness of Bi.
This proves that no odd wall can be even.

Since two open basic semianalytic set germs in dimension 2 can always
be separated, cf. [ABR96], it is enough to prove that Bi,x and Sx are basic
for each x ∈ Sing Yi. This is true by Hypothesis 2 (note that Sx is principal
if x 6∈ Sing ∂S Z).

Hence, we can find fi ∈ O(M) such that fi(S) > 0 and fi(Bi) < 0. Then,
S = {f1 > 0, . . . , fr > 0}. Indeed, if x 6∈ S, x ∈ Bi for some i ∈ {1, . . . , r}
and this implies that fi(x) ≤ 0 for some i ∈ {1, . . . , r}.

As it concerne the statement about principality, with the same argument
we can separate S from M \ S proving that S is principal. �

Arguing as in Remark 4.6, we see that unbounded orderings are again
useless for the basicness and principality properties, more precisely:

Theorem 5.2. An open global semianalytic set S is basic open (principal)
if and only if #S̃ ∩ F 6= 3 (#S̃ ∩ F 6= 1, 3) for any 4-elements fan F made
of bounded orderings.
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