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In this paper we give a uniqueness and existence result for
minimal disks with some noncompact, U-shaped boundaries
in a slab of R3.

1. Introduction and preliminaries.

Minimal surfaces containing straight lines have special properties that dis-
tinguish them from the rest of minimal surfaces. In this article, we empha-
size Schwarz’s reflection principle. Examples of this type were well studied
during the last two centuries.

Recently, in [11], F.J. López and F. Wei obtained an existence and unique-
ness theorem for properly immersed minimal disks whose boundaries consist
of two disjoint straight lines and a segment which meets the lines orthogo-
nally.

Following this, López and the second author of this paper have con-
structed a deformation of López-Wei disks which consists of properly em-
bedded minimal disks bounded by straight lines and contained in a wedge
of a slab (see [9] and [10]). Essentially, the deformation modifies the angle
formed by the two halfplanes containing the connected components of the
boundary. The surfaces that appear in this deformation for angle zero corre-
spond to some Jenkins-Serrin graphs (see [6]). The López-Mart́ın examples
have nice geometric properties such as the convex hull property. These
examples are a solution to Plateau’s problem for a polygonal noncompact
boundary consisting of a double U shaped contour (see Figure 1). These
surfaces can be used as a new type of barrier for the maximum principle
application ([8] and [9]). Examples of this kind are also closely related to
minimal surfaces with helicoidal ends ([15]).

In this paper, we obtain all the solutions to the aforementioned Plateau
problem with noncompact polygonal boundary, which are contained in the
slab, but not lie necessarily in the convex hull of their boundary (see Fig-
ure 2). To be more precise, we deal with the study of properly embedded
minimal surfaces whose boundary Γθ d consists of the following configuration
of straight lines:

Fix θ ∈ [0, π] and d ≥ 0, and consider two half-lines r+1 and r−1 in R3,
meeting at an angle of θ. If θ = 0 this means that the straight lines are
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parallel. Let q+1 and q−1 be two points in r+1 and r−1 , respectively, such that
they are symmetric with respect the inner bisector of these half-lines. We
choose q+1 and q−1 in such a way that either q+1 = q−1 or the half-lines `+1 and
`−1 on r+1 and r−1 starting at q+1 and q−1 , respectively, do not intersect. Write
d = dist(q+1 , q

−
1 ).

Let Π1 be the plane determined by `+1 and `−1 , Π2 a plane parallel and
distinct to Π1 and let S denote the slab determinated by Π1 and Π2. Let
`+2 and `−2 be the orthogonal projections to Π2 of `+1 and `−1 , respectively.
Denote q+2 (resp. q−2 ) as the orthogonal projection to Π2 of q+1 (resp. q−1 ),
and label `+0 (resp. `−0 ) as the segment [q+1 , q

+
2 ] (resp. [q−1 , q

−
2 ]). Finally, we

define

Γ+
θ d =

2⋃
i=0

(
`+i
)
, Γ−θ d =

2⋃
i=0

(
`−i
)
, Γθ d = Γ+

θ d ∪ Γ−θ d.

Figure 1. The curve Γθ d.

We consider the following generalized Plateau problem:

Problem 1. Determine a properly immersed minimal surface X : M → R3

satisfying:
(1) M is homeomorphic to the closed unit disk D minus two boundary

points E1 and E2, that we call the ends of M .
(2) X(∂(M)) = Γθ d.
(3) If d > 0, X is an embedding.
(4) In the limit case `+0 = `−0 (i.e., d = 0), the maps X|M−γ+ and X|M−γ−

are injective, where γ+ and γ− are the two connected components of
∂(M).

(5) X(M) lies in a slab that contains S.

Observe that if (5) is satisfied then it is easy to prove (see Lemma 2.1 in
[12]) that X(M) lies in the slab S. Then Condition (5) is equivalent to

(5) X(M) lies in S.
We prove the following:
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Main Theorem. If 0 < θ < π there exist dθ and d′θ with 0 < d′θ < dθ such
that:

(i) If d > dθ there are no solutions of Problem 1.
(ii) If d = dθ, Problem 1 has a unique solution.
(iii) If d ∈]d′θ, dθ[ or d = 0, Problem 1 has two solutions.
(iv) If d = d′θ, Problem 1 has three solutions.
(v) If d ∈]0, d′θ[, Problem 1 has four solutions.
If θ = π there exist dπ with 0 < dπ such that:
(i) If d > dπ there are no solutions of Problem 1.
(ii) If d = 0 or d = dπ, Problem 1 has a unique solution.
(iii) If d ∈]0, dπ[, Problem 1 has two solutions.

If θ = 0 there exist d′0 with 0 < d′0 < dist(Π1,Π2) such that:
(i) If d ≥ dist(Π1,Π2) there are no solutions of Problem 1.
(ii) If d = 0 or d ∈]d′0,dist(Π1,Π2)[, Problem 1 has a unique solution.
(iii) If d = d′0, Problem 1 has two solutions.
(iv) If d ∈]0, d′0[, Problem 1 has three solutions.

López and Wei proved in [11] that there exists a unique solution of Prob-
lem 1 when θ = π and d = 0. Therefore, we always omit this case in our
discussions.

Figure 2. The four solutions in case θ = π
2 , d = dist(Π1,Π2)

2 .
The first and second one on the left corresponds to López-
Mart́ın examples.

The aim of this paper is to prove the uniqueness and existence of the
solutions stated in the Main Theorem. The paper is set out as follows:

In Section 2, we obtain the uniqueness result stated in the above theo-
rem. For the sake of clarity we divide the proof in several subsections. In the
first one, we shall see that if M is a solution of our Plateau problem then
M is conformally equivalent to a twice punctured closed disk with piece-
wise analytic boundary and its meromorphic data extend to the closed disk.
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Among the results obtained in this subsection, we emphasize the following
proposition:

Proposition 1. Assume X : M −→ R3 is a solution of Problem 1 for
0 ≤ θ < π and denote by E(Γθ d) the convex hull of Γθ d. Then X(M) lies
either in E(Γθ d) or in (S \ E(Γθ d)) ∪ Γθ d. If θ = π, then X(M) lies in one
of the half-slabs determinated by the strip E(Γπ d).

Roughly speaking, the above proposition asserts that if 0 ≤ θ < π, then
the solutions of our problem lie either in the interior of the convex hull of the
boundary or in the exterior of it. Subsection 2.2 is devoted to proving that
M inherits the horizontal symmetry of its boundary and also the vertical
symmetry in case d = 0. Finally, in Subsection 2.3, taking into account
the preceding steps, we determine a model of the complex structure and
Weierstrass representation of any solution of Plateau’s problem above. As a
consequence, we obtain that, in the general case, a solution of our Plateau
problem also inherits the vertical symmetry of its boundary.

The existence part of the Main Theorem can be found in Section 3. We
prove that the Weierstrass data obtained in Section 2 really correspond to
solutions of our problem.

As we mentioned before, López-Mart́ın examples can be used as barri-
ers in order to prove nonexistence results for minimal surfaces with planar
boundaries in a wedge of a slab. Furthermore, they extended the family
of minimal surfaces satisfying the convex hull property. To state these
results we need some notation. Define L = {(0, 0, t) | −1

2 < t < 1
2}

and W = {(x1, x2, x3) ∈ R3 | −1
2 ≤ x3 ≤ 1

2}. For θ ∈ [0, π], we also
write Wθ = L ∪ {(x1, x2, x3) ∈W \ L | Arg((x1, x2)) ∈ [0, θ]} and Σθ = L ∪
{(x1, x2, x3) ∈Wπ \ L | Arg((x1, x2)) = θ}. Using this notation López and
the second author have proved the following:

Theorem 1 ([10]). Let M be a connected properly immersed minimal sur-
face in a wedge W2π−ε for some 0 < ε < 2π. Then one has:

(i) If ∂(M) ⊂ Σ0, then M is a planar region in Σ0.
(ii) If ∂(M) ⊂ Wθ, for θ ∈]0, π[, then M lies in the convex hull of its

boundary.

Finally, we would like to mention that the Main Theorem and Proposi-
tion 1 are announced in the proceedings of the conference Differential Ge-
ometry Valencia 2001 ([5]).

2. Conformal structure and Weierstrass representation.

As we mentioned before, this section is devoted to study the underlying
complex structure and Weierstrass data of the solutions of our problem.

Throughout this paper (x1, x2, x3) denotes a set of Cartesian coordinates
such that:
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• `+0 and `−0 have the direction of x3-axis,
• {x3 = 1

2} and {x3 = −1
2} are the equations of planes Π1 and Π2,

respectively,
• the origin is the middle point between q+

1 +q+
2

2 and q−1 +q−2
2 ,

• the x2-axis is the inner bisector of the orthogonal projection of `+i and
`−i to the plane x3 = 0, i = 1, 2, and

• Γ+
θ d ⊂ {x1 ≥ 0}.

Along this section, X : M −→ R3 denote a proper conformal mini-
mal immersion satisfying Conditions (1)-(5) of Problem 1. For the sake
of simplicity, we use Γ, Γ+ and Γ− instead of Γθ d, Γ+

θ d and Γ−θ d. Taking
into account that X(M) ⊂ S and the maximum principle, we deduce that
Πi ∩X(M) ⊂ Πi ∩ Γ, for i = 1, 2.

As we announced, we shall divide the study of conformal structure in
several subsections.

2.1. Conformal type of M . The conformal type of M can be easily de-
termined using a global result on conformal structure of properly immersed
minimal surfaces by P. Collin, R. Kusner, W.H. Meeks and H. Rosenberg
(see [4]). From Theorem 3.1 of [4] we obtain that M is parabolic and hence,
taking into account the topological type of M , M is conformally equivalent
to the closed unit disk D minus two boundary points E1 and E2, where the
biholomorphism extends piecewise analytically to the boundary.

Next, we prove that the Gauss map and Weierstrass data extend contin-
uously to the ends. To obtain this, we need some additional results.

Let U(Ei), i = 1, 2, be two open disjoint neighbourhoods of the ends of M
and let Ca denote the catenoid given by the equation x2

1+x
2
2 = a2 cosh2

(
x3
a

)
,

where a ∈ R+. Define σa = X−1(X(M)∩Ca), for a > 0. With this notation
we shall prove the following:

Lemma 1. There exists a0 > 0 such that for a ≥ a0, σa = σ1
a∪σ2

a, where σ1
a

and σ2
a are two disjoint simple compact analytic curves such that σi

a ⊂ U(Ei),
for i = 1, 2.

Proof. Clearly, since X(M)∩Ca is compact andX is proper, we have that σa

is compact for a > 0. Furthermore, σa is a set of properly immersed analytic
lines, because it is the intersection of distinct minimal surfaces. Denote
by Int(Ca) and Ext(Ca), the interior and exterior connected component of
R3 \ Ca, respectively.

Note that we can consider a1 sufficiently large to insure the following:
`+0 ∪ `

−
0 ⊂ Int(Ca) and S ∩ Int(Ca) ⊂ S ∩ Int(Ca′) if a1 ≤ a ≤ a′. As Ca and

X(M) are transverse along
⋃2

i=1 `
+
i ∪ `

−
i , for a ≥ a1, we can assert that only

one curve lying in σa approaches to each one of the four points in σa∩∂(M).
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Moreover, since σa1 is compact, we can find U ′(Ei), connected neighbour-
hoods of Ei such that U ′(Ei) ⊂ U(Ei) and X(U ′(Ei)) ⊂ Ext(Ca1). Consider
now a0 > a1 such that σa0 ⊂ U ′(E1) ∪ U ′(E2).

Therefore, if a ≥ a0 we deduce that σa = σ1
a ∪ σ2

a, with σi
a ⊂ U ′(Ei),

i = 1, 2 and σ1
a ∩ σ2

a = ∅. Now, we must prove that σi
a are simple curves for

i = 1, 2. Suppose that there exists a disk Ω in U ′(Ei) bounded by an arc
of σi

a. In this case, either X(Ω) ⊂ Ext(Ca) or X(Ω) ⊂ Int(Ca). In the first
case, we have that X(Ω) ⊂ Ext(Ca) ∩ Int(Ca2), for some a ≤ a2. Hence,
using the family of catenoids {Ct}a≤t≤a2 and the maximum principle, we
obtain that X(Ω) is contained in the catenoid Ca, which is contrary to our
assumptions. Moreover, since a0 ≤ a we can assert that X(Ω) ⊂ Ext(Ca1).
Consequently, if X(Ω) ⊂ Int(Ca) we may consider the family of catenoids
{Ct}a1≤t≤a. The maximum principle gives again a contradiction. �

Label γ+
i = X−1(Γ+

i ) and γ−i = X−1(Γ−i ), for i = 1, 2. Consider also
γ+

0 = X−1(`+0 ∪ `
−
0 ) ∩ γ+ and γ−0 = X−1(`+0 ∪ `

−
0 ) ∩ γ−.

Concerning the boundary behaviour we have, up to relabellings, three
possibilities:

Case 1. X(γ+) = Γ+, X(γ−) = Γ− and γ+
i ∪ γ−i diverges to Ei, for i = 1, 2

(see Figure 3.(1)).
Case 2. X(γ+) = Γ+, X(γ−) = Γ−, γ+

1 ∪ γ−2 diverges to E1 and γ+
2 ∪ γ−1

diverges to E2 (see Figure 3.(2)).
Case 3. When d = 0 we have also the case X(γ+) = `+1 ∪ `0 ∪ `−2 , X(γ−) =

`−1 ∪`0∪`
+
2 and γ+

i ∪γ
−
i diverges to Ei, for i = 1, 2, where `0 = `+0 = `−0

(see Figure 3(3)).

Figure 3.

Now, we shall prove that if d = 0 then Case 2 and Case 3 do not occur.

Lemma 2. Assume d = 0. Then the boundary of X : M −→ R3 is as in
Case 1.

Proof. Note that if d = 0 and the boundary is either as in Case 2 or as
in Case 3, X(M) contains a Möbius strip. Let us define tρ as the transla-
tion of vector (0, 0, ρ) and consider N the topological surface of R3 given by
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N =
⋃
n∈Z

tn(X(M)). Since X(M) ⊂ S we have that N is a connected embed-

ded topological surface in R3. A well-known topological result asserts that
then N must be orientable, but this is absurd because N contains Möbius
strips. �

Denote ~a2 = (0, 1, 0). Observe that ~a2 is the unitary vector in the direction
of the inner bisector of `+2 and `−2 pointing to E(Γ). At this point we can
prove a restatement of Proposition 1 above:

Proposition 1. If 0 ≤ θ < π, then X(M) lies either in E(Γ) or in (S \
E(Γ)) ∪ Γ. If θ = π, then X(M) lies in one of the half-slabs determinated
by the strip E(Γ).

Proof. Assume 0 ≤ θ < π. In accordance to Lemma 2 we have that the
boundary behaviour is either as in Case 1 or as in Case 2. Consider β =
X−1(X(M) ∩ {x2 = 0}). Since β is a nodal set of an harmonic function
we have that β is a set of properly immersed analytic lines. Using the
maximum principle we obtain that there are no compact connected regions
of M bounded by curves in β. Furthermore, as we are assuming 0 ≤ θ < π,
the theorem of the order of contact (see [13, §437]) gives us that there are no
curves in β approaching to either γ+

i or γ−i , for i = 1, 2. Now, we consider
the following half-strips:

B+ = {(x1, 0, x3) | x1 ≥ d
2 ,
−1
2 ≤ x3 ≤ 1

2},
B− = {(x1, 0, x3) | x1 ≤ −d

2 ,
−1
2 ≤ x3 ≤ 1

2}.
First, we shall prove that if there exists a curve in β starting at either

γ+
0 or γ−0 and diverging to one end, then there are no curves starting at the

same vertical segment and diverging to the same end. Assume that β′ and
β′′ are two curves starting at γ+

0 and diverging to E1. The other cases can
be treated in the same way. Clearly, if d > 0 we have X(β′)∪X(β′′) ⊂ B+.
Suppose that d = 0 and X(β′) and X(β′′) are contained in different half-
strips. Then we can consider, taking a piece of γ+

0 if necessary, a piecewise
analytic curve β̂ that diverge to E1 and contains β′ and β′′. It is not difficult
to see that there is an angle between the curves in β̂, Θ, that goes by X to
an angle greater or equal than 2Θ. Since X : M −→ R3 is conformal this
is a contradiction. Then we conclude that in both cases X(β′) and X(β′′)
are contained in the same half-strip. Therefore, we can find a connected
component, Ω, of M \β such that X(Ω) is contained in one of the half-slabs
determinated by {x2 = 0} and X(∂(Ω)) is in a half-strip. Consequently,
applying Statement (i) in Theorem 1 we obtain thatX(Ω) is a planar domain
of {x2 = 0} which contradicts our assumptions.

Moreover, we shall prove that there are no compact curves in β\(γ+
0 ∪γ

−
0 )

starting at γ+
0 and ending at γ−0 . Assume there exists τ such a curve. As
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there are no compact regions of M \ β, we infer that τ is the unique curve
that starts at γ+

0 and ends at γ−0 . Taking into account the above paragraph
and the fact that Γ+ and Γ− are in the same half-slab of S determinated by
{x2 = 0} we conclude that must exist a pair of curves, τ1 and τ2 starting at
γ+

0 and γ−0 , respectively and diverging to either E1 or E2. We assert that
both curves must diverge to the same end. Indeed, if τ1 and τ2 diverge each
one to one different end, then there exists a curve τ3 diverging to both ends.
But this curve τ3 intersects τ transversally in a odd number of points while
X(τ3) intersects X(τ) transversally in a even number of points.

Without loss of generality, we can assume that τ1 and τ2 diverge to E1.
Now, we may consider, taking pieces of γ+

0 and γ−0 if necessary, a piecewise
analytic curve τ ′ from E1 to E1 that encloses a disk Ω of M \ β. If X(τ1)
and X(τ2) are contained in the same half-strip, the domain Ω verifies the
conditions of statement (i) in Theorem 1 and we obtain a contradiction.
Assume that X(τ1) and X(τ2) are contained in different half-strips. Note
that then there is an angle between the curves in τ ′, Θ, that goes by X
to an angle greater or equal than 2Θ. Using again that X : M −→ R3 is
conformal we get a contradiction.

Consequently, β \ (γ+
0 ∪ γ−0 ) consists of curves starting at γ+

0 ∪ γ−0 and
diverging to one end and divergent curves. Next we prove that there are
no curves diverging to only one end. As before we have that one of these
curves would be contained either in B+ or in B−. Otherwise, in each of
these cases it is possible to find a connected component, Ω, of M \ β such
that X(Ω) is contained in a half-slab of S and X(∂(Ω)) is contained in a
half-strip of {x2 = 0}. Consequently, applying Statement (i) in Theorem 1
we obtain that X(Ω) is a planar domain of {x2 = 0} which contradicts our
assumptions. Furthermore, using again that Γ+ and Γ− are in one of the
half-slabs determinated by {x2 = 0} we deduce that if there exists a curve
that starts at γ±0 and diverge to one end, then there exists a curve that
starts at γ±0 and diverge to the other end. All these facts allows us to assert
that in β \ (γ+

0 ∪ γ−0 ) either there are no curves starting at γ+
0 ∪ γ−0 , or

there are a pair starting at γ+
0 or γ−0 and diverging to different ends or there

are four curves, a pair starting at γ+
0 and diverging to different ends and

another pair starting at γ−0 and diverging to different ends. Moreover, we
may find curves in β \ (γ+

0 ∪ γ−0 ) diverging to the two ends. Note that then
the number of curves diverging to E1 is the same as the number of curves
diverging to E2. It is not hard to see, using Statement (i) in Theorem 1,
that two consecutive curves diverging to the same end have to be in different
half-strips, it is to say, if one is in B+ the other one is in B− and that all
divergent curves are disjoint. Assume that there are more than two curves
in β diverging to E1 and consider the compact curves σi = σi

a, for i = 1, 2
and a ≥ a0 given in Lemma 1.
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Now, we analyze each of the possibilities for the boundary separately.

Case 1. Denote p+
1 = γ+

1 ∩ σ1 and p−1 = γ−1 ∩ σ1. Then, denoting p3 :
R3 −→ {x3 = 0} as the orthogonal projection over the plane {x3 = 0} we
deduce that p3(X(σ1)) is a curve in {x3 = 0} such that | arg(p3(X(p−1 )))−
arg(p3(X(p+

1 )))| > 2π. Since X3(p+
1 ) = X3(p−1 ) = 1

2 we infer that X(σ1) has
self-intersections, which is contrary to our assumptions. As a consequence,
there is at most two curves in β diverging to E1 and the same for E2.

Case 2. Denote p+
1 = γ+

1 ∩ σ1, p−2 = γ−2 ∩ σ1, p+
2 = γ+

2 ∩ σ2 and p−1 =
γ−1 ∩ σ2 and suppose that σ1 has been parametriced so that it starts at p+

1

and ends at p−2 and σ2 has been parametriced so that it starts at p−1 and
ends at p+

2 . Using the same notation as above we can see that p3(X(σi))
are curves in {x3 = 0} satisfying | arg(p3(X(p−2 ))) − arg(p3(X(p+

1 )))| > 2π
and | arg(p3(X(p+

2 ))) − arg(p3(X(p−1 )))| > 2π. Moreover, p3(X(σ1)) and
p3(X(σ2)) rotates around (0, 0, 0) in reverse sense, it is to say, if p3(X(σ1))
rotates clockwise then p3(X(σ2)) rotates counterclockwise, and vice versa.
Since X3(p+

i ) = X3(p−i ) for i = 1, 2 we infer that X(σ1) and X(σ2) intersect
each other. This contradicts our assumptions and therefore there is at most
two curves diverging to each end in β.

The same argument used in both cases proves that if β\(γ+
0 ∪γ

−
0 ) consists

of two curves, τ1 and τ2, diverging to the two ends such that X(τ1) ⊂ B+

and X(τ2) ⊂ B−, then the boundaries of the three connected components
of M \ β are γ+ ∪ τ1, τ1 ∪ τ2 and γ− ∪ τ2.

Taking into account this and the fact that Γ+ ∪ Γ− is in one of the half-
slabs determinated by {x2 = 0} we have that either β \ (γ+

0 ∪ γ−0 ) is empty
or it consists of:

1. Two curves diverging to the two ends (see Figure 4(1)),
2. a curve starting at γ+

0 and diverging to E1, a curve starting at γ+
0 and

diverging to E2 and a curve diverging to the two ends (see Figure 4(2)),
3. a curve starting at γ−0 and diverging to E1, a curve starting at γ−0 and

diverging to E2 and a curve diverging to the two ends (see Figure 4(3)),
4. a curve starting at γ+

0 and diverging to E1, a curve starting at γ+
0

and diverging to E2, a curve starting at γ−0 and diverging to E1 and a
curve starting at γ−0 and diverging to E2 (see Figure 4(4)).

Clearly, if β \ (γ+
0 ∪ γ−0 ) is empty we obtain that X(M) is contained in the

half-slab {x2 ≥ 0}. Therefore X(M) satisfies the conditions of Statement
(ii) in Theorem 1 and so X(M) ⊂ E(Γ).

Assume that we have one of the other possibilities. Then we shall prove
that X(M) ⊂ (S \E(Γ))∪Γ. Note that it is sufficient to study the connected
components of M \ β whose image is contained in the half-slab {x2 ≥ 0}.
Note that these connected components are those whose contains any of the
curves γ+

i or γ−i , for i = 1, 2. At this point, it can be easily check that each
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Figure 4.

of these connected components have the boundary contained in one of the
following wedges:

(S\
◦

E(Γ)) ∩ {(x1, x2, x3) | x1 ≥ 0, x2 ≥ 0, −1
2 ≤ x3 ≤ 1

2},

(S\
◦

E(Γ)) ∩ {(x1, x2, x3) | x1 ≤ 0, x2 ≥ 0, −1
2 ≤ x3 ≤ 1

2}.

Using again Assertion (ii) of Theorem 1, we conclude that the image of these
connected components is contained entirely in the correspondent wedge.

Summarizing, we have proved thatX(M) ⊂ (S\
◦

E(Γ)). Now the Proposition
is an easy consequence of the maximum principle.

Next, we analyze the case θ = π, d > 0. Let us define ∆ = X−1(X(M) ∩
{x1 = d

2}). It is well-known that ∆ is a nodal set of an harmonic function
and so it is a set of properly immersed analytic lines. Using the maxi-
mum principle we obtain that there are no compact connected regions of
M bounded by curves in ∆. Then, ∆ \ γ+

0 consists of a set of divergent
curves. Since Γ+ ⊂ {x1 ≥ d

2} and Γ− ⊂ {x1 ≤ d
2}, we infer that if there

exist a curve in ∆ starting at γ+
0 and diverging to one end, then another

curve starting at γ+
0 and diverging to the other end must exist. Reasoning

as in case 0 ≤ θ < π, d = 0 we can see that the image of such a pair of
curves is contained in one of the following half-strips:

C+ = {(d
2 , x2, x3) | x2 ≥ 0, −1

2 ≤ x3 ≤ 1
2},

C− = {(d
2 , x2, x3) | x2 ≤ 0, −1

2 ≤ x3 ≤ 1
2},

and if two curves in ∆ diverge to the same end there must be one of them
with the image contained in C+ and the other one with the image in C−.
Therefore, adapting to this situation the argument presented above for the
two different possibilities of the boundary, it is not hard to see that there
is at most a curve diverging to each end. And then ∆ \ γ+

0 consists of
either a curve diverging to the two ends or a pair of curves starting at γ+

0
and diverging to different ends. Note that in both cases X(∆) is contained
either in C+ or C−. In order to conclude the proposition it is sufficient
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to apply Statement (ii) in Theorem 1 to each of connected components of
M \∆. �

Remark 1. Assume that T is a plane in R3 and that the divergent curves
in X−1(X(M) ∩ T ) verifies that two consecutive divergent curves are in
different half-strips of T . Then reasoning as in the proof of Proposition 1
we can see that there are at most two curves diverging to each end.

Corollary 1. The boundary of the immersion X is as in Case 1.

Proof. Assuming that 0 ≤ θ < π and taking into account Proposition 1 we
have that either X(M) ⊂ E(M) or X(M) ⊂ (S \ E(Γ)) ∪ Γ. Suppose that
the boundary behaviour is as in Case 2 and consider the compact curves
σi = σi

a, i = 1, 2 given in Lemma 1 for some a ≥ a0. Clearly, X(σ1) starts
at `+1 and ends at `−2 and X(σ2) is a curve starting at `−1 and ending at `+2 .
Since both curves lie either in Ca ∩ E(Γ) or in Ca ∩ ((S \ E(Γ)) ∪ Γ), they
intersect, which contradicts our assumptions. �

Taking the above corollary into account and the fact that X3 is a bounded
harmonic function one has the following:

Corollary 2. The function X3 : M −→ R3 extends continuously to the
ends.

Let us consider δt = X−1(X(M) ∩ {x3 = t}) for t ≥ −1
2 . Concerning δt

we can prove:

Corollary 3. The set δt is compact and consists of a simple arc, for all
t ∈]− 1

2 ,
1
2 [. Moreover, the Gauss map g of X omits the points 0 and ∞.

Proof. Clearly, from Corollary 2, we deduce that δt is compact. Since δt is
the nodal set of a harmonic function we have that δt is a one-dimensional
proper real analytic subvariety of M . Then, taking into account the maxi-
mum principle we deduce that there are no regions in M bounded by curves
in X−1(δt). Therefore, δt is a regular simple curve in M starting at `+0 and
ending at `−0 . Moreover, the theorem of the order of contact (see [13, §437])
gives that there are no points in M with vertical normal vector. �

In the case 0 ≤ θ < π the uniqueness of solutions X : M −→ R3 of
Problem 1 satisfying X(M) ⊂ E(M) were completely studied by F.J. López
and F. Mart́ın in [9]. Henceforth, in the remainder of the section we assume
that X(M) ⊂ (S \ E(Γ))∪Γ. Furthermore, we always assume that X(M) ⊂
{x2 ≤ 0} in the case θ = π. With this assumptions, we can prove:

Lemma 3. We have the following possibilities for the set τ0 = X−1(X(M)∩
{x1 = 0}):

i) If d > 0, τ0 consists of a curve diverging to both ends, E1 and E2.
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ii) If d = 0, τ0 \(γ+
0 ∪γ

−
0 ) either consists of a curve diverging to both ends

or τ0 \ (γ+
0 ∪ γ−0 ) = τ1

0 ∪ τ2
0 , where τ i

0 are curves starting at γ+
0 or γ−0

and diverging to Ei, for i = 1, 2.

Proof. Since τ0 is the nodal set of a harmonic function we have that τ0 is
a set of properly immersed analytic curves in M . Observe that τ0 6= ∅. If
not, applying Statement (ii) in Theorem 1 we obtain that X(M) are two
planar domains. Moreover, by the maximum principle, there are no compact
connected regions in M \ τ0 bounded by curves in τ0. Clearly, taking into
account that X(M) ∩ {x1 = 0} ⊂ {(x1, x2, x3) | x1 = 0, x2 ≤ 0,−1

2 ≤ x3 ≤
1
2} and Statement (i) in Theorem 1 we obtain i).

Assume now that d = 0. In this case we have γ+
0 ∪ γ−0 ⊂ τ0. Since

Γ+ ⊂ {x1 ≥ 0} and Γ− ⊂ {x1 ≤ 0}, we infer that if there exists a curve in
τ0 starting at γ±0 and diverging to one end, then there exist another curve
which starts at γ±0 and diverges to the other end. Then reasoning as in the
above paragraph we obtain ii). �

Proposition 2. Counting multiplicities ][N−1(−~a2,~a2)] ≤ 5 and

][N−1(−~a2,~a2) ∩ (M \ ∂(M))] ≤ 3,

where N : M −→ S2 is the Gauss map of X. Furthermore, if 0 < θ < π we
have

][N−1(−~a,~a)] ≤ 5, ∀~a ∈ S2 ∩ {x3 = 0}.

Proof. We prove the first assertion in Proposition 2. The second assertion
can be proved using similar arguments. Let us consider βt = X−1(X(M) ∩
{x2 = t}), for t ∈ R. Note that βt is a set of properly immersed analytic
lines, because it is the nodal set of a harmonic function. Hence, using
the maximum principle, we infer that there are no compact domains in M
bounded by curves in βt, for all t ∈ R. Therefore, any two curves in βt do
not intersect in more than one point. If not, we can find a compact domain
of M \ βt bounded by curves in βt.

We start with the case t < 0. Observe that in this case βt is a nonempty
set of divergent curves, converging to a unique end or to the two ends. If
βt = ∅ for some t < 0 we deduce that X(M) ⊂ {x2 ≥ 0} and applying
Statement (ii) in Theorem 1 we obtain X(M) ⊂ E(Γ) which contradicts our
assumption.

Let α̃1 and α̃2 be a pair of arcs in βt diverging to Ei such that α̃1∩α̃2 6= ∅.
Therefore, there exists Ui, a neighbourhood of Ei, verifying that:

• Ui \ (Ui ∩ τ0) has two connected components, U+
i and U−i , where τ0

was defined in Lemma 3.
• α̃1 ∩ Ui ⊂ U+

i and α̃2 ∩ Ui ⊂ U−i .
If not, one can find a neighbourhood of Ei, Ui, verifying the first condition
and such that either (α̃1 ∪ α̃2) ∩ Ui ⊂ U+

i or (α̃1 ∪ α̃2) ∩ Ui ⊂ U−i . Hence,
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we deduce that X((α̃1 ∪ α̃2) ∩ Ui), i = 1, 2 are contained in a half strip
of {x2 = t} and so there is a connected component in M \ βt, Ω, whose
boundary is in a half-strip of {x2 = t}. Therefore, we can apply Statement
(i) in Theorem 1 to conclude that X(Ω) is a planar domain in {x2 = t},
which is a contradiction.

Let us prove that if α1 and α2 are two curves in βt diverging to Ei, then
they are disjoint. Indeed, if α1 and α2 intersect then we have four arcs
{α̃i}4

i=1 in βt diverging to Ei and α̃j ∩ α̃l 6= ∅. But this contradicts the
above result.

Assume now that α1 is a curve diverging to Ei and that α2 is a curve
diverging to the two ends. If α1 and α2 intersect each other then we have
three arcs {α̃i}3

i=1 in βt diverging to Ei and α̃j ∩ α̃l 6= ∅. But, again this
contradicts the above result.

As a consequence, only curves diverging to the two ends can intersect.
Now, we shall prove that there are at most two of these curves whose in-
tersection is not empty. Assume there exist αi for i = 1, 2, 3 curves in βt

diverging to the two ends such that α1 ∩ αi 6= ∅, for i = 2, 3. Then, by con-
sidering apropriate arcs in αi, for i = 1, 2, 3 and using the assertion proved
above about arcs diverging to one end, we can find a connected component
of M \ βt that satisfies the conditions of Statement (i) in Theorem 1 and
then X(Ω) must be a planar domain in {x2 = t}, which contradicts our
assumptions. Moreover, it is clear that if α1 and α2 are two curves in βt

diverging to the two ends whose intersection is not empty then α1 ∩ α2 is a
unique point.

Lastly, if we have two curves in βt diverging to the two ends whose in-
tersection is not empty, then there are no more intersections in βt′ for any
t′ < 0, t′ 6= t. If not, using again the above assertion, we deduce that the
pair of divergent curves in βt intersect the pair of divergent curves in βt′ .
Since βt and βt′ are contained in parallel planes, this is a contradiction.

Now, we tackle the case t > 0. Observe that this case only has sense
if 0 ≤ θ < π and that βt ∩ ∂(M) = p+

1 ∪ p+
2 ∪ p−1 ∪ p−2 where p+

i ∈ γ+
i

and p−i ∈ γ−i , for i = 1, 2. Since X(M) ⊂ (S \ E(M)) ∪ Γ we deduce that
connected curves in βt are contained in a half-strip of {x2 = t}. Therefore,
there are no curves in βt diverging to one end. Indeed, we have a connected
component of M \βt satisfying the conditions in Statement (i) in Theorem 1
and so we get a contradiction. Hence, it is clear that curves in βt diverging
to two ends are disjoint and moreover a divergent curve starting at ∂(M)
and a curve diverging to the two ends can not intersect each other. Then,
α1 ∩ α2 6= ∅ only in two situations:

i) When α1 is a curve starting at γ+
1 and diverging to E2 and α2 is a

curve starting at γ+
2 and diverging to E1,
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ii) when α1 is a curve starting at γ−1 and diverging to E2 and α2 is a
curve starting at γ−2 and diverging to E1.

Moreover, we observe that if there exist a pair of curves as in i) for t0 > 0,
this pair is unique. It is to say, {x2 = t}∩{x1 ≥ 0}∩X(N−1({−~a2,~a2})) = ∅
for t > 0, t 6= t0. And the same occurs for a pair of curves as in ii). Therefore,
we have at most two points in δt ∩N−1({−~a2,~a2}) for t > 0.

We recall that the set β0 = β was studied in the proof of Proposition 1.
Since we are assuming X(M) ⊂ (S \ E(Γ)) ∪ Γ the possibilities for β0 are
those described in 1, 2, 3 and 4. We also point out that Case 2 is not
compatible with Case i) analyzed in the case t > 0, Case 3 is not compatible
with Case ii) analyzed in the case t > 0 and so Case 4 is not compatible
with either i) or ii). Therefore, there exist at most five points of ordinary
contact in M and only three of them can lie in M \ ∂(M). �

Lemma 4. For any p ∈ γ+
1 ∪γ

−
1 ∪γ

+
2 ∪γ

−
2 , counting multiplicities, one has

][g−1(g(p)) ∩ ∂(M)] < 6.

Proof. Assume X(p) ∈ `+1 . The proofs of the other possibilities are similar.
Label Σ as the tangent plane to X(M) at X(p) and let us consider Λ =

X−1(Σ ∩ X(M)). Since Λ is the nodal set of a harmonic function, then Λ
is a set of properly immersed analytic curves. Using the interior maximum
principle we also deduce that there are no compact simply connected region
of M bounded by curves in Λ.

First, we study the case 0 ≤ θ < π. In this case `+1 ⊂ Σ and sinceX(M) ⊂
(S\E(Γ))∪Γ, it is straightforward to prove that Λ∩X−1(Γ−`+1 ) = ∅. Hence,
taking into account the reasoning at the beginning of the proof and that M
is simply connected, we have that if λ is a curve in Λ starting at γ+

1 , then
λ diverges to an end and when two curves in Λ start at γ+

1 , they do not
intersect.

If ][g−1(g(p))∩∂(M)] ≥ 6 then, using once again the theorem of the order
of contact (see [13, §437]), there are at least 6 curves in Λ starting at γ+

1 .
Observe that then there exist at least three curves diverging to the same
end. Consider this set of diverging curves. If there is a pair of consecutive
curves in this set contained in the same half-strip of Σ then the connected
component between them, that we call Ω, satisfies the conditions of State-
ment (i) in Theorem 1 and then X(Ω) must be a planar domain in Σ, which
contradicts our assumptions. On the contrary, if each pair of consecutive
curves are in different half-strips, we can use Remark 1 and obtain a new
contradiction.

Finally, we analyze the case θ = π. Observe that in this case Λ∩ ∂(M) =
γ+

1 ∪γ
−
1 . Suppose ][g−1(g(p))∩∂(M)] ≥ 6. We note that in this case compact

curves starting at γ+
1 and ending at γ−1 can appear in Λ. Otherwise, we can

only have one of these curves, because if there exist two or more curves
of this type in Λ we would get a compact domain, Ω, in M \ Λ satisfying
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X(Ω) ⊂ Σ, and this is a contradiction. Either there exists a compact curve
in Λ or Λ consists only of divergent curves starting at γ+

1 ∪ γ−1 , it is not
hard to see, using Statement (i) in Theorem 1, that there are at least a set
of three curves (counting the curve γ+

1 ) diverging to the same end in Λ such
that two consecutive curves in this set are in different half-strips of Σ. Then
we can conclude as in the former case. �

Using the above lemmas we can now prove:

Proposition 3. The map g extends continuously to the ends. In particular,
the total curvature of M is finite. Furthermore, the limit tangent plane to
M at Ei is πi, i = 1, 2.

Proof. We shall prove that the map g extends to E1. The same argument
can be used for E2. Taking into account Lemma 4 it is not difficult to prove
that the following limits exist:

lim
p→ E1

p ∈ γ+

g(p) , lim
p→ E1

p ∈ γ−

g(p) , i = 1, 2.(1)

For the proof of this fact see Claim 3.15 in [9].
Since M is conformally equivalent to a sector Sθ1 = {reiΘ | r > 0,Θ ∈

[0, θ1]}, a truncated sector Sθ1(R) = Sθ1 \ D(0, R) can be seen as a neigh-
bourhood of E1 in M . Furthermore, we can assume that R is sufficiently
large so that X(reiθ1) ∈ `+1 for r > R. According to Schwarz Principle we
can consider the reflection respect to `+1 of X(Sθ1(R)). Taking into account
Proposition 2 we deduce that the Gauss map N on the truncated sector
S2θ1(R) = {reiΘ | r > 0,Θ ∈ [0, 2θ1]} \ D(0, R), assumes the values ~a2

and −~a2 a finite number of times. Then it is possible to choose R′ > R
sufficiently large so that g restricted to S2θ1(R

′) omits the values −1 and 1.
At this point, we need the following technical result:

Let α < γ < β, S(R) = {reiΘ | r > 0,Θ ∈]α, β[} \ D(0, R),
for R > 0 and let f be holomorphic in S(R) and for some
complex c satisfy limr→+∞ f(reiγ) = c. Suppose that there are
two distinct complex number absent from the range of f . Then
limr→+∞ f(reiΘ) = c for every Θ ∈]α, β[.

We refer to reference book [1, pp. 441-445].
This theorem and (1) imply that g extends continuously to E1. Finally,

since M ⊂ S we have that the limit tangent plane at Ei coincides with πi,
i = 1, 2. �

Consider again the compact curves σi
a given in Lemma 1 for i = 1, 2 and

a ≥ a0 sufficiently large. Let us denote by U i
a the connected component of

M \ (σ1
a ∪ σ2

a) that contains the end Ei, i = 1, 2. With this notation we can
prove the following useful result:
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Corollary 4. For a sufficiently large, X(U i
a) is a graph over the plane πi,

i = 1, 2.

Proof. Take a ≥ a0 sufficiently large so that g(U i
a) does not intersect the

equator {z ∈ C | |z| = 1}.
Taking into account that X(M) ⊂ (S \E(Γ))∪Γ and the definition of U i

a,
it is not hard to see that p3|X(U i

a) is a local diffeomorphism onto Ωi
a, where

Ωi
a is the exterior unbounded domain in the plane {x3 = 0} determined by

the curve p3(`+i ) ∪ p3(`−i ) ∪ p3(σi
a). As X is proper, the same occurs for the

map p3 ◦ X|U i
a
. So, p3 ◦ X|U i

a
is a covering map, and taking into account

that Ωi
a is simply connected we deduce that p3 ◦ X|U i

a
is one-to-one. This

concludes the proof. �

2.2. The symmetries of the surface. The method for proving that {x3 =
0} is a plane of symmetry of X(M) is based on the well-known Alexandrov’s
reflection method and consists of a generalization of Schoen’s ideas (see [14])
to our particular case of noncompact boundary. For a precise presentation of
our result the following notation is required. Recall that δt = X−1(X(M)∩
{x3 = t}). We also denote for t ≥ −1/2:

M+(t) = {(x1, x2, x3) ∈ X(M) / x3 ≥ t},
M−(t) = {(x1, x2, x3) ∈ X(M) / x3 ≤ t}.

A thorough reading of the paragraph 3.2.2 of [9] will convince the readers
that, sharpening some arguments, the proof of Theorem 3.24 still works in
the case X(M) ⊂ (S \ E(Γ)) ∪ Γ. Then, we have:

Proposition 4. X(M) is symmetric with respect the plane {x3 = 0}. Fur-
thermore, M+(0)\(`+0 ∪`

−
0 ) and M−(0)\(`+0 ∪`

−
0 ) are graphs over {x3 = 0}.

Now, we recover two consequences of the above proposition that we need
in what follows.

Corollary 5. There are only two branch points R+
0 ∈ γ+ and R−0 ∈ γ− of

g along γ+
0 ∪ γ−0 , g has multiplicity two at these points and R+

0 ,R−0 ∈ δ0.
Furthermore, the set G = {p ∈M / |g(p)| = 1} consists of γ+

0 ∪ γ−0 ∪ δ0.

Corollary 6. The limit normal vectors at the ends are opposite.

In the remainder of the paper and without loss of generality, we assume
that

g(E1) = 0, g(E2) = ∞.(2)

Next we prove that if d = 0 then {x1 = 0} is a plane of symmetry of X(M).
As in the horizontal symmetry case, the proof is inspired on Alexandrov’s
reflection method. However, the argument exhibited here is slightly different
from classical Alexandrov’s technique which uses a family of parallel planes.
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In this case we use the pencil of vertical planes that contains the vertical
segment `0 = `+0 = `−0 .

For the sake of simplicity, in this paragraph we consider a new set of
Cartesian coordinates obtained from the old one by a rotation of −π

2 around
the x3-axis. Observe that in the new coordinate the x1-axis is the inner
bisector of the orthogonal projection of `+i and `−i to the plane {x3 = 0},
i = 1, 2, and Γ+ ⊂ {x2 ≥ 0}. Moreover, we need to introduce some notation.
For ξ ∈

[
0, π − θ

2

]
, t ∈ ]−∞, 0] and a set A ⊂ R3 we define:

Hξ = {(x1, x2, x3) ∈ R3 | Arg(x1 + ix2) = ξ} , Hξ,t = Hξ + (t, 0, 0),
Pξ = {(x1, x2, x3) ∈ R3 | Arg(x1 + ix2) = ξ − π

2 } , Pξ,t = Pξ + (t, 0, 0),
H+

ξ = {(x1, x2, x3) ∈ R3 | Arg(x1 + ix2) ∈
[
ξ, π − θ

2

]
},

H−
ξ = {(x1, x2, x3) ∈ R3 | Arg(x1 + ix2) ∈

[
−π + θ

2 , ξ
]
},

δ(ξ) = X(M) ∩Hξ , A+(ξ) = A ∩H+
ξ , A−(ξ) = A ∩H−

ξ ,

δ(ξ, t) = X(M) ∩Hξ,t, A+(ξ, t) = A ∩ (H+
ξ + (t, 0, 0)),

A−(ξ, t) = A ∩ (H−
ξ + (t, 0, 0)),

where Arg : C\ ] − ∞, 0] −→ R denotes the principal argument. Note
that Hξ ⊥ Pξ. In addition we label sξ : R3 −→ R3 and sξ,t : R3 −→
R3 as the orthogonal symmetries with respect to the planes containing Hξ

and Hξ,t, respectively. In the same way, we label pξ : R3 −→ Hξ as the
orthogonal projection. With these definitions we denote A∗+(ξ) = sξ(A+(ξ))
and A∗+(ξ, t) = sξ,t(A+(ξ, t)). In particular we denote M+(ξ) = X(M)+(ξ),
M+(ξ, t) = X(M)+(ξ, t), M−(ξ) = X(M)−(ξ), M−(ξ, t) = X(M)−(ξ, t) and
∆ξ = M∗

+(ξ) ∩M−(ξ). If ξ ∈
[

π
2 , π −

θ
2

]
we also consider ∆ξ,t = M∗

+(ξ, t) ∩
M−(ξ, t).

Since the following argument is valid for all ξ ∈
[

π
2 , π −

θ
2

]
and t ∈]−∞, 0]

we omit the parameters ξ and t in the description of the different sets.
With the above notations, it is not difficult to see that

∆ ∩ (Γ∗+ ∪ Γ−) = δ ∩ Γ.(3)

From Proposition 3 and Corollary 4 we can also consider a1 sufficiently large
so that a1 ≥ a0, X(U i) = X(U i

a1
) is a graph over the plane {x3 = 0}, i = 1, 2

and x3|X(U1) > 0 and x3|X(U2) < 0, where a0 is as in Lemma 1 and U i
a1

is
defined in Subsection 2.1.

Now, we can prove the following assertion:

Claim 1. If X−1(∆ \ δ) ⊂ U1 ∪ U2, then ∆ = δ.

The proof of this claim is similar to the proof of Claim 3.19 in [9]. We
refer the reader to [9] for details.
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Now we define the set

I =
{
ξ1 ∈

[
0, π − θ

2

] ∣∣ [M∗
+(ξ) ∩ {x3 ≥ 0}

]
� [M−(ξ) ∩ {x3 ≥ 0}] ,

π − θ
2 ≤ ξ ≤ ξ1

}
.

Our objective is to prove that I =
[
0, π − θ

2

]
. We divide the proof of this

fact into several points:

Claim 2.
]

π
2 , π −

θ
2

]
⊂ I.

If A,B ⊂ R3, we say that A ≥ξ B provided for every x ∈ R3 for which
p−1

ξ ({x}) ∩ A 6= ∅ and p−1
ξ ({x}) ∩ B 6= ∅, we have that the orthogonal

coordinate to Hξ,t of any point in p−1
ξ ({x}) ∩ A is equal to or greater than

the respective orthogonal coordinate of any point in p−1
ξ ({x}) ∩B.

Given ξ ∈
]

π
2 , π −

θ
2

]
, we define the set

Iξ =
{
t ∈]−∞, 0] |M+(ξ, t) is a graph over Hξ,t

and M∗
+(ξ, t) ≤ξ M−(ξ, t)

}
.

Our purpose is to show that Iξ =]−∞, 0], for all ξ ∈
]

π
2 , π −

θ
2

]
. Note that

this fact implies
]

π
2 , π −

θ
2

]
⊂ I.

First, we are going to see that Iξ 6= ∅. To do this, let t′ < 0 such that
X−1(M+(ξ, t)) ⊂ U1 ∪ U2, where U i are defined as above, ∀t ≤ t′ (observe
that X−1(∆ξ,t) ⊂ U1 ∪ U2). Hence from Claim 1, ∆ξ,t = δξ,t, t ≤ t′.

Then, it is clear that X−1(M+(ξ, t)) consists of two simply connected
components, one of them in U1 and the other one in U2, ∀t ≥ t′, and thus
M+(ξ, t) is the union of two disjoint graphs G1

+(ξ, t) and G2
+(ξ, t) over the

same simply connected domain G+(ξ, t) in the plane {x3 = 0}.
From the definition of U1 and U2, we have that pξ(G1

+(t′))∩pξ(G2
+(t′)) =

∅.
Let us see that M+(ξ, t) is a graph over the halfplane Hξ,t, t ≤ t′.
First, observe that pξ is injective on δξ,t, t ≤ t′. Indeed, note that δξ,t ⊂

Hξ,t is a graph over a connected piece of a straight line, and so the pξ is
injective.

Moreover, a similar argument gives that the set Pξ,s ∩M+(ξ, t′) is a con-
nected curve, for sufficiently large s. Furthermore, the function x3 is mono-
tone over Pξ,s ∩ M+(ξ, t′). Otherwise, there would exist some points in
M+(ξ, t′) whose normal vector lie in {x1 = 0} ∩ S2. Thus, we could take
t ≤ t′ in such a way that δt contains a point with normal vector in Pξ ∩ S2.
Hence, from the theorem of the order of contact (see [13, §437]) and taking
into account that X(U i) are graphs over the plane x3 = 0, i = 1, 2, we
deduce that ∆ξ,t − δξ,t 6= ∅, which is contrary to Claim 1.
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This proves that M+(ξ, t′) is a graph over the plane Hξ, and so the same
holds for M+(ξ, t), t ≤ t′.

Taking into account that ∆ξ,t = δξ,t, for t ≤ t′ andX(M) ∈ (S\E(M))∪Γ,
we deduce that M∗

+(ξ, t) ≤ξ M−(ξ, t), t ≤ t′. Thus, ]−∞, t′] ⊂ Iξ.
It is obvious that Iξ is closed in ]−∞, 0].
Next, we shall see that 0 = Maximum(Iξ). We proceed by contradiction.

Assume t0 = Maximum(Iξ) < 0. Let K = X(M \ (U1 ∪U2)). Since t0 ∈ Iξ,
K+(ξ, t0) is a graph over the planeHξ. Using the interior maximum principle
and the maximum principle at the boundary, it is not hard to see that there
exists ε > 0 such that K+(ξ, t) is a graph over Hξ and ∆ξ,t ∩K = δξ,t ∩K
for t ∈]t0, t0 + ε](for details, see Claim 3.21 in [9]). Hence, using Claim 1,
we deduce that ∆ξ,t = δξ,t. However, the maximality of t0 leads us to
∆ξ,t \ δξ,t 6= ∅, which is absurd. This finishes the proof of the claim.

Claim 3. The set I is closed in
[
0, π − θ

2

]
and its minimum is 0.

Obviously, I is closed. To prove Minimum(I) = 0 we proceed by contra-
diction. Let us assume that Minimum(I) = ξ0 > 0. As in the preceding
claim, we consider K = X(M \ (U1 ∩U2)). Taking into account that ξ0 ∈ I
we have [

M∗
+(ξ0) ∩ {x3 ≥ 0}

]
� [M−(ξ0) ∩ {x3 ≥ 0}] .(4)

Hence, since K+(ξ0) is compact, there exists ε0 > 0 sufficiently small so
that

[
K∗

+(ξ0 − ε) ∩ {x3 ≥ 0}
]
� [K−(ξ0 − ε) ∩ {x3 ≥ 0}], for all 0 ≤ ε ≤ ε0.

Otherwise, we could find sequences {ξn} ↗ ξ0, with ξn ∈ [0, ξ0[, and {xn},
{yn} in K, fulfilling the following conditions:

i) xn ∈ K+(ξn), yn ∈ K−(ξn) and sξn(xn) = yn, ∀n ∈ N.
ii) {xn} → x ∈ K+(ξ0), {yn} → y ∈ K−(ξ0).

From i) and ii) we deduce that sξ0(x) = y. On the other hand, (3) implies
that any point lying in ∆ξ0 \ δξ0 is an interior point of contact between
M∗

+(ξ0) and M−(ξ0). Assume ∆ξ0 \ δξ0 6= ∅. Then, making use of the
interior maximum principle we deduce M∗

+(ξ0) = M−(ξ0), which is absurd
because, since ξ0 > 0, Γ is not symmetric with respect to the plane Hξ0 .

Therefore x = y ∈ K ∩ δξ0 . Hence, taking into account i) and ii), we have
that N(X−1(x)) = sξ0(N(X−1(x))) and so N(X−1(x)) is parallel to Hξ0 .
Therefore, by the theorem of the order of contact (see [13, §437]) we have
that x ∈ K ∩ (δξ0 \ (δξ0 ∩ `0)) and x 6∈ {q+1 = q−1 , q

+
2 = q−2 }. From this fact

and taking into account (4), the maximum principle at the boundary can
be applied to a neighbourhood of the point x. We get M∗

+(ξ0) = M−(ξ0),
which is as above a contradiction.

By the preceding reasoning, we have ∆ξ \δξ ⊂ X(U1∪U2) for ξ ≥ ξ0−ε0.
From Claim 1 we conclude that ∆ξ = δξ for ξ ≥ ξ0−ε0. Clearly this implies[
M∗

+(ξ) ∩ {x3 ≥ 0}
]
� [M−(ξ) ∩ {x3 ≥ 0}] for ξ ≥ ξ0−ε0 and so ξ0−ε0 ∈ I,

which contradicts that ξ0 is a minimum.
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Summarizing we have
[
M∗

+(0) ∩ {x3 ≥ 0}
]
� [M−(0) ∩ {x3 ≥ 0}]. We

can repeat the above argument starting from Γ− instead of Γ+ and ob-
tain

[
M∗
−(0) ∩ {x3 ≥ 0}

]
� [M+(0) ∩ {x3 ≥ 0}] and so X(M) ∩ {x3 ≥ 0} is

symmetric with respect to the plane {x2 = 0}. Finally, by the horizontal
symmetry mentioned in 2.2 we have that X(M) is symmetric with respect
to the plane {x2 = 0}.

2.3. Determination of conformal structure and Weierstrass data
of M . This subsection is devoted to determining the Weierstrass data as-
sociated to the minimal immersion X : M −→ R3. We define n = 2π

3π−θ .
Observe that n ∈ [23 , 1]. As M is simply-connected, the map (−ig)

n
2 has

a well-defined branch on M . Let f be the branch of (−ig)
n
2 such that

Arg(f(p)) = 0, whenever −ig(p) ∈ R+.
As before, Q+

j = γ+
0 ∩γ

+
j , Q−j = γ−0 ∩γ

−
j , j = 1, 2. Observe that f(Q+

j ) = i
and f(Q−j ) = −i, j = 1, 2. Moreover, since X(M) ⊂ (S \ E(Γ))∪Γ it is easy
to see that f(p) 6= f(Q±j ) for all p ∈ γ±j , j = 1, 2. Then, taking into account
that g(E1) = 0 and g(E2) = ∞, one has:

f(γ−1 ) = s−1 = {λi | λ ∈ [−1, 0[}, f(γ−2 ) = s−2 = {λi | λ ∈]−∞,−1]},

f(γ+
1 ) = s+1 = {λi | λ ∈]0, 1]}, f(γ+

2 ) = s+2 = {λi | λ ∈ [1,∞[}.
Using Corollary 5, we deduce that f |[Q±

j ,R±
0 ] are injective for j = 1, 2. Hence,

if we write f(R+
0 ) = ei

t0
2 and f(R−0 ) = ei

t1
2 , it is not hard to check that

f(γ−0 ) = s−0 =
{

ei t
2 | t ∈ [−π, t1]

}
, f(γ+

0 ) = s+0 =
{

ei t
2 | t ∈ [t0, π]

}
.

(5)

Using again that X(M) ⊂ (S \E(Γ))∪Γ, the fact that there are at most two
points on γ±0 where the Gauss map achieves the values ±~a2 (see the proof
of Proposition 1) and Corollary 5, one deduces that −π < t1 < 0 < t0 < π.

Let Λ denote the connected component of C\ (f(∂(M))∪{0}) containing
the point {1} (see Figure 5). We have the following result:

Lemma 5. The map f : M → C fulfills that:
(i) f(M \ ∂(M)) = Λ, and
(ii) f |M\∂(M) : M \ ∂M → Λ is a biholomorphism.

Proof. In order to prove (i) we note that f is holomorphic and nonconstant,
and so f(M \ ∂(M)) is an open subset of C∗ (note that no points in M
have vertical normal vector). On the other hand, taking into account that
M = M ∪ {E1, E2} is compact, f(M) is a closed subset of C. Therefore the
set W = f(M \ ∂(M)) ∩ (C \ (f(∂(M)) ∪ {0})) = f(M) ∩ (C \ (f(∂(M)) ∪
{0})) is a closed subset of C \ (f(∂(M)) ∪ {0}). Then, either W = C \
(f(∂(M)) ∪ {0}) or W is a connected component of C \ (f(∂(M)) ∪ {0}).
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To see that the first possibility does not occur we proceed by contradiction.
Assume W = C \ (f(∂(M)) ∪ {0}). Observe that f(p) ∈ S1 if and only if
g(p) ∈ S1. Hence, taking into account Corollary 5 and (5) we infer that
{ei t

2 , t ∈ [t1, t0]∪ [π
2 ,

3π
2 ]} ⊂ f(δ0). Moreover, since there are no ramification

points in δ0 \{R+
0 , R

−
0 }, we deduce that Arg(f) is a monotone function in δ0

and f(δ0) = S1. Since {1, e
1
2
nπi, enπi, e

3
2
nπi} ⊂ S1, we have that there are at

least four points in δ0∩N−1({~a2,−~a2}). But it is contrary to Proposition 2.
Since f(γ+

0 ) and f(γ−0 ) lie in the boundary of W , we easily obtain that
W = Λ and so f(M \ ∂(M)) = Λ.

The same argument presented above gives us that f(δ0) = {ei t
2 | t ∈

[t1, t0]} and f |δ0 : δ0 −→ {ei t
2 | t ∈ [t1, t0]} is a one-to-one function.

To finish the proof, we define γ = ∂(M). Since M is conformally a
closed disk with piecewise analytic boundary, then γ is a piecewise analytic
curve homeomorphic to S1. Note that since g|M has no poles and g extends
continuously to M , we can assert the same for f . Then, we know that for
any w ∈ Λ = f(M \ ∂(M)), ]

(
f−1(w)

)
= 1

2πi

∫
γ

df
f−w ∈ Z. Thus, if we

define h : Λ −→ Z by h(w) = ](f−1(w)), the function h is continuous on Λ,
and so it is constant. From the above arguments we have that h(w) = 1,
∀w ∈ f(δ0 \ {R+

0 , R
−
0 }) and this concludes the proof. �

Let N t1
t0

be the following four-punctured torus:

N t1
t0

= {(u, v) ∈ C∗ × C | v2 = (u− ei
t0
2 )(u+ e−i

t0
2 )(u− ei

t1
2 )(u+ e−i

t1
2 )}.

Consider U t1
t0
⊂ N t1

t0
as the connected component of u−1(C \ f(∂(M))) con-

taining the point P0 =
(
1, 2

√
− sin( t0

2 ) sin( t1
2 )
)
. Define N ′ = U t1

t0
. At this

point we prove the following proposition:

Proposition 5. M is biholomorphic to N ′. Furthermore, the Weierstrass
data are given on N ′ by

g(u) = iu
2
n , Φ3 = λ

du

v
,

where λ ∈ R+ and we choose the branch of u
2
n satisfying 1

2
n = 1.

Proof. Consider f : M\∂(M)−→Λ, the biholomorphism defined in Lemma 5.
Observe that the u-projection is a biholomorphism from N ′ \ ∂(N ′) onto Λ
and so F = f−1 ◦ u : N ′ \ ∂(N ′)−→M \ ∂(M) is a biholomorphism. Since
N ′ \ ∂(N ′) and M \ ∂(M) are conformally equivalent to Jordan regions in
C, a well-known result of complex analysis asserts that F can be extended
to a biholomorphism from N ′ onto M . For the sake of simplicity, in what
follows we identify M with N ′.

Now, we consider the holomorphic function ω = Φ3v
du on N ′. Let p0 ∈

s+0 ∪ s
−
0 and {p1

0, p
2
0} = u−1(p0). Since the surface is symmetric with respect
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to the plane {x3 = 0} (see 2.2), we have that Φ3(p1
0) = −Φ3(p2

0). But this is
also the behaviour of v. Consequently, ω̃ = ω◦u−1 is a holomorphic function
in Λ that can be extended to s+0 ∪ s

−
0 .

As Φ3 and v extend to the punctures in a natural way, ω̃ can be seen
as a holomorphic function on {z ∈ C | Re(z) ≥ 0}. Furthermore, ω̃ is real
on {z ∈ C | Re(z) = 0} and so, using the Schwarz Principle, ω̃ extends
to the whole C. Then, ω̃ is a holomorphic function on C without zeroes
or poles and therefore ω̃ = λ ∈ C∗. Finally, using again that ω̃ is real on
{z ∈ C | Re(z) = 0} we deduce λ ∈ R∗. Observe that, up to a rigid motion,
we can assume that λ ∈ R+. �

As we announced, we now prove that X(M) also inherits the vertical
symmetry of its boundary when d > 0.

Proposition 6. In the above setting, t1 = −t0.

Proof. First of all, observe that the result about the vertical symmetry
proved in Paragraph 2.2 implies t1 = −t0 if d = 0. We shall see that
this fact suffices to prove the general case.

SinceX : M −→ R3 is a solution of Problem 1 we have thatX1(R−0 ) = −d
2

and X1(R+
0 ) = d

2 . Thus

d = X1(R+
0 )−X1(R−0 ) = Re

∫
bδ Φ1,

where δ̂ is the lift to M of the curve ei t
2 , t1 ≤ t ≤ t0, in the u-plane. Taking

into account the expressions for g and Φ3 given in Proposition 5, it is not
difficult to obtain that

d =
λ

4
f1(t0, t1) =

λ

4

∫ t0

t1

cos( t
n)

v(t, t0, t1)
dt,

where v(t, t0, t1) =
√(

sin( t0
2 )− sin( t

2)
) (

sin( t
2)− sin( t1

2 )
)
. Furthermore, we

have that X2(R+
0 ) = X2(R−0 ). Thus

X2(R+
0 )−X2(R−0 ) = Re

∫
bδ Φ2 = 0.

A direct computation using again the expressions of g and Φ3 given in Propo-
sition 5 gives

Re
∫

bδ Φ2 =
λ

4
f2(t0, t1) =

λ

4

∫ t0

t1

sin( t
n)

v(t, t0, t1)
.

From the definitions of the functions f1 and f2 we have

f1(t0, t1) = f1(−t1,−t0), f2(t0, t1) = −f2(−t1,−t0),(6)

for all (t0, t1) ∈ [0, π[×]−π, 0]. Observe that if X : M −→ R3 is the solution
of Problem 1 given in Proposition 5, then (t0, t1) must satisfy f1(t0, t1) ≥
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0 and f2(t0, t1) = 0 . From the properties of f1 and f2 given in (6), it
suffices to study the zeros of the functions f1 and f2 in the triangle given by
T = {(t0, t1) ∈ [0, π[×]− π, 0] | t0 ≤ −t1} .

Let us denote by L1 = {0}× [−π, 0], L2 = {(t0, t1) ∈ [0, π]× [−π, 0] | t0 =
−t1} and L3 = [0, π]× {−π} the sides of the triangle T . We also define the
sets C1 = {(t0, t1) ∈ T | f1(t0, t1) = 0}, C2 = {(t0, t1) ∈ T | f2(t0, t1) = 0}.
It is clear from (6) that L2 ⊂ C2. Furthermore, by the vertical symmetry
proved in Paragraph 2.2 we deduce that C1 can only intersect C2 in points
of L2. For the sake of clarity, we divide the rest of the proof in several steps.

Step 1. The objective of this step is to show that Ci is a set of analytic
curves in T , for i = 1, 2.

Consider the meromorphic 1-form given by Φ = u
2
n

v du. Note that −f2

and f1 are the real and imaginary part of 4
∫bδ Φ. By deriving, one has

L(Φ) =
∂2Φ
∂t20

+
∂2Φ
∂t21

+ a1
1

∂Φ
∂t0

+ a2
1

∂Φ
∂t1

+ a0
0Φ = d(F ),(7)

where

a1
1 =

cos(t0) + sin( t0
2 ) sin( t1

2 )
2 cos( t0

2 )(sin( t0
2 )− sin( t1

2 ))
,

a2
1 = −

cos(t1) + sin( t0
2 ) sin( t1

2 )
2 cos( t1

2 )(sin( t0
2 )− sin( t1

2 ))
,

a0
0 =

4− n2

4n2

and F is the following meromorphic function:

F =
u

2
n

+1(au4 + bu3 + cu2 + du+ e)
4nv3

,

where a = 2+n, b = −i(4+n)(sin( t0
2 )+sin( t1

2 )), c = −4(1+2 sin( t0
2 ) sin( t1

2 )),
d = −i(−4 + n)(sin( t0

2 ) + sin( t1
2 )) and e = 2− n.

Integrating by parts in (7), we have that f1 and f2 are zeroes of the second
order elliptic operator given by L. As C1 and C2 are the nodal sets of f1

and f2, respectively, we can assert (see [2]) that Ci is a set of regular curves
and the critical points on the nodal lines are isolated. Furthermore, when
the nodal lines meet, they form an equiangular system. Moreover, by the
Maximum Principle for elliptic operators, Ci cannot contain closed curves.

Step 2. The purpose of the present step is to study the behaviour of the
curves in C1 at the boundary of the triangle T . We shall see that C1 ∩L1 =
(0, t̃1), C1 ∩ L2 = (t̃0,−t̃0) and that there are no curves in C1 approaching
L3.
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First, we shall prove that ∂f1

∂t1
(t0, t1) > 0, for all (t0, t1) ∈ T . It is not

difficult to see that

∂

∂t1

(
cos( t

n)
v(t, t0, t1)

)
=

cos( t
n) cos( t1

2 )− cos( t
2) cos( t1

n )
4v(t, t0, t1)(sin( t

2)− sin( t1
2 ))

−
cos( t1

n )
sin( t0

2 )− sin( t1
2 )
d

(
sin( t0

2 )− sin( t
2)

v(t, t0, t1)

)
.

Thus integrating by parts in the above equality we obtain

∂f1

∂t1
(t0, t1) =

∫ t0

t1

cos( t
n) cos( t1

2 )− cos( t
2) cos( t1

n )
4v(t, t0, t1)(sin( t

2)− sin( t1
2 ))

.(8)

In order to prove ∂f1

∂t1
(t0, t1) > 0 we shall see that the function

h(t, n) = cos
(

t
n

)
cos
(

t1
2

)
− cos

(
t
2

)
cos
(

t1
n

)
≥ 0,

for t ∈ [t1, t0]. Since h(−t, n) = h(t, n) and t0 ≤ −t1, it suffices to prove
that h(t, n) ≥ 0 for t ∈ [t1, 0]. Moreover, taking into account h(t1, n) = 0, it
is enough to see that ∂h

∂t (t, n) = − 1
n sin( t

n) cos( t1
2 ) + 1

2 sin( t
2) cos( t1

n ) ≥ 0 for
t ∈ [t1, 0].

Assume first t1 ∈ [−nπ
2 , 0]. As n ∈ [23 , 1] we have 0 ≤ − sin( t

2) ≤ − sin( t
n)

and 0 ≤ cos( t1
n ) ≤ cos( t1

2 ). Hence ∂h
∂t (t, n) ≥ 0.

If t1 ∈ [−nπ,−nπ
2 ], the study of the signs in the expression of ∂h

∂t gives
directly that this partial is nonnegative.

Finally, we consider the case t1 ∈ [−π,−nπ]. As in the former case,
studying the signs in the expression of ∂h

∂t we obtain that ∂h
∂t (t, n) ≥ 0 for

t ∈ [−nπ, 0]. Otherwise, it is not difficult to see that ∂2h
∂n∂t(t, n) ≥ 0 for t ∈

[t1,−nπ]. As ∂h
∂t (t,

2
3) = 2 cos( t1

2 ) sin( t
2)
(
−2 cos( t

2)2 + (cos( t1
2 )2 − cos( t

2)2)
)

≥ 0 for t ∈ [t1,−nπ], we conclude that ∂h
∂t (t, n) ≥ 0.

Our next objective is to prove that f1(0,−nπ) < 0. Indeed, making the
change of variable s = t+ nπ/2 one has:

f1(0,−nπ) =
∫ n π

2

−n π
2

sin( s
n)√

− sin(−n π+2 s
4 )

(
sin(n π

2 ) + sin(−n π+2 s
4 )

)ds =

Z nπ
2

0
sin

„
s

n

« r“
sin( n π

2 )− sin( n π+2 s
4 )

”
sin( n π+2 s

4 )−
r“

sin( n π
2 )− sin( n π−2 s

4 )
”

sin( n π−2 s
4 )r“

sin( n π
2 )− sin( n π−2 s

4 )
”

sin( n π−2 s
4 )

r“
sin( n π

2 )− sin( n π+2 s
4 )

”
sin( n π+2 s

4 )

ds.

An easy computation gives us that the numerator in the last integral is
always nonpositive, and then f1(0,−nπ) < 0. From the definition of f1 we
also have f1(0,−nπ

2 ) > 0. Then, taking into account that ∂f1

∂t1
(0, t1) > 0, we

have that there exists a unique t̃1 ∈]− nπ,−nπ
2 [ such that f1(0, t̃1) = 0.
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We now consider the function f̃1(t0) = f1(t0,−t0), that is the function f1

restricted to the side L2. Taking into account (6) one has

∂f̃1

∂t0
(t0) =

∂f1

∂t0
(t0,−t0)−

∂f1

∂t1
(t0,−t0) = −2

∂f1

∂t1
(t0,−t0) < 0.(9)

According to the definition of f1 we have f̃1(nπ
2 ) = f1(nπ

2 ,−
nπ
2 ) > 0. Our

next purpose is to see that f̃1(nπ) = f1(nπ,−nπ) < 0. Note that

f̃1(nπ) = 2
√

2
∫ 0

−nπ

cos( t
n)√

cos(t)− cos(nπ)
.

A direct computation gives

f̃1(nπ)

= 2
√

2
∫ nπ

2

0

sin( s
n)(
√

cos(s+ nπ
2 )− cos(nπ)−

√
cos(s− nπ

2 )− cos(nπ))√
cos(s+ nπ

2 )− cos(nπ)
√

cos(s− nπ
2 )− cos(nπ)

.

It is not hard to see that the numerator in the above integrand is nonpositive,
in particular f̃1(nπ) < 0.

Therefore there exists t̃0 ∈]nπ
2 , nπ[ such that f1(t̃0,−t̃0) = 0, f1 is positive

in {(t0,−t0) ∈ T | 0 < t0 < t̃0} and negative in {(t0,−t0) ∈ T | t̃0 < t0 < π}.
Now, we prove that limt1→−π f1(t0, t1) = −∞. In order to do this we

consider a new set of parameters

s(t0, t1) = sin( t0
2 ), r(t0, t1) = sin( t1

2 ).(10)

Note that r(t0,−π) = −1. Our next objective is to see that limr→−1 f1(s, r)
= −∞. In order to do this, we derive again the 1-form Φ defined in Step 1
and we obtain the following equality:

∂4Φ
∂r4

+ b3
∂3Φ
∂r3

+ b2
∂2Φ
∂r2

+ b1
∂Φ
∂r

+ b0Φ = d(ϕ),(11)

where

b3 =
2(5r3 + 2s− 8r2s+ r(−2 + 3s2))

(−1 + r2)(r − s)2
,

b2 =
−16(r − s)2 + n2(−8 + 99r2 − 116rs+ 25s2)

4n2(−1 + r2)(r − s)2
,

b1 =
(−48 + 57n2)r + (48− 39n2)s

4n2(−1 + r2)(r − s)2
,

b0 =
3(n2 − 4)

4n2(−1 + r2)(r − s)2
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and ϕ is the following meromorphic function:

ϕ(u) =
u

2
n

+1(a′u4 + b′u3 + c′u2 + d′u+ e′)(u2 − 1− 2siu)
1
2

4n2(−1 + r2)(r − s)2(u2 − 1− 2riu)
7
2

,

with a′ = −3n(2+n), b′ = −3in((−4+3n)r− (4+5n)s), c′ = 12n(1+2rs),
d′ = −3in((4+3n)r+(4− 5n)s) and e′ = 3n(n− 2). Integrating by parts in
(11), we have that f1 is a solution of the fourth order ordinary differential
equation given by

∂4f1

∂r4
+ b3

∂3f1

∂r3
+ b2

∂2f1

∂r2
+ b1

∂f1

∂r
+ b0f1 = 0.(12)

Observe that this equation presents a regular singular point in r = −1 and
then we can use the Frobenius method to compute the limit of f1 when r
tends to −1 (see §4.8 in [3]). Taking into account the coefficients of Equation
(12) and the aforementioned method, we deduce that

f1(s, r) = c1 log(1+r)φ1(s, r)+c2 φ2(s, r)+c3(r+1)φ3(s, r)+c4(r+1)2φ4(s, r),

where ci ∈ R, φ1(s,−1) 6= 0 and φi are analytic at the points (s,−1), i ∈
{1, 2, 3, 4}. A direct computation using (8) and (10) proves that limr→−1

∂f1

∂r
= +∞. Thus c1 6= 0 and limr→−1 f1(s, r) = −∞.

Step 3. With regard to C2, we shall check that C2 ∩ {(0, t1) ∈ T | t̃1 ≤ t1 <
0} = ∅ and that if (t̂0,−t̂0) is a critical point of C2 in L2, then t̂0 > t̃0.

Clearly, from the definition of f2 one has f2(0, t1) < 0 for t1 ∈ [−nπ, 0[.
Thus we obtain the first assertion in the present step.

In order to prove the second one we need an apropriate expression for
∂f2

∂t0
. Observe that

∂Φ
∂t0

= u2/nτ − 2a
n
u2/n−1ψ du+ a d

(
u2/nψ

)
,

where

τ =
−i
(
−1 + ei

t0
2 u
)

4
(
1 + ei

t0
2 u
) du

v
,

ψ =

(
u+ e−i

t1
2

) (
u− ei

t1
2

)
v

,

a =
1

4
(
sin( t1

2 )− sin( t0
2 )
) .
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Integrating by parts once again in the above equality and computing the
real part, we get:

∂f2

∂t0
(t0, t1) =

∫ t0

t1

(
cos( t

n) sin( t
2)

nv(t, t0, t1)
(
sin( t0

2 )− sin( t1
2 )
) +

sin( t
n) tan( t+t0

4 )
4v(t, t0, t1)

)
dt

−
sin( t1

2 )
n
(
sin( t0

2 )− sin( t1
2 )
)f1(t0, t1).

In particular, if t1 = −t0 one has that the integral of the first summand
vanishes, and so

∂f2

∂t0
(t0,−t0) =

∫ t0

−t0

sin( t
n) tan( t+t0

4 )
4v(t, t0, t1)

dt+
1
2n
f1(t0,−t0).

Taking into account that t̃0 < nπ, it is not difficult to see that∫ t0

−t0

sin( t
n) tan( t+t0

4 )
4v(t, t0, t1)

dt > 0,

for 0 < t0 ≤ t̃0, and so ∂f2

∂t0
(t0,−t0) is positive in the points where the

function f1 is nonnegative. This concludes the assertion.
By Steps 1, 2 and 3 we deduce that there are no points (t0, t1) in T with

f1(t0, t1) ≥ 0 and f2(t0, t1) = 0 apart from the points {(t0,−t0) | 0 ≤ t0 ≤
t̃0}. �

Corollary 7. M is invariant under the antiholomorphic involution Sv(u) =
u which corresponds to the reflection in the plane {x1 = 0}.

3. The existence results.

In the former section we have seen that if X : M −→ R3 is a solution of
Problem 1 satisfying X(M) ⊂ ((S \E(Γθ d))∪Γθ d) then M is biholomorphic
to N ′ = U−t0

t0
and their Weierstrass data are given by

g = iu
2
n , Φ3 = λ

du

v
, v =

√
u4 − 2u2 cos(t0) + 1, n ∈

[
2
3 , 1
]
.

At this point, we observe that, up to an easy conformal transformation,
the above Weierstrass data for n ∈ [1, 2[ correspond to a López-Mart́ın
example, it is to say, solutions of Problem 1 verifying X(M) ⊂ E(Γθ d). For
the existence of this examples we refer the reader to [10].

Moreover, if n = 2 then the surface is a Jenkins-Serrin graph. Exten-
sion by Schwarz reflection of these surfaces gives embedded doubly periodic
examples with two orthogonal planes of symmetry between adjacent saddle
towers. These examples were studied by H. Karcher in [7].

Therefore, to complete the existence part of the Main Theorem it suffices
to prove that indeed for n ∈

[
2
3 , 1
]

the above conformal representation leads
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Figure 5. a) The domain u(M). b) The surface M .

to a solution of Problem 1 which lies in the exterior of the convex hull of its
boundary and this is the purpose of the present section.

In what follows we denote M = N ′ and γ+
i = u−1(s+i ), γ−i = u−1(s−i ),

i = 0, 1, 2, where s+i and s−i are those defined in Section 2 corresponding
to t1 = −t0 for i = 0, 1, 2 (see Figure 5). Moreover, we label γ+ = ∪2

i=0γ
+
i

and γ− = ∪2
i=0γ

−
i . We use the notation `±i introduced in Section 1 for the

half-lines in the polygonal Γθ d. Furthermore, recall that the set of Cartesian
coordinates was introduced at the beginning of Section 2.

Now, we consider the curve γ+
0 which consists of two copies, δ+1 and δ+2 ,

of s+0 . We can assume that δ+1 (t) and δ+2 (t) are the two lifts to M of the
curve ei t

2 , t ∈ [t0, π], in the u-plane, satisfying δ+1 (π) ∈ γ+
1 and δ+2 (π) ∈ γ+

2 ,

respectively. Define h̃ :]0, π[−→ R as h̃(t0) = 2Re
(∫

δ+
2
τ
)
, where τ = du

v .

A direct computation gives h̃(t0) =
√

2
2

∫ π
t0

dt√
cos(t0)−cos(t)

> 0. As we are

assuming that the immersion X : M −→ R3 is normalized so that the
distance between the planes π1 and π2 is 1, we have λ = 1eh(t0)

.

As usual, we define (Φ1,Φ2,Φ3) = 1
2

(
−i(u−

2
n + u

2
n ), u−

2
n − u

2
n , 1
)

Φ3.
Since M is homeomorphic to a closed disk minus two boundary points, we
have that X : M −→ R3 given by X(p) =

∫ p
p0

(Φ1,Φ2,Φ3) is a well-defined
conformal minimal immersion verifying Condition (1) in the statement of
Problem 1. Let us see that (M, g,Φ3) fulfill also the other conditions.

Denote Sh, Sv the antiholomorphic transformations on M given by
Sh((u, v)) = (1/u, v/u2), Sv((u, v)) = (u, v). Observe that the point P0 =
(1, 2 sin( t0

2 )) is invariant under Sh and Sv. Moreover, we have

g ◦ Sh = 1/g , g ◦ Sv = −g , S∗h(φ3) = −φ3 , S∗v(φ3) = φ3 .(13)

Hence elementary arguments imply that Sh (resp. Sv) induces on X(M) a
symmetry with respect to the plane {x3 = 0} (resp. {x1 = 0}).
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First, notice that

Sv(γ+
i ) = γ−i , i = 0, 1, 2(14)

Sh(γ+
1 ) = γ+

2 , Sh(γ−1 ) = γ−2 , Sh(γ+
0 ) = γ+

0 , Sh(γ−0 ) = γ−0 .(15)

It is straightforward to check that the conditions on the boundary are sat-
isfied. Actually, we have:

Lemma 6. The maps X|γ+, X|γ− are injective, X(γ+
i ) = `+i and X(γ−i ) =

`−i , for i = 0, 1, 2, it is to say, X(∂(M)) = Γθ d for θ = (3n− 2)π/n.

Taking into account Lemma 6, the expression of the oriented distance
d :]0, π[−→ R between `+0 and `−0 is d(t0) = Re

(∫bδ Φ1

)
, where now δ̂ is the

lift of the oriented curve ei t
2 , t ∈ [−t0, t0], in the u-plane. Since (Sh)∗(δ̂) = δ̂,

(Sv)∗(δ̂) = −δ̂ and taking into account (13) we deduce that
∫bδ Φ1 =

∫bδ Φ1 =
λ
4 f̃1(t0), where, as in Section 2, Φ = u

2
n

v du and f̃1(t0) = f1(t0,−t0). Hence
we have

d(t0) =
1
4
f̃1(t0)

h̃(t0)
.(16)

A thoughtful study of the function d will be very useful in order to prove
the rest of the conditions on the immersion X : M −→ R3. In this context
we shall see:

Lemma 7. The function d :]0, π[→ R satisfies:
1. It vanishes at only one point t̃0 ∈]nπ

2 , nπ[. Furthermore, d is positive
in ]0, t̃0[ and negative in ]t̃0, π[.

2. lim
t0→0

d(t0) = 0. In particular, d is bounded in ]0, t̃0[.

3. It has only a critical point t′0 ∈]0, t̃0[ which is a maximum. In partic-
ular, ]

[
d−1({x})

]
= 2, ∀x ∈]0, d(t̃0)[.

Proof. We had seen (see Step 2 in Proposition 6) that there exists a unique
t̃0 ∈]nπ

2 , nπ[ such that f̃1(t̃0) = 0, f̃1(t0) > 0 in ]0, t̃0[ and f̃1(t0) < 0 in
]t̃0, π[. Note that this proves the first assertion.

In order to prove the second statement, observe that

lim
t0→0

f̃1(t0) = lim
t0→0

√
2
∫ 1

−1

t0 cos( t0s
n )√

cos(t0s)− cos(t0)
ds = 2

∫ 1

−1

ds√
1− s2

= 2π.

(17)

Moreover, it is clear that 0 ≤
√

cos(t0)− cos(t) ≤
√

1− cos(t), t ∈ [t0, π],
then h̃(t0) ≥

√
2

2

∫ π
t0

dt√
1−cos(t)

= − log
[
tan

(
t0
4

)]
, and so

lim
t0→0

h̃(t0) ≥ lim
t0→0

(
− log

[
tan

(
t0
4

)])
= +∞.(18)
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Both (17) and (18) give Assertion 2. Concerning Assertion 3, we shall
prove that the functions f̃1, h̃ satisfy the following differential equations:

f̃1
′′
(t0) + cot(t0)f̃1

′
(t0) + 4−n2

4n2 f̃1(t0) = 0,(19)

h̃′′(t0) + cot(t0)h̃′(t0)− 1
4 h̃(t0) = 0.(20)

The above ordinary differential equations can be obtained from the following
equalities integrating by parts:

∂2Φ
∂t20

+ cot(t0)
∂Φ
∂t0

+
4− n2

4n2
Φ = d(G̃),

∂2τ

∂t20
+ cot(t0)

∂τ

∂t0
− 1

4
τ = d(H̃),

where

G̃(u) =
u

2+n
n

(
n
(
−1 + u4

)
+ 2

(
1 + u4

)
− 4u2 cos(t0)

)
4n (1 + u4 − 2u2 cos(t0))

3
2

and

H̃(u) =
u
(
−1 + u4

)
4 (1 + u4 − 2u2 cos(t0))

3
2

.

Let t′0 a critical point of d in ]0, t̃0[. This implies that d′(t′0) = 0 and so
(f̃1

′
h̃ − f̃1h̃

′)(t′0) = 0. Therefore we have the following expression for the
second derivative of d at the point t′0:

d′′(t′0) =
1
4
f̃1
′′
h̃− f̃1h̃

′′

h̃2
(t′0).

Hence, using (19) and (20), we obtain that d′′(t′0) = − cot(t0)d′(t′0)− 1
n2d(t′0)

< 0. Consequently, there exists only one critical point of d, t′0, in ]0, t̃0[ and
it is a maximum. Obviously, d(t′0) = Maximum{d(t0) | t0 ∈]0, t̃0[}.

Hence, it is clear that ]
[
d−1({x})

]
≥ 2, ∀x ∈]0, d(t′0)[. If ]

[
d−1({x})

]
> 2,

for some x ∈]0, d(t′0)[, then it implies the existence of a local minimum of d
in ]0, t̃0[, which is absurd. This concludes the proof. �

Remark 2. For each n ∈ [23 , 1], we denote either by dn or by d′θ the max-
imum of the distance function d(t0), t0 ∈]0, t̃0]. Observe that the function
d(n, t0) is a differentiable function on [23 , 1]×]0, π[. Let us check that ∂d

∂n > 0.
Taking into account that t̃0 < nπ and the definition of the function f̃1,

we obtain
∂d

∂n
=

1

4h̃

∂f̃1

∂n
=

√
2

4n2h̃

∫ t0

−t0

t sin( t
n)√

cos(t)− cos(t0)
> 0.

Then n → dn is a continuous increasing function in [23 , 1], equivalently the
function θ → d′θ is increasing in [0, π]. Therefore, d′θ0

< d′θ1
for 0 ≤ θ0 <

θ1 ≤ π.
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At this point, we recall that the distance function for the examples which
lie in the convex hull of their boundary coincides with our function d for
n ∈ [1, 2] (see [10]). As ∂d

∂n > 0 we have that dn0 < dn1 for 2
3 ≤ n0 < n1 ≤ 2.

Hence, we infer that d′θ < dθ, for θ ∈ [0, π], where dθ is the maximum of the
distance function for the López-Mart́ın examples (see Remark 4 in [10]).

From the asymptotic expansion of the Weierstrass data we have that X
can be expressed locally around E1 as

X(u) = (X1(u), X2(u), X3(u))(21)

=
(
−i

nλ

2(2− n)
u1− 2

n (1 +O1(u) + iO2(u)) , O3(u)
)
,

where Oi(u)/|u| is a bounded function in a neighbourhood of E1, i = 1, 2, 3.
Using this fact and Lemma 2.1 in [12] it is not difficult to prove the following
lemma:

Lemma 8. The minimal immersion X : M → R3 is proper and X(M) is
contained in the slab S.

Let us consider M1 = {(u, v) ∈ M | |u| ≤ 1} and M2 = {(u, v) ∈
M | |u| ≥ 1}. We recall that we had denoted by δ̂ and δ+i the lifts
to M of the curves of u(M) given by ei t

2 , for t ∈ [−t0, t0] and t ∈ [t0, π],
respectively satisfying δ+i (π) ∈ γ+

i , i = 1, 2. Clearly, the surfaces M1 and
M2 are topologically a closed disk minus one boundary point. Moreover,
M = M1∪M2, M1∩M2 = δ̂ and ∂(M1) = δ̂∪γ+

1 ∪γ
−
1 ∪ δ

+
1 ∪ δ

−
1 , ∂(M2) =

δ̂ ∪ γ+
2 ∪ γ−2 ∪ δ+2 ∪ δ−2 , where δ−i = Sv(δ+i ) for i = 1, 2.

Our next objective is to prove the following assertion:

Claim 4. X|bδ is injective and X(δ̂) ⊂ {x2 ≤ 0, x3 = 0}.

Proof. To see this we observe that X2(δ̂(t)) = X2(δ̂(t)) − X2(δ̂(−t0)) =
−
√

2
∫ t
−t0

sin(s/n)√
cos(s)−cos(t0)

ds. Since 0 < t0 ≤ nπ we have that X2 ◦ δ̂ is a

nonpositive decreasing function for t ∈ [−t0, 0]. This fact and the vertical
symmetry Sv prove the assertion. �

Let us denote M+ = {(u, v) ∈M | Im(u) ≥ 0} and M− = {(u, v) ∈M |
Im(u) ≤ 0}, and define ρ as the lift to M of the divergent curve ]0,+∞[ in
the u-plane. We parametrize ρ as follows: ρ(t) = u−1(t), t ∈]0,+∞[.

Obviously, the surfaces M+ and M− are topologically a closed disk minus
two boundary points. Furthermore, M = M+ ∪M−, M+ ∩M− = ρ and
∂(M+) = ρ ∪ γ+

1 ∪ γ+
2 ∪ γ+

0 , ∂(M−) = ρ ∪ γ−1 ∪ γ−2 ∪ γ−0 . Next we prove:

Claim 5. X(ρ(t)) ⊂ {(x1, x2, x3) | x1 = 0, x2 ≤ −ε,−1
2 < x3 <

1
2}, where

ε = −X2(P0) > 0.
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Proof. Taking the symmetry Sh into account, it suffices to prove the asser-
tion for X(ρ(]0, 1])). From the Weierstrass data we deduce that

X2(ρ(t)) = −ε−
∫ 1

t

s−
2
n − s

2
n√

s4 − 2 cos(t0)s2 + 1
ds.

Using Claim 4 we have ε = −X2(P0) > 0. So X2 ◦ ρ is decreasing and
nonpositive in ]0, 1]. �

Moreover, taking (21) and the symmetry Sh into account, we obtain that

lim
t→0

X2(ρ(t)) = lim
t→+∞

X2(ρ(t)) = −∞.

At this point we can prove the following lemma:

Lemma 9. The minimal immersion X : M −→ R3 verifies:
1. X(M) ⊂ ((S \ E(Γθ d)) ∪ Γθ d).
2. The surfaces X(M1 \ (δ+1 ∪ δ

−
1 )) and X(M2 \ (δ+2 ∪ δ

−
2 )) are graphs on

the plane {x3 = 0}.
3. d > 0 implies that X is an embedding. If d = 0, then X|M\γ+ and
X|M\γ− are injective.

Proof. Denote by p3 the orthogonal projection on the plane {x3 = 0}. Using
(21) once again and the symmetries, it is not hard to see that X(M+)
and X(M−) are contained in a wedge of the slab S. Then we can apply
Statement (ii) in Theorem 1 to conclude that X(M+) and X(M−) lies in
the convex hull of their boundary.

In case d = 0, taking into account Lemma 6, Claim 5 and the interior
maximum principle we have the proof of Assertion 1. Moreover, in this case
the interior maximum principle also gives us that X(M+) ∩ {(x1, x2, x3) ∈
R3 | x1 = 0,−ε < x2 < 0} = ∅ , and so, taking into account the symmetry
Sv, we deduce that

p3(X(M)) ∩ {(x1, x2, x3) ∈ R3 | x1 = 0,−ε < x2 < 0} = ∅.(22)

In case d > 0 the above reasoning implies

X(M) ⊂ S \ {(x1, x2, x3) ∈ R3 | x1 = 0, x2 > 0}.(23)

Next, we prove Assertion 1 for d > 0 and Assertion 2. In what follows we
denote α = p3(∂(X(M1))). We also introduce the following notation:

(A) If d = 0, W0 will denote the bounded connected component of R2 \
α, whereas W1 will denote the unbounded connected component which is
disjoint from p3(E(Γθ d)).

(B) If d > 0, observe that α is a connected simple curve. In this case we
denote W0 as the connected component of R2 \α containing the point (0, 0)
and W1 the other one.
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In both cases p3(M1) ⊂ W0 ∪W1 ∪ α. Since p3(X(∂(M1))) = α and p3 ◦X
is proper on M1 (see Lemma 8), then p3 ◦ X(M1 \ ∂(M1)) ∩W0 is closed
in W0. Furthermore, g(M1 \ ∂(M1)) ∩ S1 = ∅ and so (p3 ◦ X)|M1\∂(M1) is
a local diffeomorphism. In particular, p3 ◦X(M1 \ ∂(M1)) ∩W0 is an open
set of W0. Hence we deduce that either p3 ◦ X(M1 \ ∂(M1)) ∩W0 = ∅ or
p3 ◦X(M1 \ ∂(M1)) ∩W0 = W0. According to (22) and (23) we have that
p3 ◦X(M1 \∂(M1))∩W0 = ∅. A similar argument yields p3(X(M1))∩W1 =
W1, i.e., p3(X(M1)) = W1 ∪ α. Hence, using the symmetry Sh and the
interior maximum principle we conclude the proof of Assertion 1.

From the above reasoning we have that p3 ◦X : M1 \(δ+1 ∪δ
−
1 ) −→W1∪α

is a proper local diffeomorphism and so p3 ◦ X is a covering map. Since
(p3 ◦ X)|γ+

1
is one-to-one we obtain that X(M1 \ (δ+1 ∪ δ−1 )) is a graph on

the plane {x3 = 0}.
Using that ∂(X(M1)) ⊂ {(x1, x2, x3) ∈ R3 | 0 ≤ x3 ≤ 1

2} and Lemma 2.1
in [12] we infer that

X(M1) ⊂
{

(x1, x2, x3) ∈ R3
∣∣∣ 0 ≤ x3 ≤

1
2

}
.(24)

Then, taking into account the symmetry Sh, we obtain Assertion 2.
Finally, Assertion 2 and (24) give us Assertion 3. �

The Main Theorem is a consequence of the following results: Proposi-
tions 1, 5, and 6, Lemmas 7, 8, and 9, Remark 2, Theorem 4 in [10] and
Theorem 3.32 in [9].

Acknowledgements. We would like to thank Professor F.J. López for
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[11] F.J. López and F. Wei, Properly immersed minimal disks bounded by straight lines,
Math. Ann., 318 (2000), 667-706, MR 1802506, Zbl 0994.53004.

[12] W.H. Meeks and H. Rosenberg, The geometry and conformal structure of properly
embedded minimal surfaces of finite topology in R3, Invent. Math., 114 (1993), 625-
639, MR 1244914, Zbl 0803.53007.

[13] J.C.C. Nitsche, Lectures on Minimal Surfaces, Volume 1, Cambridge University Press,
Cambridge, 1989, MR 1015936, Zbl 0688.53001.

[14] R. Schoen, Uniqueness, symmetry and embeddedness of minimal surfaces, J. Differ-
ential Geom., 18 (1983), 791-809, MR 0730928, Zbl 0575.53037.

[15] M. Weber, The genus one helicoid is embedded, Habilitationsschrift, Bonn, 1999.

Received November 6, 2002. This research was partially supported by MCYT-FEDER
Grant number BFM2001-3489.

Departamento de Geometŕıa y Topoloǵıa
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