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Reiner and Webb (preprint, 2002) compute the Sn-module
structure for the complex of injective words. This paper re-
fines their formula by providing a Hodge type decomposition.
Along the way, this paper proves that the simplicial boundary
map interacts in a nice fashion with the Eulerian idempotents.

The Laplacian acting on the top chain group in the complex
of injective words is also shown to equal the signed random to
random shuffle operator. Uyemura-Reyes, 2002, conjectured
that the (unsigned) random to random shuffle operator has
integral spectrum. We prove that this conjecture would imply
that the Laplacian on (each chain group in) the complex of
injective words has integral spectrum.

1. Introduction.

Let V = 〈v1, . . . , vn〉 be an n-dimensional Euclidean space. For each r, let
Γr = V ⊗r and let ∂r : Γr → Γr−1 be the map given by:

∂r(a1 ⊗ · · · ⊗ ar) =
r∑

j=1

(−1)j−1(a1 ⊗ · · · ⊗ aj−1 ⊗ aj+1 ⊗ · · · ⊗ ar).

It is well-known that the ∂r are boundary maps, i.e., that ∂r · ∂r+1 = 0.
Let Mr be the multilinear part of Γr. So, Mr = 0 if r > n, and for r ≤ n,

Mr = 〈vi1 ⊗ vi2 ⊗ · · · ⊗ vir : i1, . . . , ir are distinct 〉.

Note that dim(Mr) = n(n− 1) . . . (n− r + 1) = n!
(n−r)! . Also, it is clear that

∂r(Mr) ⊂Mr−1 and so

0→Mn →Mn−1 → · · · →M0 → 0

is a subcomplex of (Γ∗, ∂∗). This paper will concern the homology of this
subcomplex.

The complex (M∗, ∂∗) appears in earlier work on the subword order of
injective words on the alphabet {1, 2, . . . , n}. This poset is the face poset
of a regular CW complex Kn whose homology agrees with the homology of
(M∗, ∂∗). In [F], Farmer proves that Kn is homotopy equivalent to a wedge
of (n−1)-spheres thus showing that the homology of (M∗, ∂∗) vanishes except
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at top degree. Bjorner and Wachs [BW] prove a stronger result – that the
lexicographic order on permutations induces a recursive coatom ordering on
the poset of injective words. This in turn gives a dual CL-shelling of Kn.

Reiner and Webb [RW] study (M∗, ∂∗) as a subcomplex of (Γ∗, ∂∗). The
natural action of Sn on {v1, . . . , vn} extends to an action of Sn on (Γ∗, ∂∗)
which preserves (M∗, ∂∗). Reiner and Webb compute the homology of (M∗,
∂∗) as an Sn-module.

Theorem 1.1 (Reiner-Webb). As an Sn-module, the top homology of (M∗,
∂∗) is

n⊕
k=0

(−1)n−kind Sn
Sn−k

(εn−k) =
n⊕

k=0

(−1)n−kind Sn
Sn−k×Sk

(εn−k ⊗ Regk)

where εn−k denotes the trivial representation of Sn−k. Furthermore, the
multiplicity of an irreducible Sλ of Sn in the top homology is equal to the
number of standard Young tableaux of shape λ which have their smallest
descent even.

In this paper, we will do two things. First, we will show that there is a
natural Hodge decomposition of the homology of (M∗, ∂∗). This decomposi-
tion will split Hn(M) into n components

Hn(M) =
n⊕

j=1

H(j)
n (M).

We will show that the dimension of H
(j)
n (M) is equal to the number of

derangements with exactly j cycles. More specifically, we will show that
each H

(j)
n (M) is invariant under the action of Sn and prove that H

(j)
n (M)

is a sum of linear characters induced from centralizers of permutations with
exactly j cycles.

Second, we will study the Laplacian Λ∗ associated to the complex (M∗, ∂∗).
We will show that Λn is closely connected to the transition matrix for ran-
dom to random shuffling. Random to random shuffling has been studied
by Uyemura-Reyes in [Uy]. In [Uy], the author makes a conjecture about
the spectrum of the transition matrix for random to random shuffling which
together with our results imply the conjecture that the spectrum of Λn is in-
tegral. We go on to compute Λr, for r < n in terms of Λn. This computation
shows that Λr is positive definite for r < n thus giving another proof that
Hr(M) = 0 for 0 ≤ r < n. This computation also shows that the spectrum
of Λr is integral if the spectrum of Λn is integral. Thus, if Uyemura-Reyes’
conjecture on the spectrum of random to random shuffling is correct, then
the spectra of all Λr are integral.
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2. A Hodge type decomposition of H∗(M).

We begin by recalling the definition of the Eulerian idempotents e
(j)
r in CSr.

For each r and k, let S(r; k) denote the set of permutations in Sr with exactly
k − 1 descents. Following Loday [Lo], define elements l

(k)
r and λ

(k)
r in CSr

according to the following formulae:

l(k)
r = (−1)k−1

∑
σ∈S(r;k)

sgn (σ)σ,(2.1)

λ(k)
r =

k−1∑
i=0

(−1)i

(
n + i

i

)
l(k−i)
r ,(2.2)

(−1)k−1λ(k)
r =

n∑
j=1

kje(j)
r .(2.3)

It is worth noting that the first two equations define the λ
(k)
r explicitly. The

third equation then determines the e
(j)
r in terms of the λ

(k)
r because the

transition matrix (kj)k,j is a Vandermonde and hence invertible.
There is a significant literature on the Eulerian idempotents and their

many remarkable properties. We will need two of these properties. The
first is the well-known fact that e

(1)
n , e

(2)
n , . . . , e

(n)
n form a set of pairwise

orthogonal idempotents in CSn that decompose the identity. In other words,
e
(j)
n · e(`)

n = 0 if j 6= ` and e
(1)
n + e

(2)
n + · · ·+ e

(n)
n = id. This implies that if X

is any Sn-module, then

X =
⊕

j

e(j)
n ·X.

The second fact we will need describes the relationship between the e
(j)
n

and the boundary map ∂. To state this result, it will be helpful to write
permutations in one-line notation. Let i ∈ {1, 2, . . . , n} and let Sn\{i} denote
permutations of {1, 2, . . . , n}\{i}. There is a natural identification of Sn\{i}
with Sn−1 which comes about by changing each occurrence of i+j to i+j−1.
Via this identification, we can think of e

(`)
n−1 as sitting inside of the group

algebra of Sn\{i}.
As in [RW], we will think of ∂ as acting on linear combinations of injective

words on the alphabet {1, 2, . . . , n}. For i ∈ {1, 2, . . . , n}, let ∂[i] denote
the part of ∂ which removes the number i. The next theorem presents a
surprisingly elegant outcome to the computation of ∂[i]e(k)

n .
Before stating and proving the result, we will give an example to be sure

that the notation is clear. Let n = 3. In the example that follows, we will
use a, b, c in place of 1, 2, 3 so as to avoid confusion with coefficients. The
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Eulerian idempotents are given by:

e
(1)
3 =

1
6
(2 · abc + bac + acb− bca− cab− 2 · cba)

e
(2)
3 =

1
2
(abc + cba)

e
(3)
3 =

1
6
(abc− bac− acb + bca + cab− cba).

For the purposes of this example, we will apply ∂[b] to each of these.
Doing so, we get

∂[b]e(1)
3 =

1
6
(−2ac + ac + ac− ca− ca + 2ca) = 0

∂[b]e(2)
3 =

1
2
(−ac− ca) = −e

(1)
2

∂[b]e(3)
3 =

1
6
(−ac− ac− ac + ca + ca + ca) = −e

(2)
2 .

Part 2 of Theorem 2.1 is needed later to show that the complex of injective
words has a Hodge decomposition.

Theorem 2.1. Fix n and i ∈ {1, 2, . . . , n}. Then:

(1) ∂[i]λ(k)
n = (−1)i−1kλ

(k)
n−1,

(2) ∂[i]e(k)
n = (−1)i−1e

(k−1)
n−1 .

Before proving this theorem, let us verify two lemmas to be used in its
proof.

Lemma 2.1. Among the n places the letter i could be inserted into a per-
mutation σ ∈ S[n]\{i} which has j descents, j + 1 choices yield permutations
with j descents, while the other n− j− 1 choices all yield permutations with
j + 1 descents.

Proof. First we consider the case i = n, then use a graph for a permutation
to generalize to all i. Notice that inserting n between two letters descend-
ing letters preserves the number of descents, while inserting n between two
ascending letters increases the number of descents. Thus, there are n−2− j
ways to increase the number of descents by one by inserting n between two
ascending letters. In addition, inserting n before the first letter gives one
more way to increase the number of descents by one.

For i 6= n, the analysis will also need to consider whether or not i is
intermediate in value to the pair of consecutive labels where it is to be
inserted. To this end, we define the graph of a permutation as follows:

Definition 2.1. For each π ∈ S[n]\{i}, define the related function π′ :
[0, n] → [0, n + 1] by π′(j) = π(j) for 1 ≤ j < i and π′(j) = π(j + 1)
for n − 1 ≥ j > i. In addition, let π′(0) = n + 1 and π′(n) = 0. Then the
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graph of π is obtained by plotting the points (j, π′(j)) for each j ∈ [0, n],
and for each j ∈ [0, n− 1] connecting the point (j, π′(j)) to (j + 1, π′(j + 1))
by a straight line segment.

This graph has negative slope at each descent and positive slope at each
ascent. Furthermore, it crosses the line y = i with negative slope one more
time than it does with positive slope, because it represents a continuous
function which begins above the line y = i and ends below the line y = i
(and which has nonzero slope everywhere it touches the line y = i).

We claim that the number of places to insert i which will increase the
number of descents by one is equal to sum of the number of ascents that do
not cross the line together with the number of descents which do cross the
line. This is clear except at the endpoints. By letting π′(0) = n + 1 and
π′(n + 1) = 0, we created descents at the initial and final positions in π,
which are only counted above when the graph crosses the line y = i at these
points, namely when π(1) < i and when π(n) > i, respectively. These are
exactly the situations where inserting i at the initial or final positions will
indeed increase the number of descents by one.

We already observed that the number of descents crossing the line is one
more than the number of ascents crossing the line. Thus, the total number
of ways to increase the number of descents by one is one more than the
total number of ascents, i.e., it is n− j − 1, as desired. A similar argument
shows that all of the remaining j + 1 options will preserve the number of
descents. �

Lemma 2.2. If τ ∈ Sn is obtained from σ ∈ Sn\{i} by inserting i after the
(d− 1)-st letter of σ, then sgn (τ) = (−1)i−dsgn (σ).

Proof. If d = 1, so i = τ1, then inserting i created i − 1 new descents,
because the values 1, . . . , i − 1 all appear later than the value i. Thus,
sgn (τ) = (−1)i−1sgn (σ) in this case, as desired. Now we proceed by in-
duction on d. Moving the letter i from position r to position r + 1 in τ
by an adjacent transposition reverses the sign of τ . Likewise, increasing d
from r to r + 1 reverses the sign of (−1)i−dsgn (σ) from (−1)i−rsgn (σ) to
(−1)i−(r+1)sgn (σ), so sgn (τ) continues to agree with (−1)i−1sgn (σ) as d
increases. �

Proof of Theorem 2.1. We first prove identity (1). Note that

λ(k)
n =

k−1∑
i=0

(−1)i

(
n + i

i

)
(−1)k−i−1

∑
σ

sgn (σ)σ
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where the sum is over σ with k − i − 1 descents. Replacing k − i − 1 by j
yields

λ(k)
n =

k−1∑
j=0

(
n + k − j − 1

k − j − 1

)
(−1)j

∑
σ

sgn (σ)σ

which simplifies to

λ(k)
n = (−1)k−1

k−1∑
j=0

(
n + k − j − 1

n

)∑
σ

sgn (σ)σ.

In each of the last two equations, the sum is over σ with j descents. Similarly,

λ
(k)
n−1 = (−1)k−1

k−1∑
j=0

(
n + k − j − 2

n− 1

)∑
σ

sgn (σ)σ.

Lemma 2.1 shows that for each σ ∈ Sn\{i} with j descents, there are j +1
permutations τ ∈ Sn with j descents such that ∂[i]τ = ±σ and there are
n − j − 1 permutations τ ∈ Sn with j + 1 descents such that ∂[i]τ = ±σ.
When our boundary operator ∂[i] deletes τd from τ to obtain σ ∈ Sn\{i}, we
have ∂[i]τ = (−1)d−1σ, but Lemma 2.2 proves that in this case, sgn (τ) =
(−1)i−dsgn (σ). Combining these signs, observe that

∂[i]sgn (τ)τ = (−1)i−1sgn (σ)σ,

independent of d.
Hence, the coefficient of σ in ∂[i]λ(k)

n will be:

(−1)k−1 · (−1)i−1sgn (σ)
((

n + k − j − 1
n

)
· (j + 1)

+
(

n + k − j − 2
n

)
· (n− j − 1)

)
which is equal to

(−1)k+i−2sgn (σ)
(

n + k − j − 2
n

)(
n + k − j − 1

k − j − 1
· (j + 1)

+
k − j − 1
k − j − 1

· (n− j − 1)
)

.

This simplifies to

(−1)k+i−2sgn (σ)
(

n + k − j − 2
n

)
· kn

k − j − 1

= (−1)k+i−2sgn (σ)
(

n + k − j − 2
n− 1

)
· k.
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This latter expression is the coefficient of σ in λ
(k)
n−1 multiplied by (−1)i−1 ·k.

This holds for each σ, regardless of the number of descents in σ, so we get

∂[i] · λ(k)
n = (−1)i−1 · k · λ(k)

n−1,

confirming identity (1).
We next prove that identity (1) implies identity (2). Applying ∂[i] to both

sides of (2.3) gives:

(−1)k−1(−1)i−1 · k · λ(k)
n−1 = ∂[i]

n∑
j=1

kje(j)
n .

Applying (2.3) again, to the left-hand side yields,

(−1)i+k−2 · k · (−1)k−1
n−1∑
j=1

kje
(j)
n−1 =

n∑
j=1

kj∂[i]e(j)
n .

Hence,

(−1)i−1
n−1∑
j=1

kj+1e
(j)
n−1 =

n∑
j=1

kj∂[i]e(j)
n .

So,

0 = k∂[i]e(1)
n +

n∑
j=2

kj
(
∂[i]e(j)

n − (−1)i−1e
(j−1)
n−1

)
.

The fact that this holds for all k implies that each coefficient of the polyno-
mial in k is 0, and so we get ∂[i]e(1)

n = 0 and ∂[i]e(j)
n = (−1)i−1e

(j−1)
n−1 . �

The second statement in Theorem 2.1 is particularly interesting when
compared to a result that appears in the work of Gerstenhaber and Schack
[GS]. In that work, the authors show that for the boundary δ in the usual
complex for computing Hochschild homology of a commutative algebra,

δe(k)
n = e

(k)
n−1δ

for all n and k. Note that this bears some similarity to the result we prove
in Theorem 2.1 for the simplicial case although in the simplicial case the
boundary is applied on only one side and the Hodge index decreases by one
rather than being constant.

For each S ⊆ n, let VS denote the span of the vi for i ∈ S, and let MS

denote the multilinear part of V
⊗|S|
S . We will continue using the Reiner-

Webb point of view so that the injective words on the set S form a basis for
MS . Note that ∂(MS) ⊆

⊕
i∈S MS\{i}, which means we can decompose ∂

as a sum of the operators ∂[i] for i ∈ S.
Suppose | S |= r. Then the symmetric group Sr acts on MS by permuting

the positions in which letters appear in the injective words on S. For each
k with 1 ≤ k ≤ r, let M

(k)
S denote the image of e

(k)
r under this action. By
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Theorem 2.1 (2), ∂[i]
(
M

(k)
S

)
⊆ MS\{i} for all i ∈ S. So if we let M

(k)
r

denote
⊕

|S|=r M
(k)
S , then

∂(M (k)
r ) ⊆M

(k−1)
r−1 .

Thus, the complex (M∗, ∂∗) splits as a direct sum of the sub-complexes C(k)

where C(k) is

0→M (k)
n →M

(k−1)
n−1 → · · · →M

(1)
n−k+1 → 0.(2.4)

Let H
(k)
∗ (M) denote the homology of the subcomplex C(k). We recall that

H
(k)
r (M) = 0 unless r = n.
Notice that the Sn-action on values which gives rise to the Sn-module

structure studied in [RW] commutes with the Sr action on positions in in-
jective words in Mr. Thus, it makes sense to study the Sn-module structure
of M

(k)
r for each r and for H

(k)
n (M), with Sn acting on values, despite the

fact that the Eulerian idempotents act on positions. Our next result deter-
mines H

(k)
n (M) as an Sn-module. To state this result, we will need some

notation and results from [Ha].
For each σ ∈ Sn, let Zσ denote the centralizer of σ. In [Ha], a character

χσ is defined as the induction of a linear character Ψσ from Zσ to Sn. To
describe Ψσ, we first need a description of the Zσ. Suppose σ consists of m`

`-cycles for each `. Then Zσ is the direct product of C`wrSm`
where C` is

the cyclic group of order ` and wr denotes wreath product.
Let τ =

∏
`(α`;β1, β2, . . . , βm`

) be an element of Zσ where α` ∈ Sm`
and

each βi is in C`. Then

Ψσ(τ) =
∏
`

m∏̀
i=1

γ`(βi)

where γ` is the linear character on C` which assigns e2πi/` to the generator
of C`.

The following theorem from [Ha] will help us understand M
(k)
r :

Theorem 2.2 (Hanlon). For each n and k, let I(k) denote the left ideal in
CSn generated by e

(k)
n . As an Sn-module,

sgn ∗ I(k)
n =

⊕
σ

χσ

where the sum is over a choice of representative from each conjugacy class
that consists of permutations with exactly k cycles, and ∗ denotes internal
product.

The Sn-modules
⊕

σ χσ in Theorem 2.2 have also appeared in a com-
pletely different context, in work of Bergeron, Bergeron and Garsia on the
free Lie algebra [BBG]. In contrast to Theorem 2.2 and [BBG], we will
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study Sn-modules in which we sum over conjugacy classes of derangements
rather than conjugacy classes of permutations.

Our next result determines each H
(k)
n (M) as an Sn-module, thereby pro-

viding a refinement of the theorem of Reiner and Webb which gives the
Sn-module structure of Hn(M).

Theorem 2.3. For each n and k,

sgn ∗H(k)
n (M) =

⊕
σ

χσ

where ∗ denotes the internal product, and the sum is over a choice of repre-
sentative from each conjugacy class consisting of derangements with exactly
k cycles. In particular, dim(H(k)

n (M)) equals the number of derangements
with exactly k cycles.

We will use cycle indices to prove Theorem 2.3. For each σ ∈ Sn, let ji(σ)
denote the number of i-cycles of σ. Let a1, a2, . . . be a set of commuting
indeterminates. Define Z(σ), the cycle indicator of σ, to be

Z(σ) = a
j1(σ)
1 a

j2(σ)
2 a

j3(σ)
3 . . . .

So Z(σ) is a monomial which identifies the cycle type of σ. Thus, σ and τ
are conjugate in Sn iff Z(σ) = Z(τ).

Let Ψ be a class function on CSn. The cycle index of Ψ is

Z(Ψ) =
1
n!

∑
σ∈Sn

Ψ(σ)Z(σ).

Since the monomial Z(σ) uniquely identifies the conjugacy class of σ, two
class functions are identical if and only if they have the same cycle index.

We will need two results about cycle indices from [Ha]. In the results
below, εt denotes the trivial representation of St (so Z(εt) = 1

t!

∑
σ∈St

Z(σ))
and [] denotes the composition product on C [[a1, a2, . . . ]]∗, i.e., for A,B ∈
C[[a1, a2, . . . ]],

A[B] = A(ai ← B(aj ← aij))

where ← denotes substitution. Recall that µ denotes the ordinary number
theoretic Möbius function.

The following two results are proved in [Ha]:

Theorem 2.4 (Hanlon). Let σ ∈ Sn with Z(σ) = aj1
1 aj2

2 . . . ajn
n . Then

Z(χσ) =
n∏

`=1

Z(εj`
)
[
1
`

∑
d|`

µ(d)a`/d
d

]
.
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Theorem 2.5 (Hanlon). Let I
(k)
n denote the left ideal in CSn generated by

e
(k)
n . Then ∑

n,k

Z(I(k)
n )λk =

∏
`

(1 + (−1)`a`)
−1
`

P
d|` µ(d)λ`/d

.

We are now ready to give:

Proof of Theorem 2.3. Recall that the Euler characteristic of a chain com-
plex is the alternating sum of the ranks of its homology groups, and the Hopf
Trace Formula refines this to a statement about module structure. Since the
homology of (M∗, ∂r) vanishes except at the top degree, we deduce that

Z(H(k)
n (M)) =

n∑
r=n−k+1

Z(M (k−(n−r))
r )(−1)n−r.

Note that
Mr =

⊕
|S|=r

MS = ind Sn
Sr×Sn−r

(Regr ⊗ εn−r)

where Regr denotes the right-regular representation of Sr. It follows that

Mk−n+r
r = ind Sn

Sr×Sn−r
(I(k−n+r)

r ⊗ εn−r).

We will use one other well-known fact about cycle indices, namely that for
any virtual characters Ψ of Sr and Θ of Sn−r,

Z
(
ind Sn

Sr×Sn−r
(Ψ⊗Θ)

)
= Z(Ψ)Z(Θ).

Combining these facts we have:∑
n

n∑
k=1

Z(H(k)
n (M))λk

=
∑

n

n∑
k=1

n∑
r=n−k+1

Z(M (k−(n−r))
r )(−1)n−rλk

=
∑

n

n∑
k=1

n∑
r=n−k+1

Z(I(k−n+r)
r )(λk−n+r)(−λn−r)Z(εn−r)

=

(∑
r,t

Z(I(t)
r )λt

)
·

( ∞∑
m=0

(−λ)mZ(εm)

)

=

(∏
`

(1 + (−1)`a`)
−1
`

P
d|` µ(d)λ`/d

)
· exp

(∑
p

(−λ)pap

p

)
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in the last step using the well-known fact that∑
m

Z(εm) = exp
(∑

i

ai

i

)
.

Thus, ∑
n

n∑
k=1

Z(sgn ∗H(k)
n (M))λk = F1 · F2

where
F1 =

∏
`

(1− a`)
−1
`

P
d|` µ(d)λ`/d

and

F2 = exp
(
−
∑

p

λpap

p

)
.

We can rewrite F1 as

F1 =
∏
`

exp

ln(1− a`)

−1
`

∑
d|`

µ(d)λ`/d


=
∏
`

exp

 ∞∑
m=1

am
`

m`

∑
d|`

µ(d)λ`/d

 .

Letting p denote `/d and n denote md, we have

F1 = exp

∑
p,d,m

1
mpd

µ(d)λpam
dp


= exp

(∑
p

λpap

p

)∑
d,m

1
md

µ(d)am
d


= exp

(∑
p

λpap

p

)∑
n

1
n

∑
d|n

µ(d)an/d
d


= exp

(∑
p

λpap

p

)
exp

(∑
p

λpap

p

)∑
`≥2

1
`

∑
d|`

µ(d)a`/d
d

 .

So,

∑
n,k

Z(sgn ∗H(k)
n (M))λk = exp

(∑
p

λpap

p

)∑
`≥2

1
`

∑
d|`

µ(d)a`/d
d

 ,

which proves the result. �
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We conclude this section by showing how to recover Theorem 1.1 from
Theorem 2.3. Setting λ = 1 in Theorem 2.3, we obtain∑

n

Z(sgn ∗Hn(M)) =

∑
n,k

Z(sgn ∗H(k)
n (M))


= exp

(∑
p

ap

p

)∑
`≥2

1
`

∑
d|`

µ(d)a`/d
d


= exp

∑
p

∑
`≥2

∑
d|`

1
p`

µ(d)a`/d
dp

 .

Letting u = `/d, we have

∑
n

Z(sgn ∗Hn(M)) = exp

∑
p,d,u

1
pdu

µ(d)au
dp

 · exp

(
−
∑

p

ap

p

)
where the latter factor accounts for the provision that ` cannot equal 1. So,
substituting v for pd yields∑

n

Z(sgn ∗Hn(M)) = exp

∑
u,v

au
v

uv

∑
d|v

µ(d)

 · exp

(
−
∑

p

ap

p

)

= exp

(∑
u

au
1

u

)
· exp

(
−
∑

p

ap

p

)
.

Thus,∑
n

Z(Hn(M)) =
(

1
1− a1

)
· exp

(∑
p

(−1)pap

p

)

=

(∑
k

Z(Regk)

)
·

( ∞∑
m=0

(−1)mZ(εm)

)
=
∑

n

∑
k

Z
(
ind Sn

Sn−k×Sk
(εn−k ⊗ Regk)

)
(−1)n−k

which is the Reiner-Webb Theorem.

3. Signed random to random shuffles.

In recent work, Uyemura-Reyes [Uy] considers random to random shuffling
of a deck of n cards and conjectures that the transition matrix, when normal-
ized to have integer entries, also has integer spectrum. For small values of n,
he notes that the nullspace of the transition matrix has dimension equal to
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the number of derangements of n and that the nullspace, as an Sn-module,
carries the same representation, up to a sign twist, as the representation that
appears on the right-hand side of Theorem 1.1. In this section, we explain
this phenomenon by studying the Laplacian L of the complex (M∗, ∂∗). We
show that if the normalized random-to-random shuffle operator has integral
spectrum (as conjectured in [Uy]), then the Laplacian on each chain group
in the complex of injective words will also have integral spectrum.

Definition 3.1. For each r, let υr and Υr be the elements of the group
algebra CSr given by:

υr = r · id +
∑
u<v

(v, u, u + 1, . . . , v − 1) +
∑
u>v

(v, u, u− 1, . . . , v + 1)

and

Υr = r · id +
∑
u<v

(−1)v−u(v, u, u + 1, . . . , v − 1)

+
∑
u>v

(−1)u−v(v, u, u− 1, . . . , v + 1).

If we think of Sr as acting on a deck of r cards by permuting the positions of
the cards, then υr sums permutations which pick at random two positions v
and u and move the card in position v to position u. Thus υr is r2 times the
transition matrix for random to random shuffling. Note that Υr is simply
υr twisted by the sign. Thus we will refer to Υr as the signed random to
random shuffle element in CSr.

The following conjecture appears in the dissertation of Uyemura-Reyes:

Conjecture 3.1 (Uyemura-Reyes). The eigenvalues of υn are (rational) in-
tegers.

As in Section 2, we will use the collection Br of injective words of length
r on the alphabet {1, 2, . . . , n} as a basis for Mr. Let δr : Mr → Mr+1 be
the transpose of ∂r+1 with respect to the inner products on Mr and Mr+1

which have Br and Br+1 as orthonormal bases. So if D is the matrix for
∂r+1 with respect to the bases Br and Br+1, then Dt is the matrix for δr

with respect to the same bases. Note that δ∗ is a coboundary on M∗. We
let H∗(M) denote the cohomology with respect to this coboundary.

Let Λr : Mr →Mr be the Laplacian

Λr = δr−1 · ∂r + ∂r+1 · δr.

We recall the well-known fact that a basis for the kernel of the Laplacian Λr

gives a simultaneous basis for Hr(M) and Hr(M).

Theorem 3.1. The Laplacian on the top-dimensional chain group satisfies
Λn = Υn.
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Proof. To apply the coboundary δn−1 to a basis element j1j2 . . . jn−1, we
must sum over all sequences i1i2 . . . in with coefficient being the j, i entry
from ∂n. Since ∂n(i1 . . . in) is a sum of terms of the form ±j1 . . . jn−1 where
j1 . . . jn−1 is obtained by deleting an entry from i1 . . . in, the j, i entry of ∂n

is 0 unless j is a subsequence of i. It follows that if v is the single number
in {1, 2, . . . , n} which is missing from {j1, . . . , jn−1} then

δn−1(j1 . . . jn−1) = (vj1 . . . jn−1)− (j1vj2 . . . jn−1) + (j1j2vj3 . . . jn−1)− . . .

So δn−1∂n is the operator which acts on a sequence i1i2 . . . in by removing
an element and re-inserting it in all possible ways. Moreover, if the removed
element occupies position u and it is re-inserted in position v then the sign of
that operation is (−1)(u−1)+(v−1) = (−1)v−u. On the other hand, ∂n+1δn =
0. It follows that Λn is equal to Υn which proves the result. �

As noted above, Uyemura-Reyes conjectures that the spectrum of υn is
integral from which it would follow that the spectrum of Λn is integral. We
end this section by relating Λr to Λn. From this relationship one can deduce
that if Conjecture 3.1 holds, then Λr has integral spectrum for all r.

Theorem 3.2. Let i1 . . . ir be a basis element of Mr. Let A denote {i1, . . . ,
ir} and let A denote the complement of A in {1, 2, . . . , n}. Then,

Λr(i1 . . . ir) =

(r + 1)(n− r)I + Υr +
∑

a∈A,b∈A

(a, b)

 (i1 . . . ir)

where Υr is acting by permutation of positions on i1 . . . ir whereas (a, b) in
the last summation is acting by permuting the values of the ij within the set
{1, 2, . . . , n}.

Proof. We write Λr(i1 . . . ir) as a sum of three expressions

Λr(i1 . . . ir) = X + Y + Z

where X is the sum of all terms in ∂r+1δr(i1 . . . ir) in which δr inserts an
element j of A in some position u and then ∂r+1 removes the same number
j, where Y is the sum of all terms in δr−1∂r(i1 . . . ir) in which ∂r removes
an element j ∈ A and δr−1 re-inserts that same element j and where Z is
the remaining terms in Λr(i1 . . . ir).

Note that:
X = (r + 1)(n− r)

and that:
Y = Υr.

It will take some considerable effort now to analyze Z.
The terms τ in ∂r+1δr(i1 . . . ir) that contribute to Z are those in which an

element j from A is inserted into i1 . . . ir at some position u by δr and then
one of the i` is removed by ∂r+1. For each such τ , there is a corresponding
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term τ̂ in δr−1∂r(i1 . . . ir) where i` is removed first by ∂r and then j is
inserted in position corresponding to u by δr−1. It is straightforward to
check that τ = −τ̂ and so these terms cancel.

There is one circumstance in which this cancellation does not eliminate
every term. These are the terms τ where j is inserted immediately behind
i`, i.e., where u = ` + 1. In this case, the term τ̂ which should cancel τ is
already committed to cancel the term τ ′ in which j is inserted immediately
in front of i`.

For j ∈ A and i` ∈ A, the term in which j is inserted immediately behind
i` and then i` is deleted has sign +1 and is obtained by acting on i1i2 . . . ir
with the transposition (j, i`) ∈ Sn. The result follows. �

It is worth noting that the operator Υr, acting on positions, commutes
with the action of Sn on words of length r in 1, 2, . . . , n. The first part of
Theorem 3.3 alternatively follows from [F] or from the shelling for Kn in
[BW].

Theorem 3.3. For r < n:
(1) Λr is positive definite.
(2) If Conjecture 3.1 holds, then the spectrum of Λr is integral.

Proof. For this argument, it will be helpful to reconceptualize Mr. Let
i1i2 . . . ir be a basis element of Mr and let {j1, . . . , jn−r} = A. We will
identify i1 . . . ir with

[i1 . . . ir] =
1

(n− r)!

∑
σ∈Sn−r

i1 . . . irjσ1jσ2 . . . jσ(n−r) ∈Mn.

The advantage this has is that the operator
∑

a∈A,b∈A(a, b) whose action
seemed to depend on the actual set A can be redefined as the operator:

Γ =
∑

a∈{1,...,r},b∈{r+1,...,n}

(a, b)

where the permutation (a, b) is acting now by permutation of positions. So,
Λr = ((r + 1)(n− r)I) + Υr + Γ.

Let Ω = ((r + 1)(n− r)I) + Γ. Note that Ω can be written as:

Ω = ((r + 1)(n− r)I) + T (1, n)− T (1, r)− T (r + 1, n)

where T (u, v) =
∑

u≤a<b≤v(a, b). Recall that

Mr = (Regr ⊗ εn−r) ↑Sn
Sr×Sn−r

where Regr denotes the regular representation of Sr. Therefore,

Mr =
⊕
α`r

fα(Sα ⊗ εn−r) ↑Sn
Sr×Sn−r
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where Sα denotes the Specht module indexed by α and fα is the number of
standard Young tableaux of shape α.

For x a square in row i and column j of a Ferrer’s diagram of α, recall that
cx, the content of x, is j − i. A well-known result from the representation
theory of Sn states that for a Specht module Sλ with λ ` n, Tn acts as
the scalar

∑
x∈λ cx. It follows that for every λ ` n which occurs in (Sα ⊗

εn−r) ↑Sn
Sr×Sn−r

, the operator Ω acts as the scalar:

(r + 1)(n− r) +
∑
x∈λ

cx −
∑
x∈α

cx −
∑

x∈(n−r)

cx

which simplifies to expression (3.2):

(r + 1)(n− r) +
∑

x∈λ/α

cx −
(

n− r

2

)
.(3.2)

We will make two observations based on this formula. The first is that
the eigenvalues of Ω are integral. Also, both Ω and Υr are easily seen to be
diagonalizable. Moreover, they commute. It follows that the eigenvalues of
Λr = Υr+Ω can be written as sums of eigenvalues of Υr and Ω. However, Υr

is conjugate to υr and hence has the same spectrum. Thus, if Conjecture 3.1
holds, then all eigenvalues of Λr are sums of integers. This proves Part (2)
of the theorem.

To prove that Λr is positive definite, first note that it is enough to show
that Ω is positive definite since Υr is positive semi-definite, being a direct
sum of

(
n
r

)
copies of the Laplacian in top degree for the case with n = r. To

see that Ω is positive definite, we start with the expression for the action
of Ω on copies of Sn irreducibles given in (3.2) above. The first observation
follows from the fact that Sλ has nonzero multiplicity in (Sα⊗εn−r) ↑Sn

Sr×Sn−r

if and only if λ/α is a horizontal strip. Let (ρ1, γ1), (ρ2, γ2), . . . , (ρn−r, γn−r)
be the coordinates of the squares in λ/α. The fact that λ/α is a horizontal
strip implies that 1 ≤ γ1 < γ2 · · · < γn−r. Thus,∑

s

γs ≥
(

n− r

2

)
+ (n− r).

Also, observe that if a square x of the Ferrer’s diagram of λ/α is in row i,
then there are (i− 1) squares of α in the rows above it. So,

∑
(ρs − 1) ≤ r,

i.e.,
∑

ρs ≤ r + (n− r).
Putting these bounds together gives that the eigenvalue ω given in formula

(3.2) satisfies

ω ≥ (r + 1)(n− r) +
(

n− r

2

)
+ (n− r)− (r + (n− r))−

(
n− r

2

)
which simplifies to:

ω ≥ (r + 1)(n− r)− r > 0.

�
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