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SUPERLINEAR PROBLEMS
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We solve elliptic semilinear boundary value problems in
which the nonlinear term is superlinear. By weakening the hy-
potheses, we are able to include more equations than hitherto
permitted. In particular, we do not require the superquadrac-
ity condition imposed by most authors, and it is not assumed
that the region is bounded.

1. Introduction.

Consider the problem
(1) —Au= f(z,u), r€Q; u=0 on 09,

where 2 C R" is a bounded domain whose boundary is a smooth manifold,
and f(x,t) is a continuous function on  x R. This semilinear Dirichlet
problem has been studied by many authors. It is called sublinear if there is
a constant C' such that

|flz. )] <CO(t|+1), z€Q, teR.

Otherwise, it is called superlinear. Beginning in [1], almost all researchers
studying the superlinear problem assumed:

(a1) There are constants ¢, ca > 0 such that
|f(2, )] < e+ eat],

where 0 < s < (n+2)/(n—2)ifn > 2.
(ag) f(z,t) =o(]t]) ast — 0.
(a3) There are constants > 2, 7 > 0 such that

(2) 0 <pF(x,t) <tf(z,t), [t =,
where
F(z,t) = /t f(z,s)ds.
They proved: ’

Theorem 1.1. Under Hypotheses (a1)-(a3), Problem (1) has a nontrivial
weak solution.
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Condition (ag) is convenient, but it is very restrictive. In particular, it
implies that there exist positive constants ¢z, ¢4 such that

(3) F(z,t) > cslt|" —cay, z€Q, t€R.
Although this condition is weaker, it still eliminates many superlinear prob-
lems.
A much weaker condition that implies superlinearity is
(a5) Either
F(x,t)/t* — 00 as t — 00
or

F(z,t)/t? = 0o as t — —oo.

The purpose of the present paper is to explore what happens when (a3)
is replaced with (a%). Surprisingly, we find the following to be true:

Theorem 1.2. Under Hypotheses (a1), (a2) and (a%) the boundary value
problem

(4) —Au=0f(z,u), z€Q; u=0 on 00,
has a nontrivial solution for almost every positive (3.

Unfortunately, this theorem does not give any information for any specific
(3. We then turned our attention to solving (1) under a weaker assumption
than (a3). For this purpose we introduced:

(a%) There are constants p > 2, r > 0 such that
(5) WF(2,t) = tf(x,0) <CE° +1), |t| >

Note that (a3) implies both (a3) and (af), but they are much weaker. We
prove:

Theorem 1.3. Under Hypotheses (a1), (a2), (a5) and (a4) Problem (1) has
a nontrivial solution.

It should be noted that the first option in (a%) together with (5) implies
(3).
We also have:

1

Theorem 1.4. If we replace Hypothesis (a3) with:

(a§") The function

(6) H(z,t) :=tf(z,t) — 2F (x,t)
18 convex in t,

then Problem (1) has at least one nontrivial solution.
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Costa-Magalhaes [2] solved (1) under the following assumptions:
If(z,t)] < ag|tfP™ '+ by, €, tER,

F(z,t
lim sup (2,) <b< oo uniformly for a.e. x € Q,
[t|—o0 ’t’q
H(x,t
l‘irlninf |(T’ ) >a >0 wuniformly for a.e. z € Q,
t|—o0
limsup 2F (z,t)/t> < a < A\g uniformly for a.e. z € Q,
t—0

F(x,t)/t* — 0o as |t| — oo,
where 1 <p < 2n/(n—2), p>n(q—2)/2.

Willem-Zou [11] proved a weaker form of Theorem 1.2 for a special case.
They do not require Hypothesis (ag), but they do assume

tf(z,t) >0, teR

and

tf(l‘,t) > C0|t|'uv ’t’ >r
for some constants ¢ > 0, » > 0, p > 2. Some authors have replaced
Hypothesis (a3) with (3). Although (3) is a more natural assumption, it is
still too restrictive to be desirable. It is for this reason that we introduced
assumptions (a5) and (a%).

Stronger versions of Theorems 1.2-1.4 will be given in the next section. In
them we are not restricted to any particular boundary value problem, and
it is not assumed that the region €2 is bounded.

2. The main theorems.

Many elliptic semilinear problems can be described in the following way:
Let Q be a domain in R", and let A be a selfadjoint operator on L?(£2). We
assume that A > Ay > 0 and that

(7) C(Q) € D := D(AY?) c H™*(Q)

for some m > 0, where C§°(£2) denotes the set of test functions in Q (i.e.,
infinitely differentiable functions with compact supports in ) and H™2(Q)
denotes the Sobolev space. If m is an integer, the norm in H™?(Q) is given
by
1/2
(8) lullmz = | > I1D"ul?
| ul<m

Here D* represents the generic derivative of order |u| and the norm on the
right-hand side of (8) is that of L?(2). If m is not an integer, there are
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several ways of defining the space H™2((Q), all of which are equivalent. We
shall not assume that m is an integer.

A typical example of an operator A satisfying these hypotheses is a second
order elliptic operator with smooth coefficients applied to functions satisfy-
ing zero Dirichlet boundary conditions on a smooth bounded domain in R™.
Only the abstract properties listed above are relevant to our analysis.

Let g be a number satisfying
9) 2<q <2n/(n—2m), 2m < n,
2<q < o0, n < 2m,

and let f(x,t) be a Carathéodory function on Q2 x R. This means that f(x,t)
is continuous in t for a.e. x € () and measurable in x for every ¢t € R.

We consider the problem
(10) Au = f(x,u), u € D.
By a solution of (10) we shall mean a function u € D such that
(11) (u,v)p = (f(,u),v), ve€D.

If u is a solution of (11) and f(z,u) is in L?(f2), then u is in D(A) and
solves (10) in the classical sense. Otherwise we call it a weak (or semistrong)
solution.

We make the following assumptions:
(A) The function f(z,t) satisfies

(12) |f (@, t)] < V()] + 1)
and
(13) f@,t)/V(x)? = o(|t|"") as [t| — oo,
where V' (z) > 0 is a function in L4(£2) such that
(14) [Vullq < Cllullp, weD.
Here
1/q
(15) fulli= ([ Jutopac)
Q
(16) ullp = [|AY 2,

and ¢ = q/(¢ —1). If Q and V(z) are bounded, then (14) will hold
automatically by the Sobolev inequality. However, there are func-
tions V(x) which are unbounded and such that (14) holds even on
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unbounded regions Q (cf., e.g., [4]). With the norm (16), D becomes
a Hilbert space.

(B) The point ) is an isolated simple eigenvalue with a bounded eigen-
function ¢o(z) # 0 a.e. in Q.

(C) There is a § > 0 such that

2F(‘T7t) < )\0t27 |t| < 57 HS Qu

where
(17) F(z,t) ::/O f(z,s)ds.

(D) There is a function W (x) € L'(Q) such that either
W(z) < F(z,t)/t* = 00 as t — 00, z€Q

or
W(z) < F(x,t)/t? = 00 as t — —o0, x € .

(The function W (z) need not be positive.)

(E) There are constants p > 2,C > 0 such that

[WF (x,t) —tf(x, )] /(2 +1) < C, teR, 2.
We shall prove:
Theorem 2.1. Under the above hypotheses, the problem
(18) Au = f(z,u), ue D
has at least one nontrivial solution.
We also have:

Theorem 2.2. Replace Hypothesis (E) with:

(E') The function

(19) H(xz,t):=tf(x,t) —2F(x,t)
18 convex in t.

Then Problem (18) has at least one nontrivial solution.

Problem (18) is called sublinear if f(x,t) satisfies
(20) @) <Ot +1), z€Q, tek.
Otherwise it is called superlinear. Hypothesis (D) requires (18) to be super-

linear.

Problem (18) has been studied by many people. The vast majority of
results obtained concern sublinear problems. Much less has been proved for
the superlinear case. In [1] the basic assumption was

(21) 0<:U’F($at) Stf(fb,t), ‘t‘ >
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for some p > 2 and r > 0. This is a very convenient hypothesis since it readily
achieves mountain pass geometry as well as satisfaction of the Palais-Smale
condition. However it is a severe restriction; it strictly controls the growth
of f(x,t) as |t| — oo. Almost every author discussing superlinear problems
has made this assumption. We have been able to weaken this assumption
considerably, but not to our complete satisfaction. We assume either that

pF(z,t) —tf(z,t) <C@E*+1), |[t|>r

for some p > 2 and r > 0 or that (19) is convex in ¢t. These allow much more
freedom for the function f(x,t). But they do not allow as much freedom as
we would like.

If we drop Hypothesis (E) completely, then we are able to prove the
following theorems:

Theorem 2.3. If we replace Hypotheses (C) and (D) with:
(C') There are a 6 >0 and a X > Ao such that
2F(z,t) > M2, |t| <6, z€Q,

and
(D') there is a function W (x) € L'(Q) such that

W(z) > P(z,t) — —oc0 as |t| = o0, z €,

where

(22) Pla,t) = F(,t) ~ Ao,
and drop Hypothesis (E), then Problem (18) has at least one nontrivial so-
lution.

We also have:

Theorem 2.4. Assume that (A)-(D) hold. Then for almost every 3 €
(0,1), the equation

has a nontrivial solution. In particular, the eigenvalue problem (23) has
infinitely many solutions.

Theorem 2.5. Replace Hypothesis (C) in Theorem 2.4 with:
(C") There are § > 0 and X\ < Ao such that

2F (z,t) < X2, |t| <6, z €Q,
and (D) with:
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(D”) FEither
/ F(x,Rpo)dz/R* — 0o as R — o0
Q

or
/ F(x,—Rypo)dz/R* — 0o as R — oo.
Q

Then (23) has a nontrivial solution for almost every 8 € (0, A/\).

Corollary 2.6. Replace Hypothesis (C") in Theorem 2.5 with:
(C") F(x,t)/t2 — 0 uniformly as t — 0.

Then (23) has a nontrivial solution for almost every (3 € (0, 00).

The method (called the monotonicity trick) which allows one to solve (23)
for almost all values of 3 in some interval was first introduced by Struwe [8]
for minimization problems. It was applied by Jeanjean [3] and others for
various types of problems.

3. Preliminaries.

Define
= |U 2 — r,u)ax.
(24) Gu) = [[ull3) — 2 /Q F(z,u)d

Under Hypothesis (A), it is known that G is a continuously differentiable
functional on the whole of D. In fact, the following were proved in [5, pp.
56-58]:

Proposition 3.1. Under Hypothesis (A), F(x,u(z)) and v(z) f(z,u(x)) are
in L' () whenever u, v € D.

Proposition 3.2. G(u) has a Fréchet derivative G'(u) on D given by
(25) (G'(u),v)p = 2(u,v)p = 2(f (", u),v).
Proposition 3.3. The derivative G'(u) given by (25) is continuous in u.

Theorem 3.4. Under Hypotheses (A)-(C), the following alternative holds:
Either:

(a) There is an infinite number of y(x) € D(A) \ {0} such that
(26) Ay = f(z,y) = Aoy,

or
(b) for each p > 0 sufficiently small, there is an € > 0 such that

(27) G(u) 2 e, |ulp=p.
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4. Proofs.
Proof of Theorem 2.1. We take
(28) G(u) = |Jull3 — 2/ F(z,u)dx.

Q

Under our hypotheses, Propositions 3.1-3.3 apply, and
(29) (G (), v) = 2(u, 0)p — 2(f (- w),v), w,v € D.
By Theorem 3.4 we see that there are positive constants €, p such that
(30) G(u)ze, |lulp=p
unless
(31) Au = Mu = f(z,u), u € D\ {0}

has a solution. This would give a nontrivial solution of (18). We may
therefore assume that (30) holds. Next we note that

G(Re) /= |l ~ 2 | {Fla £Rp0)/ Rgh)iehds — ~00 as R— o
Q

by Hypothesis (D), since o # 0 a.e. Since G(0) = 0 and (30) holds, we can
now apply the usual mountain pass theorem (cf., e.g., [5, p. 22]) to conclude
that there is a sequence {ur} C D such that

Glug) —c>¢e, G'(ug) — 0.

Then

(32) G(ug) = ps — 2/F(a:,uk)dx —c

and

(33) (G'(ur), ur) = 2pf, — 2(f (-, ur), up) = o(pr),

where pp = |Jug||p. Assume that p, — oo, and let up = wug/pr. Since

|lug||p = 1, there is a renamed subsequence such that u; — u weakly in D,
strongly in L2 () and a.e. in Q. By (32),

2F ~
/ Mu% dr — 1.
Q

Uk
Let
D ={reQ:ulx)#0}, QP=0\Q.
Then o
Mﬂi — 00, x€
u

k
by Hypothesis (D). If Q; has positive measure, then

| 2P () o / @)z g [ W) de - oo.
Q uk_ Ql uk‘ Q2
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Thus, the measure of 1 must be 0, i.e., we must have w = 0 a.e. Moreover,

/ pF (z,ur) — up f (2, ug) %
0

d — —1.
u% Uk x—>2

But by Hypothesis (E),

F — . 2+1
pwF (z,uy) 2ukf(:c,uk)Uk <1 supCuk;—
u u

k k

lim sup uy, = 0,

which implies that (u/2) —1 < 0, contrary to assumption. Hence, the py are
bounded. We can now follow the usual procedures to obtain a weak solution
of (18) satisfying G(u) = ¢ > ¢ (cf., e.g., [5, p. 64]). Since G(0) = 0, we see
that v # 0. This completes the proof. O

We postpone the proof of Theorem 2.2 until the next section.
In proving Theorem 2.3, we shall make use of:

Lemma 4.1. Under Hypothesis (C'), there is an o # 0 such that G(app) <
0.

Proof. We can assume that

(34) leollp = 1.
Thus,

G(apg) = o — 2/ F(x,apy)dz
Q

<a?— Xoﬂ/ wo(z)?dx
|ospo () <8

w [ Vil + o)
lapo (z)|>6
< a® = Xa®|@ol* + Cla||[Vipo |4
< o®[1 = (o) + C'al 7).
This can be made negative by taking « sufficiently small. O
Lemma 4.2. Under Hypothesis (D'),

(35) G(u) — oo as |ullp — oo.

Proof. Suppose there is a sequence {u;} C D such that pp = [|ug| — oo
and

Write

up = Wi + appo, Uk = Uk/pr, Wk = Wk/pr, Ok = O/ Pk,
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where wy Lpg. If A1 > Ag is the next point in the spectrum of A, then
Mllw]? < wlb,  wleo.
Thus

GWM=WM%—ANWW—ZLP@ww¢B

A

> <1 - 0> |wg % — 2/ P(x,uy) dz
A1 Q
)\0 2

> (1-29) 3 — 2 [ Wi dn.
A1 Q

The only way this would not converge to oo is if |jwg|p is bounded. But

then ||wg|llp — 0, and |ax| — 1. Since ||ug||p = 1, there is a renamed
subsequence such that u, — u weakly in D, strongly in L2 () and a.e.
in Q. Since w = 0 and |a] = 1, we have u(z) = aygo(x) # 0 a.e. Hence,

lug(z)| = prlug(x)] — oo a.e. Consequently,

/ P(x,uy) dx — —o0,
Q
showing that G(uy) — oo. This completes the proof. O

We can now give:

Proof of Theorem 2.3. Let
m = i%f G.

Then there is a sequence {ux} C D such that G(uy) — m. In view of
Lemma 4.2, we must have ||ug||p < C. Thus, there is a renamed subsequence
such that u, — u weakly in D, strongly in L2 () and a.e. in . Now,

Gu) = [[ul% — 2/QF(x,u) da
= [Jugl|D — 2([ur — u],u)p — [lur — ullp
- 2/QF(ac,uk) dxr + Z/Q[F(y:,uk) — F(z,u)|dz

< G(ug) — 2([ug — ul],u)p + Z/Q[F(x, ug) — F(z,u)|dz.

From our hypotheses, it follows that

/QF(a;,uk)dxﬁ/QF(af,u)dx

(cf., e.g., [5, p. 64]). We therefore have in the limit G(u) < m, from which
we conclude that G(u) = m and G'(u) = 0. Hence, u is a weak solution of
(10). We see from Lemma 4.1 that m < 0. Since G(0) = 0, we see that
u # 0. This completes the proof. O
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5. The eigenvalue problem.

In this section we shall give the proofs of Theorems 2.4, 2.5 and 2.2. They
will be based on the following result given in [7]. Let E be a reflexive Banach
space with norm || - ||, and let A, B be two closed subsets of E. Suppose
that G € CY(E,R) is of the form: G(u) := I(u) — J(u),u € E, where
I,J € CY(E,R) map bounded sets to bounded sets. Define

Ga(u) = M (u) — J(u), €A,
where A is an open interval contained in (0,4o00). Assume one of the fol-

lowing alternatives holds:

(Hy) I(u) > 0 for all w € E and either I(u) — oo or |J(u)] — oo as
[uf] — oo

(Hz) I(u) < 0 for all w € E and either I(u) — —oo or |J(u)] — oo as
[u]| = oo

Furthermore, we suppose that:

(Hs) ag(N) :=supy G < by(A) :=infp G, for any X\ € A.

We let ® be the set of mappings I'(t) € C(E x [0, 1], E) with the following

properties:

a) for each t € [0,1),T'(¢) is a homeomorphism of E onto itself and T'(t) !
is continuous on E x [0, 1);

b) I'(0) = I;

c) for each I'(t) € ® there is a ug € E such that I'(1)u = ug for all u € E
and I'(t)u — wug as t — 1 uniformly on bounded subsets of E.

A subset A of F links a subset B of E if ANB = ¢ and, for each I'(t) € ®,
there is a t € (0, 1] such that I'(t)AN B # ¢.

We have:

Theorem 5.1. Assume that (Hy) (or (Hz2)) and (Hs) hold.
(1) If A links B and A is bounded, then for almost all X € A there exists
ur(A\) € E such that supy, [[ugp(N)|| < oo, G\ (ug(N)) — 0 and

Ga(ur(N)) — a(A) :==inf  sup  GiA(['(s,u)), k — oc.
e® sei0,1],ucA

Furthermore, if a(A) = bo(A), then dist(ug(A\), B) — 0, k — oc.
(2) If B links A and B is bounded, then for almost all X € A there exists
vi(A) € E such that supy, [|[vg(N)|| < 00, G4 (vk(N)) — 0 and

Ga(vg(N) = b(A) :=sup inf G\(['(s,v)), k — oc.
red s€[0,1],veB

Furthermore, if ag(\) = b(X), then dist(vg(A), A) — 0, k — oo.

We shall also need the following extension of Theorem 3.4:
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Theorem 5.2. Let A be a parameter satisfying 1 < A < K < oco. Under
Hypotheses (A)-(D), for each p > 0 sufficiently small (not depending on ),
we have

(86)  Ga(w) = Alul} -2 /Q F(a,u)de > (A= 1)p%  |lulp = p.

If we replace Hypothesis (C) with Hypothesis (C"), assuming 1 < A/ Ag <
A < K < o0, then we have

(37) Ga(u) = (/\ - ;) P llullp =p.
0

Proof. Let A1 > Ag be the next point in the spectrum of A, and let Ny
denote the eigenspace of A\g. We take M = Ng- N D. By Hypothesis (B),
there is a p > 0 such that

lyllp < p=ly(x)| <6/2, ye No.
Now suppose u € D satisfies
(38) lullp < p and |u(z)| = &
for some x € 2. We write
(39) u=w+y, we M, ye Np.
Then for those x € Q satisfying (38) we have
6 < Ju(z)] < |lw(z)| + |y(x)] < |w(z)] + (6/2).
Hence
(40) y(x)] <6/2 < |w(z)],
and consequently,
(41) u(z)| < 2w(z)|
for all such . Now we have by (12) and (14)
Ga(u) > N|ul|% —)\0/ uwide — C (|[Vul? + VY ul)dzx

|u|<é |u|>6

> Mall? = Aoflul® - € / Vultda

|u|>8

> (A—1)||y||2D+AHwII%—AonIIQ—C”/ [Vwl|tdx

2|w|>6
in view of the fact that |ly||% = Ao|ly[|*> and (41) holds. Thus, by (14),

Ao )
20 _ o )lel%, lull < p.

(42) Gr(w = (= Dllly + (A=



SUPERLINEAR PROBLEMS 157

We take p > 0 to satisfy

N
A1

This gives
Ga(u) > (A= 1)p + (A SN0ty 1) il
1

> (=D, Jullp = p.
Hence, (36) holds. N
To prove (37) under Hypothesis (C”), let n = A/A\g and A = (1, K). Under
Hypothesis (C”) we have in place of (42)

A _
(43) Gaw) = (A =m)lyllp + (A v C"wllp 2) lwllD,  llullp < p.

We take p > 0 to satisfy

A
- > C//l q—2‘
n A p

Consequently,

Ga(u) > (A —n)p* + (A — ;1

—C"pTE A+ Tl) lwllh
> (A =n)p*, |lullp = p.
This gives (37), and the proof is complete. O

We now turn to the proofs of Theorems 2.4 and 2.5. We prove the latter
first. We shall prove Theorem 2.5 by applying Theorems 5.1 and 5.2.

Proof. We take E = D, A = (n,K), where n = X//\o, K > 1 is a finite
number, and

1) = lully, I =2 [ Flo,u)da,
Q
For the purpose of this application, it is sufficient to know that the sets
Ay =1[0,£Rpo], B={x € D:|z|p=p}

link each other if R > p (cf., e.g., [5]). In our case Hypothesis (H;) is
satisfied. We now check that (Hs) holds. We observe that

Gh\(u) =0

is equivalent to (23) with § = 1/A. Now, at least one of the expressions

J(icho)/R2:2/ F(z,+Ryp) dz/R* — 0o as R — oo
Q
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by Hypothesis (D”). Hence, for R sufficiently large, one of the inequalities
Ga(ERen) 1 < Kllgolh — 2 | Flo£Reo) /B <0
Q
holds. Thus,
a0(>\) <0, MeA.
Moreover, it follows from Theorem 5.2 that (37) holds. Hence,
bo(A) = (A =mp?, A€A.

This shows that Hypothesis (H3) holds. We can now apply Theorem 5.1
to conclude that for almost all A € A, there exists ugx(\) € D such that
supy, [lux(N)|| < o0, G\ (ur(X)) — 0 and

G(ur(\)) — a(N) = bo(N).

Once it is known that the sequence {uy} is bounded, we can apply the usual
theory to conclude that there is a solution of

Gh\(u) =0, Gx(u)=a())

(cf., e.g., [, p. 64]). Moreover, from the definition, we see that a(\) >
(A—n)p?. Hence, the equation G} (u) = 0 has a nontrivial solution for almost
every A € A. This is equivalent to (23) having a nontrivial solution for almost
every 8 € (K~ n71). Since K was arbitrary, the result follows. O

To prove Theorem 2.4, it suffices to take = Ao and show that Hypothesis
(D) implies Hypothesis (D”). To see this, we note that

F(x, =Ry
/ F(z,£Rypo) dx/R* = / (R220)<p3dac — 00
Q Q %0

by Hypothesis (D) and the fact that ¢o(x) # 0 a.e.

To prove Corollary 2.6, we let € be any positive number. By Hypothesis
(C"), there is a 6 > 0 such that

F(x,t)/t* <e, |t|<6, 2€Q.

By Theorem 2.5, Equation (23) has a nontrivial solution for a.e. 8 € (0, \o/¢).
Since € was arbitrary, the result follows.

We now give the proof of Theorem 2.2.

Proof. By Theorem 2.4, for each arbitrary K > 1, and a.e. A € (1, K), there
exists uy such that Gi(uy) = 0, Gi(uy) = a(\) > (A — 1)p%.  Choose
An — 1, A, > 1. Then there exists u,, such that

G, (un) =0, Gy, (un) = a(Ay) > a(l) > bo(1).
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By Theorem 3.4, we may assume by(1) > ¢ > 0. Therefore,

2F
/ Lgn)dx <ec.
Q Hun”D

Now we prove that {u,} is bounded. If ||u,|p — oo, let w, = uy/||unl D,
then w, — w weakly in D, strongly in L2 () and a.e. in Q.

Case 1: w # 0 in D. We get a contradiction as follows:

2F (z, up, 2F (x, up,
C>/<fca7~t>dm:/<xu>|wn|2dx
Q Q

lunll? uf

2F n
> / %mnpc{x - / Wi (x) dx — oo.
w#0 Up, w=0

Case 2: w =0 1in D. We define t,, € [0, 1] by

G, (tnuy) = trél[(a)ol(] G, (tuy).

For any ¢ > 0 and w,, = cw,,, we have
/ F(z,w,)dx — 0
Q
(cf., e.g., [5, p. 64]). Thus,

G, (taun) > Gy, (cwy,) = 2\, — 2/ F(z,W,)dz > c*/2
Q

for n large enough. That is, nh_)rrgo G, (thun) = oo and (G (tpun),us) = 0.

Therefore,

G, (twn) = [

<f(m, tntn ) tpuy, — 2F (x, tnun)) dx
Q

= / H(z,thuy) dx — oo.
Q
By Hypothesis (E),

G, (un) :/QH(x,un)dx > /QH(x,tnun) dx — o0.

But
Gy, (un) =a(An) < sup Gy, ((1—s)u)
s€[0,1] ,ue A
< sup  Gg((1-s)u)
s€[0,1] ,ue A

<ec,
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a contradiction. Thus, ||u,||p < C. It now follows that

G'(un) — 0, G(up) — a(l) > bo(1).

We can now apply Theorem 3.4.1 in [5, p. 64] to obtain the desired solution.

1]
2]

3]

[4]
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