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We prove the existence of extremal functions of Sobolev-
Poincaré inequality on Sn for p ∈ (1, (1 +

√
1 + 8n)/4). For

general n-dimensional compact Riemannian manifolds embed-
ded in Rn+1, such an existence result is proved for p ∈ (n/(n−
1), (1 +

√
1 + 8n)/4).

1. Introduction.

Let (Mn, g) be a n-dimensional compact Riemannian manifold without
boundary. The standard Sobolev-Poincaré inequality can be stated as the
following: For any p ∈ [1, n), there is a constant A(p, Mn, g) > 0 such that(∫

Mn

|u− ua|p∗
)p/p∗

≤ A(p, Mn, g)
∫

Mn

|∇gu|p, ∀u ∈ W 1,p(Mn)(1.1)

where ua = 1
vol(Mn)

∫
Mn u, p∗ = np/(n − p) is the Sobolev conjugate of

p. This inequality can be proved by combining Sobolev inequality with
Poincaré inequality, see, for example, Hebey’s book [8]. In this paper we are
interested in the estimates of the best constant and the existence of extremal
functions to the above inequality. Analytically these are naturally motivated
questions. On the other hand they may have interesting geometric implica-
tions, in particular, in the study of Poincaré’s isoperimetric inequality. We
shall discuss this geometric issue in another paper [9].

Generally speaking, the existence of extremal functions is not a trivial
issue, given the fact that p∗ is the critical Sobolev exponent for the Sobolev
embedding theorem. In this paper, for a model manifold -the unit sphere
Sn with the standard metric g0 =

∑n+1
i=1 dx2

i , we obtain a fairly satisfying
result. Define the Sobolev-Poincaré quotient by

Ip(u) :=

∫
Sn |∇u|p

(
∫
Sn |u− uA|p∗)p/p∗

(1.2)

where uA = 1
vol(Sn)

∫
Sn u. We are going to prove:
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Theorem 1.1. If 1 < p < (1 +
√

1 + 8n)/4, then

PI(Sn, p) := inf{Ip(u) : u ∈ C1(Sn) \ {0}}

is achieved.

The main idea in the proof is to show that there is a minimizing sequence
which strongly converges (in Lp∗ sense) to a nonzero function. Let

k(n, p) = π−1/2n−1/p

(
p− 1
n− p

)1−1/p{ Γ(1 + n/2)Γ(n)
Γ(n/p)Γ(1 + n− n/p)

}1/n

= inf
u∈C1

0 (R)\{0}

(
∫

Rn |∇u|p)1/p

(
∫

Rn |u|p∗)1/p∗
;

and k(n, 1) = limp→1+ k(n, p) = π−1/2n−1{Γ(1 + n/2)}1/n. If one can prove
that

PI(Sn, p) <
1

kp(n, p)
,(1.3)

the convergence of a minimizing sequence will follow from some standard
arguments. However, for general p such a strict inequality may not be true.
For example, from Bernstein inequality on S2 one can prove (see more details
in [9]) that

inf
u∈BV (S2)\{0}

∫
S2 |∇u|

(
∫
S2 |u− uA|n/(n−1))(n−1)/n

=
1

k(2, 1)
= 2

√
π.

Nevertheless, by choosing a suitable (but standard) test function we can
show the following:

Theorem 1.2. Let (Mn, g) be a n-dimensional compact Riemannian mani-
fold without boundary embedded in Rn+1. If p ∈ (n/(n−1), (1+

√
1 + 8n)/4)

for n ≥ 4, then

PI(Mn, p) := inf
u∈C1\{0}

∫
Mn |∇gu|p

(
∫
Mn |u− ua|p∗)p/p∗

<
1

kp(n, p)
,(1.4)

and the infimum is achieved at some u0 ∈ C1(Mn).

The case of p ∈ (n/(n− 1), (1 +
√

1 + 8n)/4) in Theorem 1.1 is obviously
covered by Theorem 1.2. It is unclear whether the strict inequality (1.4) is
still true for p ≥ (1+

√
1 + 8n)/4 or not. On the other hand, one may check

that if n = 3 inequality (1.4) holds for p = 1, thus it is true for p ∈ [1, 1+δ0)
for some positive number δ0. Unfortunately, we have no information about
this δ0. We may guess that the strict inequality (1.4) holds for all p ∈ [1, n)
and n ≥ 2 except the case of p = 1 and n = 2. Even though we do not
know whether (1.4) holds for general p or not, however, if we return to the
special manifold Sn and change the constraint on u slightly, we obtain the
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following result for all p ∈ (1, n). For convenience, throughout the paper we
denote

Ha(Sn) :=
{

u ∈ C1(Sn) :
∫

Sn

|u|p∗−2u = 0
}

.

Theorem 1.3. If 1 < p < n, then

PII(Sn, p) := inf
u∈Ha(Sn)\{0}

∫
Sn |∇u|p

(
∫
Sn |u|p∗)p/p∗

,

is achieved at some u0 ∈ Ha(Sn).

It shall be pointed out that in the case of n = 2 and p = 1 we have
p∗ − 2 = 0. Therefore the constraints on u in Theorem 1.3 is the same as
that in Theorem 1.1.

Based on the symmetrization result on Sn (see, for example, Baernstein
[2]), we can assume that there is a minimizing sequence depending only on
one variable. Amazingly, the case of p < 2n/(n + 1) in Theorem 1.1 can be
handled in the same spirit as that in the proof of Theorem 1.3 (note that this
upper bound of p matches the lower bound of p in Theorem 1.2 perfectly).

We make a final remark in this introduction. When the manifold is a
sphere with the standard metric, if one can show that there is an anti-
symmetric minimizing sequence uk (that is, u(x′, xn) = −u(x′,−xn)) to
inf Ip(u), one easily obtains (1.3) and Theorem 1.1 follows. Unfortunately,
such an expectation may not be realized in practice, given the fact that there
are the extremal functions for inf I1(u) on S2 which are not antisymmetric.
We refer to [4] for some related issues on the symmetric properties of the
extremal functions.

We organize the paper as follows: In Section 2, we prove Theorem 1.3; in
Section 3, we prove Theorem 1.1 and Theorem 1.2.

2. Proof of Theorem 1.3.

For a small positive parameter 0 < ε � 1, we define qε = p∗ − ε,

Ha,ε(Sn) :=
{

u ∈ C1(Sn) :
∫

Sn

|u|qε−2u = 0
}

,

and

Sε := inf
u∈Ha,ε(Sn)\{0}

Jε(u) := inf
u∈Ha,ε(Sn)\{0}

∫
Sn |∇u|p

(
∫
Sn |u|qε)p/qε

.(2.5)

Let (α1, . . . , αn−1, θ) be the spherical coordinates of Sn, where 0 ≤ αi <
2π, −π

2 ≤ θ < π
2 . Standard variational method shows that inf Jε(u) is at-

tained in Ha,ε(Sn). Further, the symmetrization argument (see, e.g., Baer-
stein [2]) yields that the extremal function uε(x) only depends on θ and is a
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monotonically non-decreasing function of θ. We can normalize uε such that∫
Sn

|uε|qε = 1.(2.6)

Thus, uε satisfies the following equation:{
∇(|∇uε|p−2∇uε) + Sε|uε|qε−2uε = 0 in Sn

duε(θ)/dθ ≥ 0.
(2.7)

If ‖uε‖L∞ ≤ C, then from the elliptic estimates (see, for example, [5])
we know that ‖uε‖C1,α ≤ C for some α ∈ (0, 1), and conclude that up to a
subsequence of ε, uε → u0 in C1,α as ε → 0, where u0 is the minimizer of
J0. Hence Theorem 1.3 is proved. So we shall focus on ruling out the case:
Up to a subsequence of ε,

‖uε‖L∞ →∞ as ε → 0.(2.8)

We denote θε as the zero point of uε, and assume that θε → θ0 (up to a
subsequence of ε).

Further, without loss of generality we can assume that{
uε(θ) < 0 for − π

2 ≤ θ < θε

uε(θ) > 0 for θε < θ ≤ π
2 ,

and uε(π/2) = maxuε(θ) = ‖uε‖L∞ .

Proposition 2.1. Given δ > 0, for any θ < π/2− δ,

uε(θ) → 0 uniformly as ε → 0.

Proof. The proposition can be proved via the following standard two steps:
First of all we claim that

limε→0Sε ≤
1

kp(n, p)
.(2.9)

We relegate the proof of this inequality to the end of this paper.
Then we have the following concentration phenomena: For any fixed δ >

0,

lim
ε→0

inf
∫

Sn∩{θ>π/2−δ}
uqε

ε = 1.(2.10)

As a consequence, one can obtain Proposition 2.1. We refer readers to, for
example, [7] for more details.

Now, for any τ ∈ (−π/2, π/2), we define µε = maxθ∈[−π/2,τ ] |uε(θ)|. From
Proposition 2.1 we know that µε → 0 as ε → 0. Let vε(θ) = −uε(θ)/µε.
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Then vε satisfies:{
∇(|∇vε|p−2∇vε) + Sεµ

qε−p
ε vqε−1

ε = 0 in Sn ∩ {−π/2 < θ < τ}
0 ≤ |vε| ≤ 1 for − π/2 < θ < τ.

(2.11)

It follows from the standard elliptic theory that vε → v0 in any compact set
of {x = (α1, . . . , αn−1, θ) ∈ Sn | − π/2 < θ < τ}, where v0 satisfies:{

∇(|∇v0|p−2∇v0) = 0 for − π/2 < θ < τ

max |v0(θ)| = 1, 0 ≤ |v0| ≤ 1 for − π/2 < θ < τ.

Since v0(θ) is monotonically non-decreasing in θ, in both cases (τ > θ0 or
τ < θ0) we obtain a contradiction due to the maximum principle!

3. Proof of Theorems 1.1 and 1.2.

Let us first establish Theorem 1.1 in the case of p < 2n/(n + 1). We follow
the main stream in the proof of Theorem 1.3. For a small positive parameter
0 < ε � 1, we define qε = p∗ − ε, and

Zε := inf
u∈Ha,p∗ (S

n)\{0}
Iε(u) := inf

u∈Ha,p∗ (S
n)\{0}

∫
Sn |∇u|p

(
∫
Sn |u|qε)p/qε

,(3.12)

where

Ha,p∗(S
n) =

{
u ∈ C1(Sn) :

∫
Sn

u = 0
}

.

Standard variational method and the symmetrization argument show that
inf Iε(u) is attained by uε(x) which depends only on θ and is a monotonically
non-decreasing function of θ. We normalize uε such that∫

Sn

|uε|qε = 1.(3.13)

If ‖uε‖L∞ < ∞, we are done. Otherwise, we assume, up to some subsequence
of ε, that

‖uε‖L∞ →∞ as ε → 0.

Let θε be the zero point of uε and denote cε =
∫
Sn |uε|qε−2uε. Up to a further

subsequence of ε, we can assume that θε → θ0. It follows easily from Hölder
inequality and (3.13) that

|cε| ≤ C.

Without loss of generality, we can assume that{
uε(θ) < 0 for − π

2 ≤ θ < θε

uε(θ) > 0 for θε < θ ≤ π
2 ,

(3.14)
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and uε(π/2) = max uε(θ) = ‖uε‖L∞ . The Euler-Lagrange equation of uε is
given by: {

∇(|∇uε|p−2∇uε) + Zε|uε|qε−2uε − Zεcε = 0 in Sn

duε(θ)/dθ ≥ 0.
(3.15)

Easy to see that |Zεcε| < C. We define µε = −uε(−π
2 ). As in the proof of

Proposition 2.1, one can show that µε → 0.
If θ0 > −π/2, we let vε = −uε/µε. Then vε satisfies

∇(|∇vε|p−2∇vε)
+Zεµ

qε−p
ε vqε−1

ε − Zεcεµ
1−p
ε = 0 in Sn ∩ {−π/2 < θ < θε}

duε(θ)/dθ ≥ 0,

0 ≤ vε ≤ 1 for − π/2 < θ < θε.

(3.16)

For any fixed p < 2n/(n + 1), we choose positive constants s and t such
that

(qε − 1)t + s = qε − 1, and
(qε − 1)t

qε
+ s = 1.(3.17)

Then from Hölder inequality, we obtain:

|cε| ≤
∫

Sn

|uε|qε−1

≤
(∫

Sn

|uε|qε

) (qε−1)t
qε

·
(∫

Sn

|uε|
)s

= C ·

(∫ θε

−π/2
|uε|

)s (
using

∫
Sn

u = 0
)

≤ C1

∣∣∣uε

(
−π

2

)∣∣∣s
≤ C1µ

s
ε .

(3.17) implies s = 1/(qε − 1). Using the fact that p < 2n/(n + 1), one can
check that for small ε, s + 1 − p > 0. Thus it follows from the standard
elliptic theory that vε → v0 in C1,α(K) for any compact set K of {x =
(α1, . . . , αn−1, θ) ∈ Sn : −π/2 < θ < θ0}, where v0 satisfies:

∇(|∇v0|p−2∇v0) = 0 for − π/2 < θ < θ0

v0(−π/2) = max−π/2≤θ≤θ0
|v0(θ)| = 1,

0 ≤ v0 ≤ 1 for − π/2 < θ < θ0.

We thus derive a contradiction due to the maximum principle.
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If θ0 = −π
2 , then for sufficiently small ε, θε < 0, thus uε(θ) ≥ 0 for θ ≥ 0.

Therefore
∫
Sn∩{−π/2≤θ≤π/4} uε ≤ 0. It follows that

|uε(−π/2)| ·
(
θε +

π

2

)
≥ C

∫
Sn∩{θε≤θ≤π/4}

uε

≥ C

∫
Sn∩{0≤θ≤π/4}

uε ≥ Cuε(0).

This yields that |uε(−π/2)| ≥ Cuε(0) for sufficiently small ε. We then
consider vε = −uε/µε in the lower hemisphere and obtain vε → v0 in C1,α(K)
for any compact set K of the lower hemisphere, where v0 satisfies:{
∇(|∇v0|p−2∇v0) = 0 for − π/2 < θ < 0
v0(−π/2) = max−π/2≤θ≤0 v0(θ) = 1, 0 ≤ |v0| ≤ 1 for − π/2 < θ < 0.

Again this contradicts the maximum principle! We hereby complete the
proof of Theorem 1.1 in the case of p < 2n(n + 1).

To prove Theorem 1.1 in the case of p ≥ 2n(n+1), we only need to prove
Theorem 1.2.

Proof of Theorem 1.2. We first establish Theorem 1.2 under the assumption
that (1.4) holds.

We quote the following lemma from Aubin’s book [1]:

Lemma 3.1. Given δ > 0, there is a constant C(δ) such that(∫
Mn

|u|p∗dvg

)p/p∗

≤ (kp(n, p) + δ)
∫

Mn

|∇gu|pdvg + C(δ)
∫

Mn

|u|pdvg

holds for all u ∈ W 1,p(Mn).

Let {u(m)} be a minimizing sequence with
∫
Mn u(m)dvg = 0 and

‖u(m)‖P∗,Mn =
(∫

Mn

|u(m)|p∗dvg

)1/p∗

= 1.

Clearly, ‖u(m)‖W 1,p(Mn) ≤ C. After passing to a subsequence, u(m) converges
weakly to some ũ ∈ W 1,p(Mn), and u(m) converges strongly to ũ in Lq for
any q < p∗. Thus

∫
Mn ũdvg = 0. Due to Brezis-Lieb’s lemma [3], it is not

difficult to see that∫
Mn

(|u(m)|p∗ − |u(m) − ũ|p∗)dvg =
∫

Mn

|ũ|p∗dvg + o(1),

and consequently∫
Mn

(|u(m)|p∗ − |u(m) − ũ|p∗)dvg ≤ 1 + o(1),
∫

Mn

|ũ|p∗dvg ≤ 1,

where o(1) denotes various quantity tending to zero as m tends to ∞.



192 MEIJUN ZHU

Choose δ such that 1
kp(n,p)+δ − PI(Mn, p) ≥ δ/2. By the Sobolev embed-

ding theorem and Lemma 3.1, we have:

PI(Mn, p)

=
∫

Mn

|∇gu
(m)|p + o(1)

=
∫

Mn

|∇g(u(m) − ũ)|p +
∫

Mn

|∇gũ|p + o(1)

=
∫

Mn

|∇(u(m) − ũ)|p +
C(δ)

kp(n, p) + δ

∫
Mn

|u(m) − ũ|p +
∫

Mn

|∇gũ|p + o(1)

≥ 1
kp(n, p) + δ

(∫
Mn

|u(m) − ũ|p∗
)p/p∗

+ PI(Mn, p)
(∫

Mn

ũp∗

)p/p∗

+ o(1)

≥ 1
kp(n, p) + δ

∫
Mn

|u(m) − ũ|p∗ + PI(Mn, p)
∫

Mn

ũp∗ + o(1)

=
(

1
kp(n, p) + δ

− PI(Mn, p)
)∫

Mn

|u(m) − ũ|p∗ + PI(Mn, p) + o(1).

This yields that
∫
Mn |u(m) − ũ|p∗ = o(1). It follows easily that ũ is a mini-

mizer. Theorem 1.2 is proved.

We are left to verify (1.4).

Proof of (1.4).
We follow closely the computations in Druet [6]. Since Mn is embedded in

Rn+1, there is a point x0 ∈ M such that the scalar curvature at x0 (denoted
as Rg(x0)) is positive. We choose a normal geodesic coordinates system near
x0. Let r be the distance from point x to x0, we define, for small positive
constants ε and δ,

uε(x) = uε(r) =
(

1
ε + rp/(p−1)

)n
p
−1

· ϕ(r),(3.18)

where ϕ(r) is a nonnegative cut-off function satisfying:

ϕ(r)


= 1 for r ≤ δ

2 ,

≤ 1 for δ
2 ≤ r ≤ δ,

= 0 for r ≥ δ.

Notice that in this system,

dvg =
[
1− 1

6
Rij(x0)xixj + or(1)(r2)

]
dxidxj ,(3.19)

where and throughout this section we denote oγ(1) as the term tending to
0 as γ → 0.

We divide our computation into four steps.
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Step 1. Estimate of
∫
Mn up∗

ε dvg.
We have, from (3.18), that∫

Mn

up∗
ε dvg

≥
∫

Bδ/2(x0)

(
1

ε + rp/(p−1)

)“
n
p
−1

”
·p∗

dvg

= ωn−1

∫ δ/2

0
(ε + rp/(p−1))−nrn−1dr

− ωn−1Rg(x0)
6n

(1 + oδ(1))
∫ δ/2

0
(ε + rp/(p−1))−nrn+1dr

= ωn−1ε
−n

p

∫ δ

2ε(p−1)/p

0
(1 + βp/(p−1))−n

·
[
βn−1 − Rg(x0)

6n
(1 + oδ(1)) · βn+1 · ε2(p−1)/p

]
dβ,

where ωn−1 is the surface area of Sn−1. For p < n+2
2 we know that n + 2−

pn/(p− 1) < 0. Thus∫ δ

2ε(p−1)/p

0
(1 + βp/(p−1))−n · βn+1dβ ≤ C.

It follows that (we also use n > 2(p− 1))

ωn−1ε
−n/p

∫ δ

2ε(p−1)/p

0
(1 + βp/(p−1))−nβn−1dβ

≥ D1 · ε−n/p − Cδ
− n

p−1 εn/p · ε−n/p

= D1 · ε−n/p − oε(1)δ−
n

p−1 ε
−n+2(p−1)

p ,

where

D1 = ωn−1

∫ ∞

0

βn−1

(1 + βp/(p−1))n
dβ;

and

ωn−1Rg(x0)ε−n/p

6n
(1 + oδ(1))

∫ δ

2ε(p−1)/p

0
(1 + βp/(p−1))−nβn+1 · ε2(p−1)/pdβ

≤ D2(1 + oδ(1))ε−n/p+2(p−1)/p,

where

D2 =
ωn−1Rg(x0)ε−n/p

6n

∫ ∞

0

βn+1

(1 + βp/(p−1))n
dβ.
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Therefore, for p < n+2
2 ,∫

Mn

up∗
ε dvg ≥ D1ε

−n/p − (D2 + oε,δ(1))ε−n/p+2(p−1)/p,(3.20)

where oε,δ(1) means that for any γ > 0 there is a δ0 such that for δ < δ0,
lim infε→0 oε,δ(1) < γ. Notice that (1 +

√
1 + 8n)/4 < (n + 2)/2 for n ≥ 2.

Step 2. Estimate of
∫
M |∇uε|pdvg.

If we denote
τ(r) = (ε + rp/(p−1))1−n/p,

then
∇uε = ∇τ(r)ϕ(r) + τ(r)∇ϕ(r),

and

|∇uε|pg ≤ |ϕ(r)∇τ(r)|pg + ν|∇ϕ(r)τ(r)|pg + µ|∇ϕ(r)τ(r)|g · |ϕ(r)∇τ(r)|p−1
g

for some positive constants ν and µ.
Since ∇ϕ(r) = 0 for 0 ≤ r ≤ δ/2, we know that∫

Mn

(ν|∇ϕ(r)τ(r)|p + µ|∇ϕ(r)τ(r)| · |∇τ(r)|p−1)dvg ≤ C(δ)

for some constant C(δ) independent of ε. On the other hand, noting that
uε is radially symmetric and grr = 1, we know that

|ϕ(r)∇τ(r)|pg ≤ |∇τ(r)|pg =
(

n− p

p− 1

)p

· r
p

p−1 · (ε + rp/(p−1))−n.

Therefore∫
Mn

|∇uε|pdvg

≤ C(δ) +
∫

M
|∇τ(r)|pdvg

≤ C(δ) + ωn−1

∫ δ

0

(
n− p

p− 1

)p

· rp/(p−1)(ε + rp/(p−1))−n · rn−1dr

− ωn−1Rg(x0)
6n

(1 + oδ(1))
∫ δ

0

(
n− p

p− 1

)p

· rp/(p−1)(ε + rp/(p−1))−nrn+1dr.

One can easily check:

ωn−1

(
n− p

p− 1

)p ∫ δ

0
(ε + rp/(p−1))−n · rp/(p−1)+n−1dr

= ωn−1

(
n− p

p− 1

)p

ε
1−n

p ·
∫ δε

1−p
p

0
(1 + βp/(p−1))−nβp/(p−1)+n−1dβ

≤
(
E1 + Cδ

p−n
p−1 · ε

n−p
p

)
ε
1−n

p ,
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where

E1 = ωn−1

(
n− p

p− 1

)p ∫ ∞

0
(1 + βp/(p−1))−nβp/(p−1)+n−1dβ.

Note that p/(p − 1) + n − 1 > −1, and p/(p − 1) + n − pn/(p − 1) =
(p− n)/(p− 1) < 0, thus E1 < ∞. Also for p < (n + 2)/3,

ωn−1Rg(x0)
6n

(
n− p

p− 1

)p ∫ δ

0
(ε + rp/(p−1))−n · rp/(p−1)+n+1dr

=
ωn−1Rg(x0)

6n

(
n− p

p− 1

)p

ε
3p−2−n

p ·
∫ δε

1−p
p

0
(1 + βp/(p−1))−nβp/(p−1)+n+1dβ

≤
(
E2 + Cδ

p−n
p−1

+2 · ε
n+2−3p

p

)
ε
1−n

p
+

2(p−1)
p ,

where

E2 =
ωn−1Rg(x0)

6n

(
n− p

p− 1

)p ∫ ∞

0
(1 + βp/(p−1))−nβp/(p−1)+n+1dβ < ∞.

For p < (n + 2)/3, we have (n− p)/p > 2(p− 1)/p. Thus,∫
Mn

|∇uε|pdvg ≤ C(δ) + E1ε
1−n

p − E2(1 + oε,δ(1))ε1−
n
p
+

2(p−1)
p .(3.21)

We also note that (1 +
√

1 + 8n)/4 < (n + 2)/3 for n ≥ 2.

Step 3. Estimates of
∫
Mn uε.∫

Mn

uε ≤ ωn−1

∫ δ

0
(ε + rp/(p−1))1−n/prn−1dr(3.22)

≤ C1ε
1−n

p
+

n(p−1)
p ·

∫ δε
1−p

p

0
(1 + βp/(p−1))1−

n
p βn−1dβ

≤


C(δ)ε

np+p−2n
p if np + p− 2n < 0

C(δ) ln(δε
1−p

p + C) if np + p− 2n = 0
C(δ) if np + p− 2n > 0.

Step 4. Define wε = uε −
∫
Mn uε. Then

∫
Mn |∇wε|p =

∫
Mn |∇uε|p. From

Minkowski inequality, we know∣∣∣∣∣
(∫

Mn

|wε|p∗
)1/p∗

−
(∫

Mn

|uε|p∗
)1/p∗

∣∣∣∣∣ ≤ vol1/p∗(Mn) ·
∫

Mn

|uε|.
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From (3.20) we have

(∫
Mn

|uε|p∗
)1/p∗

(3.23)

≥ (D1ε
−n/p − (D2 + oε,δ(1))ε−n/p+2(p−1)/p)1/p∗

= D
1/p∗
1 ε

− n
pp∗ −

(
D

1/p∗
1 D2

D1p∗
+ oε,δ(1)

)
ε
− n

pp∗
+

2(p−1)
p .

If p ≥ 2n/(n + 1) (i.e., np + p− 2n ≥ 0) and

− n

pp∗
+

2(p− 1)
p

< 0,(3.24)

we obtain from (3.22) that

(∫
Mn

|wε|p∗
)1/p∗

≥ D
1/p∗
1 ε

− n
pp∗ −

(
D

1/p∗
1 D2

D1p∗
+ oε,δ(1)

)
ε
− n

pp∗
+

2(p−1)
p .

(3.25)

This is the place where we need the condition p < (1 +
√

1 + 8n)/4 to
guaranteer that (3.24) holds.

On the other hand, if the dimension n ≥ 4, for any p ∈ (n/(n−1), 2n/(n+
1)), one can check:

− n

pp∗
+

2(p− 1)
p

<
np + p− 2n

p
< 0.

From (3.22) and (3.23) we know that (3.25) still holds. From (3.25) and
(3.21) one can derive that for some small enough δ and ε,

∫
Mn |∇wε|p

(
∫
Mn |wε|p∗)p/p∗

≤
C(δ) + E1ε

1−n
p − E2(1 + oε,δ(1))ε1−

n
p
+

2(p−1)
p

D
p/p∗
1 ε

− n
p∗ −

(
pD

p/p∗
1 D2

p∗D1
+ o(1)

)
ε
− n

p∗
+

2(p−1)
p

<
1

kp(n, p)
.

More details about the derivation of the second inequality in the above can
be found in Druet’s paper [6]. We hereby complete the Proof of (1.4).
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Now we return to the proof of (2.9). We use the same test function.
Similar to Step 3, we have∫

Mn

|uε|p∗−2uε

≤ ωn−1

∫ δ

0
(ε + rp/(p−1))−(np−n+p)/prn−1dr

≤ C1ε
−np−n+p

p
+

n(p−1)
p ·

∫ δε
1−p

p

0
(1 + βp/(p−1))−(np−n+p)/pβn−1dβ

≤ Cε−1.

We choose Cε such that for vε = uε − Cε,∫
Mn

|vε|p∗−2vεdvg = 0.

Thus ∫
{x∈Mn:uε≥Cε}

|uε − Cε|p∗−2(uε − Cε)dvg

= −
∫
{x∈Mn:uε<Cε}

|uε − Cε|p∗−2(uε − Cε)dvg.

This implies that Cε ≥ 0. It follows that∫
Mn

|uε − Cε|p∗−1dvg = 2
∫
{x∈Mn:uε≥Cε}

|uε − Cε|p∗−1dvg(3.26)

≤ 2
∫

Mn

|uε|p∗−1dvg ≤ 2Cε−1.

But for any fixed p∗, there are two positive constants a and b depending
only on p∗ such that

(x− 1)p∗−1 ≥ axp∗−1 − b, ∀x ≥ 1.

Applying the above in (3.26) we obtain that Cε ≤ Cε−1/(p∗−1). Using
Minkowski inequality, we have(∫

Mn

|uε|p∗
)1/p∗

− C · Cε ≤
(∫

Mn

|vε|p∗
)1/p∗

≤
(∫

Mn

|uε|p∗
)1/p∗

+ C · Cε.

For p ∈ (1, n), we have −1/(p∗−1) > −n/(pp∗). Similar to the computation
in (3.20) we know that(∫

Mn

|uε|p∗
)1/p∗

= (1 + oε(1))D1/p∗
1 ε−n/(pp∗), ∀p ∈ (1, n).
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Thus Cε = oε(1)(
∫
Mn |uε|p∗)1/p∗ , and(∫

Mn

|vε|p∗
)1/p∗

= (1 + oε(1))
(∫

Mn

|uε|p∗
)1/p∗

.

It follows that

limε→0Sε ≤ S0 ≤ lim
ε→0

∫
Mn |∇gvε|p

(
∫
Mn |vε|p∗)p/p∗

= lim
ε→0

∫
Mn |∇guε|p

(
∫
Mn |uε|p∗)p/p∗

≤ 1
kp(n, p)

.
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