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Hamilton’s maximum principle for systems states that given
a reaction-diffusion equation (semi-linear heat-type equation)
for sections of a vector bundle over a manifold, if the solution
is initially in a subset invariant under parallel translation and
convex in the fibers and if the ODE associated to the PDE
preserves the subset, then the solution remains in the subset
for positive time. We generalize this result to the case where
the subsets are time-dependent and where there is an avoid-
ance set from which the solution is disjoint. In applications
the existence of an avoidance set can sometimes be used to
prove the preservation of a subset of the vector bundle by the
PDE.

1. Introduction.

For scalar parabolic equations, maximum principles are well-known [PW]
and have been applied in numerous settings in partial differential equations
and geometric analysis. In the case of systems of parabolic equations, max-
imum principles are not as well-known and appear to be much less frequent.
Notable exceptions are given by Richard Hamilton ([H1] and [H2]) and
Joel Smoller [S] (see Chapter 14).1 Hamilton’s maximum principle holds for
solutions of reaction-diffusion equations (PDE) which are time-dependent
sections of a vector bundle over a Riemannian manifold; in particular, it
holds for the reaction-diffusion equations satisfied by the curvature operator
under Ricci flow. When the convex subsets of the fibers are independent of
time, Hamilton proved such a maximum principle in [H2], which roughly
says that if the convex subsets are preserved by the system of ordinary dif-
ferential equations (ODE) associated to the PDE then the convex subsets
are preserved by the PDE. A special case of this result, which applied to
symmetric 2-tensors, was proved earlier by Hamilton in [H1] and applied
to obtain crucial curvature pinching estimates in his proof that a compact
3-manifold with positive Ricci curvature converges to a constant curvature
metric under the volume preserving Ricci flow. The general formulation in

1We would like to thank Yung-Sze Choi for informing us of this reference.

201

http://pjm.math.berkeley.edu/pjm
http://dx.doi.org/10.2140/pjm.2004.214-2


202 BENNETT CHOW AND PENG LU

[H2] greatly simplified the computations in [H1] and facilitated the more
complicated convex analysis of the ODE associated to the evolution of the
Riemann curvature operator in dimension four in [H5].

The main purpose of this paper is to prove two extensions of Hamilton’s
maximum principle for systems which should be useful for the study of the
Ricci flow and some other geometric evolution equations such as the mean
curvature flow. We present an extension where the convex sets are allowed
to depend on time, we call the extension the maximum principle with time-
dependent convex sets (see Theorem 3). We also present a souped-up version
where both the convex sets are allowed to depend on time and the convex
set may not be preserved by the ODE on a subset of the boundary but the
solution to the PDE avoids that part of the boundary. We call such subsets
of the convex sets, which contain this part of their boundary, avoidance sets,
and call this extension the maximum principle subject to an avoidance set
(see Theorem 4).

A special case of this maximum principle with time-dependent convex
sets has already been proved by Hamilton in Theorem 3.3 in Section 2.3
of [H5]. In particular, Hamilton adjoins to the solution σ of the PDE the
function r = 1

T∗−t , where T∗ is the singularity time, which trivially satisfies
the equation ∂r

∂t = ∆r + r2 and applies the maximum principle to the pair
(σ, r) . However, in general this device of adjoining the function r = 1

T−t
has the drawback that the sets in space and time to be preserved may
not be convex even though the space slices are. In such a case Hamilton’s
proof would not directly apply. In the proof of the somewhat more general
form of the maximum principle given in this paper, we modify Hamilton’s
original proof of the maximum principle in [H2]. The difficulty in this
approach is reconciling the time-dependence of the sets over which one takes
the maximum of certain functions with the framework of Hamilton’s “ODE
to PDE” formulation. More precisely, when the convex sets depend on time,
the lemma used by Hamilton (see Lemma 9) on taking the time derivative of
the function sups∈S(t) g(s, t) must have a correction term, since now the set
S (t) depends on time, which is difficult to control in the later applications of
the lemma. This is overcome by considering the space-time track of the time-
dependent convex sets and finding suitable splitting of certain quantities
which arise in the study of both the ODE and the PDE (see the proof
of Proposition 10 and the proof of Theorem 3). Formulating the proof
this way enables us to generalize our result to the case where the PDE is
subject to an avoidance set without much difficulty. A special case of this
maximum principle has already been applied in [H5] and [H6] to obtain
refined and subtle pointwise curvature estimates. In addition, although it is
not necessary, our maximum principle may be used in the proofs of results
in [H3] and [H4].
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Our maximum principle subject to avoidance sets is a more general for-
mulation of a form of the maximum principle implicitly used in the proof of
certain estimates in Section 2.3 of [H5] which are used to detect necks. Some
of these estimates, have analogues in dimension three (see §24 of [H4]). In
regards to this, as suggested by Mao-Pei Tsui, our souped-up version can
also be used to give an alternate proof of Theorem 24.6 of [H4] (cf. [CK]).
However, in the study of 4-manifolds with positive isotropic curvature [H5],
a souped-up version is necessary and is implicitly used by Hamilton.

2. Main results.

Let Mn be a closed oriented n-dimensional manifold with a smooth family
of Riemannian metrics g(t), t ∈ [0, T ]. Let V → M be a real vector bundle
with a time-independent bundle metric h and Γ (V ) be the vector space of
C∞ sections of V. Let

∇(t) : Γ(V ) → Γ(V ⊗ TM∗), t ∈ [0, T ]

be a smooth family of time-dependent connections compatible with h, that
is,

X[h(σ, τ)] = h(∇(t)Xσ, τ) + h(σ,∇(t)Xτ)

for all X ∈ TM, σ, τ ∈ Γ(V ) and t ∈ [0, T ]. The time-dependent Laplacian
∆(t) acting on a section σ ∈ Γ(V ) is defined by

∆(t)σ = traceg(t)(∇̂(t)(∇(t)σ)),

where

∇̂(t) : Γ(V ⊗ TM∗) → Γ(V ⊗ TM∗ ⊗ TM∗)

is defined using the connection ∇(t) on V and the Levi-Civita connection
D(t) on TM∗ associated with metric g(t). That is,

∇̂(t)X(σ ⊗ α) = (∇(t)Xσ)⊗ α + σ ⊗ (D(t)Xα)

for all X ∈ TM , σ ∈ Γ(V ), α ∈ Γ(TM∗).
Let F : V × [0, T ] → V be a fiber preserving map; i.e., F (σ, t) is a time-

dependent vector field defined on the bundle V and tangent to the fibers.
Then we can form a system of reaction-diffusion equations (PDE)

∂

∂t
σ(x, t) = ∆(t)σ(x, t) + F (σ(x, t), t),(1)

where σ(·, t), t ∈ [0, T ] are sections of V . In each fiber Vx the system of
ordinary differential equations (ODE) associated to the PDE (1) obtained
by dropping the Laplacian term is

d

dt
σx(t) = F (σx(t), t),(2)

where σx(t) ∈ Vx.
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Let K be closed subset of V . Denote Kx + K ∩ Vx. For any initial time
t0 ∈ [0, T ) we say that the solution σ(x, t) : t ∈ [t0, T ] of the PDE (1) starts
in K if σ(x, t0) ∈ Kx for all x ∈ M . We say that the solution σ(x, t) remains
in K for all later times if σ(x, t) ∈ Kx for all x ∈ M and all t ∈ (t0, T ].
For any x ∈ M and for any initial time t0 ∈ [0, T ) we say that the solution
σx(t) : t ∈ [t0, T ] of the ODE (2) starts in Kx if σx(t0) ∈ Kx. We say that
the solution σx(t) remains in Kx for all later times if σx(t) ∈ Kx for all
t ∈ (t0, T ].

One important question is: When will an arbitrary solution of the PDE
(1) which starts in K at an arbitrary initial time t0 ∈ [0, T ) remain in K for
all later times? To answer this question, we need to impose two conditions
on K:
I. K is invariant under parallel translation defined by the connection ∇(t)
for each t ∈ [0, T ].
II. In each fiber Vx set Kx is closed and convex.

The following theorem is the maximum principle of Hamilton (Theorem
4.3 in [H2]):

Theorem 2. Let K ⊂ V be a closed subset satisfying Conditions I and II.
Assume that F (σ, t) is continuous in t and is Lipschitz in σ. Suppose that
for any x ∈ M and any initial time t0 ∈ [0, T ), and any solution σx(t) of
the ODE (2) which starts in Kx at t0, the solution σx(t) will remain in Kx

for all later times. Then for any initial time t0 ∈ [0, T ) the solution σ(x, t)
of the PDE (1) will remain in K for all later times if σ(x, t) starts in K at
time t0.

In applications to the Ricci flow the vector bundle V is a tensor bundle
and the subsets Kx ⊂ Vx, which are invariant under the action of O (n) ,
are identified under the isomorphism between two fibers Vx and Vy induced
by any choice of orthonormal frames in TM at the two points x and y.
The ODEs in Vx and Vy are also O (n)-invariant and identical under this
identification. When this is the case the requirement on the solutions of the
ODE (2) in Theorem 2 will hold for every fiber if it holds for one fiber.

Next we formulate the maximum principle where the convex sets are time-
dependent. Let U be an open subset of V and K(t) ⊂ U be a closed subset
for each t ∈ [0, T ]. We impose two conditions on K(t) for each t:
III. K(t) is invariant under parallel translation defined by the connection
∇(t) for each t ∈ [0, T ].
IV. In each fiber Vx set Kx(t) + K(t) ∩ Vx is nonempty, closed and convex
for each t ∈ [0, T ].
We define the space-time track

T + {(v, t) ∈ V × [0, T ] : v ∈ K(t), t ∈ [0, T ]},
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and define

Tx + T ∩ (Vx × [0, T ]).

Let F : U × [0, T ] → V be a fiber preserving map, i.e., F (x, σ, t) is a
time-dependent vector field defined on U and tangent to the fibers. Let
u(x, t) : Vx × TxM∗ → Vx be a smooth family of bundle maps of diagonal
form, i.e.,

u(x, t)(σ, dxi) = ui(x, t) · σ
where ui(x, t) are smooth functions (in applications to the Ricci flow, u ≡ 0;
that is, there is no gradient term). Then we can form a system of reaction-
diffusion equations (PDE)

∂

∂t
σ(x, t) = ∆(t)σ(x, t) + u(x, t)(∇(t)σ(x, t)) + F (x, σ(x, t), t).(3)

In each fiber Vx the associated system of ordinary differential equations
(ODE) is

d

dt
σx(t) = F (x, σx(t), t).(4)

Hamilton’s maximum principle is an answer to the following question:
For any t0 ∈ [0, T ) when will the solution σ(x, t), t ∈ [t0, T ] of the PDE (3)
which starts in K(t0), remain in K(t) for all later times, i.e., σ(x, t) ∈ Kx(t)
for all x ∈ M and t ∈ [t0, T ]?

In this paper we extend Hamilton’s techniques established in [H2] to
the case where the convex sets are time-dependent (see Theorem 3 below)
and use our extension to also prove a maximum principle for the PDE (3)
subject to an avoidance set (see Theorem 4 below). Our first main result is
the following:

Theorem 3. Let K(t) ⊂ V, t ∈ [0, T ] be closed subsets which satisfy Con-
ditions III and IV above, and such that the space-time track T is closed.
Assume that u(x, t) : Vx×TxM∗ → Vx is a smooth family of bundle maps of
diagonal form and assume that F (x, σ, t) is continuous in x, t and is Lips-
chitz in σ. Suppose that, for any x ∈ M and any initial time t0 ∈ [0, T ), any
solution σx(t) of the ODE (4) which starts in Kx(t0) will remain in Kx(t)
for all later times, i.e., σx(t) ∈ Kx(t) for all t ∈ [t0, T ]. Then for any initial
time t0 ∈ [0, T ) the solution σ(x, t) : t ∈ [t0, T ] of the PDE (3) will remain
in K(t) for all later times if σ(x, t) starts in K(t0) at time t0.

Special cases of this result have been proved by Hamilton and applied to
the study of the Ricci flow (see for example Section 2.2 and Section 2.3 in
[H5]).

There is also a souped-up version of the maximum principle for systems of
reaction-diffusion equations. The idea is that for applications sometimes we
are in the situation where the reason that a convex set K(t) is not preserved
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by the ODE (4) is that the solution wants to escape from a certain part of
the convex set (which we will call the avoidance set A(t) ⊂ K(t)). In this
case, if we assume that any solution σ(x, t) : t ∈ [t0, T ] to the PDE (3) starts
in K(t0)\A(t0) and assume that the solution σ(x, t) does not enter subsets
A(t) for all t ≥ t0 (i.e., σ(x, t) /∈ Ax(t) + A(t) ∩ Vx for all x ∈ M and all
t ≥ t0), then σ(x, t) remains in K(t) for t ≥ t0. A typical example where
this happens is when the solution to the Ricci flow is assumed not to have
any necklike points (see Theorem 3.3 and 3.4 in Section 2.3 of [H5]).

We define the avoidance space-time track

AT + {(v, t) ∈ V × [0, T ] : v ∈ A(t), t ∈ [0, T ]} ,

and define

AT x + (AT ) ∩ (Vx × [0, T ]).

Our second main result is the following:

Theorem 4. Let K(t) ⊂ V, t ∈ [0, T ] be closed subsets which satisfy Con-
ditions III and IV above, and such that the space-time and the avoid-
ance space-time tracks T and AT are closed. Assume that u(x, t) : Vx ×
TxM∗ → Vx is a smooth family of bundle maps of the diagonal form and
that F (x, σ, t) is continuous in x, t and is Lipschitz in σ. Suppose that for any
x ∈ M, t0 ∈ [0, T ) and any solution σx(t) of the ODE (4) with initial condi-
tion σx(t0) ∈ Kx(t0)\Ax(t0), either σx(t) ∈ Kx(t) for all t ≥ t0, or there is
time t1 such that σx(t) ∈ Kx(t)\Ax(t) for all t0 ≤ t < t1 and σx(t1) ∈ Ax(t1).
Then for any t0 ∈ [0, T ) and any solution σ(x, t) : t ∈ [t0, T ] of the PDE
(3) satisfying initial condition σ(x, t0) ∈ Kx(t0)\Ax(t0) for all x ∈ M and
satisfying σ(x, t) /∈ Ax(t) for all x ∈ M and all t ≥ t0, the solution σ(x, t)
will remain in K(t) for later times.

3. Hamilton’s proof of Theorem 2.

In order to present the proof of our main result, Theorem 3, more clearly and
to exhibit the differences between the proofs of Theorem 3 and Hamilton’s
Theorem 2, we will first review his proof of Theorem 2 in this section. This
will enable us to omit the common parts of the two proofs when we prove
Theorem 3.

Theorem 5. Let K ⊂ V be a closed subset satisfying Conditions I and II.
Assume that F (x, σ, t) is continuous in x, t and is Lipschitz in σ. Suppose
that for any x ∈ M and any initial time t0 ∈ [0, T ), and any solution σx(t)
of the ODE (4) which starts in Kx at t0, the solution σx(t) will remain in Kx

for all later times. Then for any initial time t0 ∈ [0, T ) the solution σ(x, t)
of the PDE (3) will remain in K for all later times if σ(x, t) starts in K at
time t0.
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Remark 6. The above result is slightly more general than Theorem 2 in
that it allows for a gradient term in the equation (along the lines of the
maximum principle for symmetric 2-tensors in [H1]). This does not affect
Hamilton’s proof in [H2].

Before proving Theorem 5, we need to recall three lemmas, which are
essentially in [H2].

Let f : [a, b] → R be a function. Then we define d+f(t)
dt at t ∈ [a, b) to be

the lim sup of forward difference quotients:
d+f(t)

dt
= lim sup

s→0+

f(t + s)− f(t)
s

.(5)

Lemma 7. Suppose function f : [a, b] → R is left lower semi-continuous
and right-continuous with f(a) ≤ 0. Assume either:

(i) d+f(t)
dt ≤ 0 when f(t) ≥ 0 on (a, b), or

(ii) for some constant C < +∞, d+f(t)
dt ≤ C · f(t) when f(t) ≥ 0 on (a, b).

Then f(t) ≤ 0 on [a, b].

Proof. By checking the proof of Lemma 3.1 in [H2], one can prove:
Sublemma: Suppose function f(t) : [a, b] → R is left lower semi-conti-

nuous and right-continuous with f(a) ≤ 0. Assume d+f(t)
dt ≤ 0 when

f(t) ≥ 0 on [a, b). Then f(t) ≤ 0 on [a, b].
Hypothesis (i) in Lemma 7 is a little weaker than the hypothesis in the
sublemma since we do not require the inequality to hold at the left endpoint
a. By the right continuity at t = a, given any ε > 0, there exists δ > 0 such
that f(t) ≤ ε on [a, a + δ]. Now f (a + δ) − ε ≤ 0 and d+[f(t)−ε]

dt ≤ 0 when
f(t)− ε ≥ 0 for t ∈ [a+ δ, b). Hence we may apply the sublemma to f(t)− ε
to obtain f(t)− ε ≤ 0 on [a+ δ, b]. We conclude that for any ε > 0, we have
f (t) ≤ ε for all t ∈ [a, b] . This proves the lemma under Hypothesis (i).

To prove the lemma under Hypothesis (ii), we set g(t) = e−C·t ·f(t). Then
d+g(t)

dt ≤ 0 when g(t) ≥ 0 on (a, b). Applying the lemma under Hypothesis
(i) to g(t), we get g (t) ≤ 0 on [a, b] . This implies f (t) ≤ 0 on [a, b] . �

The second lemma below gives a useful characterization of when systems
of ordinary differential equations preserve closed convex sets in Euclidean
space. Let J ⊂ Rn be a closed convex subset and ∂J be the boundary of
J in Rn. For any v ∈ ∂J we define the tangent cone CvJ of J at v to be
the smallest convex cone in Rn with vertex at v which contains J .

Lemma 8. Let U ⊂ Rn be an open subset and J ⊂ U be a closed convex
subset. Consider the ODE

dτ

dt
= F (τ, t),(6)
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where F : U × [0, T ] → Rn is continuous in t and is Lipschitz in τ . Then
the following two statements are equivalent:

(i) For any initial time t0 ∈ [0, T ), any solution of the ODE (6) which
starts in J at t0 will remain in J for all later times;

(ii) v + F (v, t) ∈ CvJ for all v ∈ ∂J and t ∈ [0, T ).

Proof. This is Lemma 4.1 in [H2]. The fact that F (τ, t) depends on time t
does not pose any difficulties for the original proof. �

The third lemma gives a general principle on how to take the derivative
of a sup-function which plays an important role in proving Theorem 5. Note
that S in the lemma below is independent of time t.

Lemma 9. Let S be a sequentially compact topological space and let g :
S × [a, b] → R be a function. If g is continuous in s and t and ∂g

∂t is
continuous in s and t, then the function f : [a, b] → R defined by

f(t) = sup
s∈S

g(s, t),

is Lipschitz and

d+f(t)
dt

≤ sup
{

∂g

∂t
(s, t) : s ∈ S satisfies g(s, t) = f(t)

}
.

Proof. See Lemma 3.5 in [H2]. �

The rest of this section will be devoted to proving Theorem 5. As re-
marked in the proof of Lemma 4.1 on p. 160 of [H2] we may assume that K
is compact. For if there were a counterexample σ0(x, t) for t ∈ [t0, T ], then
σ0(x, t) will be contained in V (r) for some r large enough, where V (r) is
the tubular neighborhood of the zero section in V whose intersection with
each fiber Vx is a ball of radius r around origin measured by metric h. Let
η be a cut-off function on V which equals 1 on V (r) and equals to zero on
V \V (2r). Then we can modify the PDE (3) as

∂

∂t
σ(x, t) = ∆(t)σ(x, t) + u(x, t)(∇(t)σ(x, t))(7)

+ η(σ(x, t)) · F (x, σ(x, t), t).

Note that the paths of the counterexample solution σ0(x, t) do not change
inside V (r), hence σ0(x, t) still is a solution of (7). If we intersect K with
V (2r), we get a counterexample of Theorem 5 for (7) with the closed compact
convex set V (2r) ∩ K 6= ∅ replacing K, since using Lemma 8 it is easy to
check that the ODE

d

dt
σx(t) = η(σx(t)) · F (x, σx(t), t)

and V (2r) ∩ K satisfy the assumption of Theorem 5.
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Now we assume that K is compact. We define the distance between
σ ∈ Vx and v ∈ Vx using the metric h and denote it by |σ − v|. We will
prove Theorem 5 by contradiction. Suppose we have a solution σ(x, t) of
the PDE (3) which starts with σ(x, t0) ∈ Kx for all x ∈ M and which goes
out of K at some time t2. Since K is closed, we can find a time t1 ≥ t0 such
that σ(x, t1) ∈ Kx for all x ∈ M, and for any t ∈ (t1, t2) there is x such that
σ(x, t) /∈ Kx. Below we will focus on the time interval [t1, t2].

Define the function

f(t) = sup
x∈M

d(σ(x, t),Kx) = sup
x∈M

inf
v∈Kx

|σ(x, t)− v| for t ∈ [t1, t2].

We have f(t1) = 0 and f(t) > 0 for t ∈ (t1, t2] by assumption. It is easy to
check using Condition I that f(t) is a continuous function of t. Below we
will prove that there is a constant C < ∞ such that d+f(t)

dt ≤ C · f(t) for
t ∈ (t1, t2). Once this is proved, then f(t) ≤ 0 for t ∈ [t1, t2] by Lemma 7(ii).
Hence σ(x, t) ∈ Kx for all x ∈ M and all t ∈ (t1, t2], we get the required
contradiction.

For any v ∈ ∂Kx, let Sv ⊂ Vx be the set of outward normal directions n
of the supporting hyperplanes of Kx at v; we require that n be unit with
respect to the metric h. Then, since K is nonempty and for each t ∈ (t1, t2),
σ(x, t) is not in Kx for some x ∈ M , it is well-known that

f(t) = sup
x∈M

sup
v∈∂Kx

sup
n∈Sv

n · (σ(x, t)− v),(8)

where · is the inner product in Vx defined by the metric h. Define the set

S = {(x, v, n) : x ∈ M,v ∈ ∂Kx, n ∈ Sv}

and the function

g((x, v, n), t) = n · (σ(x, t)− v),

then

f(t) = sup
(x,v,n)∈S

g((x, v, n), t).

Note that S is a compact subset of V ⊗ V independent of time t, we can
apply Lemma 9 and get for any t ∈ (t1, t2)

d+f(t)
dt

≤ sup
∂

∂t
[n · (σ(x, t)− v)],

where the sup is over all (x, v, n) ∈ S such that n · (σ(x, t) − v) = f(t); in
particular we have |σ(x, t) − v| = f(t) for these (x, v, n). We compute at
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these (x, v, n)

∂

∂t
[n · (σ(x, t)− v)]

= n ·
(

∂

∂t
σ(x, t)

)
= n · [∆(t)σ(x, t)] + n · [u(x, t)(∇(t)σ(x, t))] + n · F (x, σ(x, t), t).

By the assumption of Theorem 5 and Lemma 8 we have v+F (x, v, t) ∈ CvKx.
Hence n · F (x, v, t) ≤ 0 for any n ∈ Sv and any t ∈ (t1, t2). We have

n · F (x, σ(x, t), t)

≤ n · F (x, σ(x, t), t)− n · F (x, v, t)

≤ n · [F (x, σ(x, t), t)− F (x, v, t)]

≤ |F (x, σ(x, t), t)− F (x, v, t)|
≤ C · |σ(x, t)− v|
= C · f(t),

where C is some constant from the assumption that F (x, σ, t) is Lipschitz
in σ.

We claim that

n · [u(x, t)(∇(t)σ(x, t))] = 0,

n · [∆(t)σ(x, t)] ≤ 0,

which will be proved in a moment. This shows

d+f(t)
dt

≤ C · f(t) on (t1, t2).

We are left to prove the claim. We will prove n · [u(x, t)(∇(t)σ(x, t))] = 0
and n · [∆(t)σ(x, t)] ≤ 0 together. Recall that (x, v, n) satisfies n · (σ(x, t)−
v) = f(t). If we extend a vector in the bundle V from a point x by parallel
translation along geodesics emanating radially out of x, we get a smooth
section of the bundle on some small neighborhood of x such that all the
symmetrized covariant derivatives of the section at x are zero. Let y be an
arbitrary point in some small neighborhood Ux of x. We extend v ∈ ∂Kx

and n ∈ Vx in this manner using the connection ∇(t) to get vy and ny.
Since the connection ∇(t) is compatible with the metric h we continue to
have |ny| = 1, and since K is invariant under parallel translation we have
vy ∈ ∂Ky and ny ∈ Svy for Ky at vy. Therefore

ny · (σ(y, t)− vy) ≤ f(t),
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for all y ∈ Ux. It follows that function ny · (σ(y, t) − vy) of y ∈ Ux has a
local maximum at y = x. So

∂

∂yi
[ny · (σ(y, t)− vy)] = 0 at y = x,

∆(t)[ny · (σ(y, t)− vy)] ≤ 0 at y = x.

Let ∇t,i be the covariant derivative in direction ∂
∂yi defined by the con-

nection ∇(t). Since vy and ny have their symmetrized covariant derivatives
equal to zero at y = x, so ∇t,iny = ∇t,ivy = 0 and ∆(t)ny = ∆(t)vy = 0 at
y = x. Hence

n · [∇t,iσ(x, t)] = 0, n · [∆(t)σ(x, t)] ≤ 0.

Then

n · [u(x, t)(∇(t)σ(x, t))] = n ·

[∑
i

ui(x, t) · ∇t,iσ(x, t)

]
=

∑
i

ui(x, t) · (n · [∇t,iσ(x, t)]) = 0.

The claim is proved and so is Theorem 5.

4. Proof of Theorem 3.

Throughout this section we will use the same index notation i to denote
a sequence or its subsequence or the subsequence of its subsequence. Our
arguments below will involve taking subsequences from time to time. The
convention will simplify our notations. Before proving Theorem 3, we first
formulate a useful characterization of when systems of ordinary differential
equations preserve time-dependent closed convex sets in Euclidean space,
i.e., a more general version of Lemma 8.

Let J (t) ⊂ Rn, 0 ≤ t ≤ T be a family of nonempty closed convex subsets.
Define the space-time track

L = {(v, t) ∈ Rn × R : v ∈ J (t), 0 ≤ t ≤ T}.

For each (v, t) ∈ L we define a time-like tangent cone in the forward direction
of L at (v, t) and denote it by C(v,t)L. C(v,t)L consists of all (W, 1) ∈ Rn ×
R satisfying the following condition: For any sequence si → 0+ (i.e., si

approaches to zero from positive side), there is a subsequence of si and
vectors Wi → W such that points (v + siWi) ∈ J (t + si). Note that the
definition is stronger than the conventional definition where one sequence
of si is enough. When J (t) = J is independent of time t, then C(v,t)L =
{CvJ − v} × {1}.
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Proposition 10. Let U ⊂ Rn be an open subset and J (t) ⊂ U, 0 ≤ t ≤ T
be a family of nonempty closed convex subsets such that the space-time track
L is closed. Consider the ODE

dτ

dt
= F (τ, t),(9)

where F : U × [0, T ] → Rn is continuous in t and is Lipschitz in τ . Then
the following two statements are equivalent:

(i) For any initial time t0 ∈ [0, T ), any solution of the ODE (9) which
starts in J (t0) at time t0 will remain in J (t) for all later times;

(ii) (F (v, t), 1) ∈ C(v,t)L for all (v, t) ∈ ∂L, where ∂L is the boundary of
L ⊂ Rn+1.

Proof. (i) ⇒ (ii). For any (v0, t0) ∈ ∂L, we consider the solution of (9) with
initial condition τ(t0) = v0. (i) implies that τ(t0 + s) ∈ J (t0 + s) for any
s ∈ [0, T − t0]. Hence

lim
s→0+

(τ(t0 + s), t0 + s)− (τ(t0), t0)
s

= (F (v0, t0), 1) ∈ C(v0,t0)L.

(ii) ⇒ (i). We prove it by contradiction. We will not assume L to be
compact. Suppose we have a solution τ(t) starting with τ(t0) ∈ J (t0) and
going out of L at some time t2, i.e., τ(t2) /∈ J (t2). Since L is closed, we can
find a time t1 such that τ(t1) ∈ J (t1) and τ(t) /∈ J (t) for all t ∈ (t1, t2).
Below we will focus on the time interval [t1, t2].

Let ∂J (t) be the boundary of J (t) ⊂ Rn. Define the function

l(t) = d(τ(t),J (t)) for t ∈ [t1, t2]

where d is the Euclidean distance on Rn. It is clear that l(t1) = 0 and
l(t) > 0 for t ∈ (t1, t2]. Because L is not assumed to be a domain with
smooth boundary, the function l(t) is not necessarily continuous.

Lemma 11. Let J (t) ⊂ U, 0 ≤ t ≤ T be a family of nonempty closed con-
vex subsets. If the space-time track L is closed and satisfies (ii) in Propo-
sition 10, then l(t) is left lower semi-continuous and is right continuous on
[t1, t2].

Proof of the lemma. To see that l(t) is lower semi-continuous, for any t ∈
[t1, t2] and any si → 0 with t + si ∈ (t1, t2], we choose vi ∈ ∂J (t + si) such
that

l(t + si) = d(τ(t + si), vi).

Then either a subsequence vi will converge to some v∞ ∈ J (t) since L
is closed, or vi will diverge to ∞. In the case of convergence, we have
l(t+ si) → d(τ(t), v∞) ≥ l(t). The lower semi-continuity is true. In the case
of divergence, then l(t + si) → +∞. Since ∂J (t) is nonempty, l(t) is finite.
Hence the lower semi-continuity of l(t) is also true.
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To prove the right-continuity of l(t), it suffices to prove the upper right-
continuity. We will use (ii) in Proposition 10 which actually puts some
restriction on the space-time track L. It follows from (τ(t), t) /∈ L for t > t1
that (τ(t1), t1) ∈ ∂L. We denote τ(t1) by vt1 . For any t ∈ (t1, t2) it follows
from τ(t) /∈ J (t) that there is vt ∈ ∂J (t) such that l(t) = d(τ(t), vt).
Hence for any t ∈ [t1, t2) we can find vt ∈ J (t) such that l(t) = d(τ(t), vt)
and (vt, t) ∈ ∂L. By (ii) (F (vt, t), 1) ∈ C(vt,t)L. If we fix a t ∈ [t1, t2),
then for any sequence si → 0+ we can find a subsequence si such that
(vt + siWi) ∈ J (t + si) and Wi → F (vt, t). So

l(t + si) ≤ d(τ(t + si), vt + siWi).

Letting i → ∞, we get lim supi→+∞ l(t + si) ≤ d(τ(t), vt) = l(t). Hence
lim supi→+∞ l(t + si) = l(t) by the lower semi-continuity of l(·). The lemma
is proved.

Now we go back to the proof of (ii) ⇒ (i) in Proposition 10. Below we
will prove that there is some constant C < ∞ such that d+l(t)

dt ≤ C · l(t)
for all t ∈ (t1, t2). Once this is proved, then l(t) ≤ 0 for all t ∈ [t1, t2] by
Lemma 11 and Lemma 7. Hence τ(t) ∈ J (t) for t ∈ [t1, t2], which is the
required contradiction.

Now our proof of the maximum principle with time-dependent convex
sets diverges from Hamilton’s proof of his maximum principle. This is a
necessity in our approach. The key difference is that we will not use the
general principle (Lemma 9). We will calculate d+l(t)

dt directly from the
definition. Also our proof will not need the cutoff argument which appeared
after Lemma 9. For any t ∈ (t1, t2) there is a sequence si → 0+ such that

d+l(t)
dt

= lim
i→∞

l(t + si)− l(t)
si

.

For any v ∈ ∂J (t), as in previous section we define Sv ⊂ Rn to be the set
of outward normal directions n of the supporting hyperplanes of J (t) at v;
we require that n be unit with respect to the Euclidean metric. Define

g(v, n, t) = n · [τ(t)− v].

Since τ(t) /∈ J (t) for t ∈ (t1, t2), we have

l(t) = sup
v∈∂J (t)

sup
n∈Sv

g(v, n, t)

and so we can find a sequence of points vi ∈ ∂J (t+si) and ni ∈ Svi such that
g(vi, ni, t+si) = l(t+si) = |τ(t+si)−vi|. We can also find v∞ ∈ ∂J (t) and
n∞ ∈ Sv∞ such that g(v∞, n∞, t) = l(t) = |τ(t)−v∞|. It is not obvious that
such v∞ exists when t = t1; this is one of the reason why we use Lemma 7.
The proof below does not need a subsequence of vi to converge to v∞ or a
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subsequence of ni to converge to n∞.

d+l(t)
dt

= lim
i→∞

g(vi, ni, t + si)− g(v∞, n∞, t)
si

= lim
i→∞

ni · [τ(t + si)− vi]− n∞ · [τ(t)− v∞]
si

= lim
i→∞

ni · [τ(t + si)− τ(t)] + ni · τ(t)− ni · vi − n∞ · [τ(t)− v∞]
si

.

Since (F (v∞, t), 1) ∈ C(v∞,t)L, we can find a subsequence si and vectors
Fi → F (v∞, t) as i → ∞ such that (v∞ + siFi) ∈ J (t + si). Note that
vi ∈ ∂J (t + si) and ni is the outward normal direction of the supporting
hyperplane at vi. We have

ni · [v∞ + siFi − vi] ≤ 0.

Hence

d+l(t)
dt

= lim
i→∞

{
ni ·

[
τ(t + si)− τ(t)

si
− Fi

]
+

ni · [v∞ + siFi − vi]
si

+
(ni − n∞) · [τ(t)− v∞]

si

}
≤ lim

i→∞

{
ni ·

[
τ(t + si)− τ(t)

si
− Fi

]
+

(ni − n∞) · [τ(t)− v∞]
si

}
≤ lim

i→∞
ni ·

[
τ(t + si)− τ(t)

si
− Fi

]
≤ lim

i→∞

∣∣∣∣τ(t + si)− τ(t)
si

− Fi

∣∣∣∣
= |F (τ(t), t)− F (v∞, t)|
≤ C · |τ(t)− v∞|
= C · l(t).

We have used (ni−n∞) · [τ(t)− v∞] ≤ 0 to get the second inequality above.
This is because ni ·[τ(t)−v∞] ≤ |τ(t)−v∞| and |τ(t)−v∞| = n∞ ·[τ(t)−v∞].
We have used |ni| = 1 to get the third inequality above. Proposition 10 is
now proved.

The rest of this section is devoted to the proof of Theorem 3. We will
prove it by contradiction. Suppose we have a solution σ(x, t) of the PDE (3)
on [t0, T ] which starts with σ(x, t0) ∈ Kx(t0) for all x ∈ M and which goes
out of space-time track T at some time t2. Since T is closed, there is a time
t1 ≥ t0 such that σ(x, t1) ∈ Kx(t1) for all x ∈ M and for any t1 < t < t2
there is x such that σ(x, t) /∈ Kx(t). Below we will focus on the time interval
[t1, t2].
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Define the function

f(t) = sup
x∈M

d(σ(x, t),Kx(t)) for t ∈ [t1, t2](10)

where d is distance on Vx defined by the metric h. It is clear from our
choice that f(t1) = 0, f(t) > 0 for t > t1. Note that f(t) is not necessarily
continuous.

Next we prove a lemma which will enable us later to apply Lemma 7
to f(t) defined by (10). Let σ̂(x, t) be any continuous section of bundle V
which satisfies that σ̂(x, t1) ∈ Kx(t1) for all x ∈ M and where for each
t ∈ (t1, t2] there is x such that σ̂(x, t) is not in Kx(t). We define the function
ĝ : M × [t1, t2] → R by

ĝ(x, t) = d(σ̂(x, t),Kx(t)),

and define the function

f̂(t) = sup
x∈M

ĝ(x, t) for t ∈ [t1, t2].

By assumption f̂(t1) = 0, and f̂(t) > 0 for t ∈ (t1, t2]. For any t ∈ [t1, t2)
and any sequence si → 0+, there is a subsequence si and a sequence xi ∈ M
such that ĝ(xi, t + si) = supx∈M ĝ(x, t + si) and xi → x∞.

Lemma 12. For the space-time track T satisfying the assumption of Theo-
rem 3, f̂(t) is left lower semi-continuous and is right-continuous on [t1, t2],
and for t ∈ [t1, t2) the above chosen x∞ satisfies

ĝ(x∞, t) = f̂(t).

Proof of the lemma. First we show that f̂(t) is lower semi-continuous. f̂(t)
is obviously lower semi-continuous at t = t1. At any t = ta ∈ (t1, t2], we
have f̂(ta) > 0. We fix xa such that f̂(ta) = ĝ(xa, ta). Then since T is
closed, there is an ε > 0 such that σ̂(xa, t) /∈ Kxa(t) for t ∈ (ta − ε, ta + ε).
We can apply Lemma 11 to ĝ(xa, t) in the fiber Vxa to conclude that ĝ(xa, ·)
is lower semi-continuous at t = ta. Hence for any si → 0

lim inf
i→+∞

f̂(ta + si) ≥ lim inf
i→+∞

ĝ(xa, ta + si) ≥ ĝ(xa, ta) = f̂(ta).

Hence f̂(t) is lower semi-continuous at time t = ta, and hence on [t1, t2].
To prove the right-continuity of f̂(t), it suffices to prove the upper right-

continuity. For any ta ∈ [t1, t2) and any sequence si → 0+ we will show
that there is a subsequence si such that limi→∞ f̂(ta + si) ≤ f̂(ta). By
passing to a subsequence if necessarily we may assume that limi→∞ f̂(ta+si)
exists. Choose xi ∈ M satisfying f̂(ta + si) = ĝ(xi, ta + si); without loss
of generality, we may assume that xi → x∞ by taking a subsequence if
necessary. Let v∞ ∈ Kx∞(ta) such that ĝ(x∞, ta) = d(σ̂(x∞, ta), v∞). It
follows from f̂(ta+si) > 0, the invariance of Tx under parallel translation and
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the closedness of T , that (v∞, ta) ∈ ∂Tx∞ . By the assumption of Theorem 3
and Proposition 10, C(v∞,ta)Tx∞ is nonempty. Then there is a subsequence
(v∞ + siWi) ∈ Kx∞(ta + si) with Wi → W for some W ∈ Vx∞ . Hence

d(σ̂(x∞, ta + si), v∞ + siWi) ≥ d(σ̂(x∞, ta + si),Kx∞(ta + si)).(11)

Since σ̂(x, ta) is continuous in x and Kx(ta + si) is invariant under parallel
translation ∇(ta + si) for any x ∈ M , d(σ̂(x∞, ta + si),Kx∞(ta + si)) can be
chosen arbitrarily close to d(σ̂(xi, ta + si),Kxi(ta + si)) = ĝ(xi, ta + si) when
i is large, so the right side of (11) approaches limi→+∞ f̂(ta + si). The left
side of (11) approaches

d(σ̂(x∞, ta), v∞) = d(σ̂(x∞, ta),Kx∞(ta)) ≤ f̂(ta).

Now we have proved limi→+∞ f̂(ta + si) ≤ f̂(ta) and hence the right conti-
nuity of f̂(t).

By taking the limit of (11) we have

ĝ(x∞, ta) = d(σ̂(x∞, ta),Kx∞(ta)) ≥ lim
i→+∞

f̂(ta + si).

Since f̂(t) is right-continuous and ĝ(x∞, ta) ≤ f̂(ta), we conclude that
ĝ(x∞, ta) = f̂(ta) for any ta ∈ [t1, t2). The lemma is proved. �

Now we go back to the proof of Theorem 3. Let f(t) be the function
defined in (10), we will prove that there is a constant C < +∞ such that
d+f(t)

dt ≤ C · f(t) for t ∈ (t1, t2). Once this is proved, from Lemma 12 and
Lemma 7 we conclude that f(t) = 0 for t ∈ [t1, t2], and hence σ(x, t) ∈ Kx(t)
for all x ∈ M and t ∈ [t1, t2]. We get the required contradiction.

For any ta ∈ (t1, t2) there exists a sequence si → 0+ such that

d+f(ta)
dt

= lim
i→∞

f(ta + si)− f(ta)
si

.

We define the function

g(x, v, n, t) = n · [σ(x, t)− v], for x ∈ M,n ∈ Vx, v ∈ Vx, and t ∈ [t1, t2].

For any v ∈ ∂Kx(t), we define Sv ⊂ Vx to be the set of the outward unit
normal directions n of the supporting hyperplanes of Kx(t) in Vx at v. Then,
for any t > t1 since Kx(t) is not empty and σ(x, t) is not in the interior of
Kx(t) for some x ∈ M , it is well-known that

f(t) = sup
x∈M

sup
v∈∂Kx(t)

sup
n∈Sv

g(x, v, n, t).

Note that the set over which we take the supremum in the definition of f(t)
depends on time. This is why we compute d+f(ta)

dt directly rather than using
Lemma 9.

We can find a sequence of points xi ∈ M , vi ∈ ∂Kxi(ta +si), and ni ∈ Svi ,
such that g(xi, vi, ni, ta+si) = f(ta+si), by Lemma 12 we may assume xi →
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x∞ ∈ M and f(ta) = d(σ(x∞, ta),Kx∞(ta)). Since ta > t1 and f(ta) > 0,
we have f(ta) = supv∈∂Kx∞ (ta) supn∈Sv

g(x∞, v, n, ta). Let v∞ ∈ ∂Kx∞(ta)
and n∞ ∈ Sv∞ , such that g(x∞, v∞, n∞, ta) = f(ta).

We claim that there is a subsequence i such that vi → v∞ and ni → n∞ in
the bundle V . Since d(σ(xi, ta+si), vi) = f(ta+si) and f(ta+si) is uniformly
bounded from above by the right-continuity of f(t), we can rule out the
divergence of vi to ∞. We may assume that there is a subsequence i such
that vi → v̂∞ and ni → n̂∞. By the closedness of T we have v̂∞ ∈ Kx∞(ta),
also we have |n̂∞| = 1. By taking the limit of

ni · [σ(xi, ta + si)− vi] = f(ta + si), |σ(xi, ta + si)− vi| = f(ta + si),

we get

n̂∞ · [σ(x∞, ta)− v̂∞] = f(ta),(12)

|σ(x∞, ta)− v̂∞| = f(ta).(13)

By the convexity of Kx∞(ta), (13) implies v̂∞ = v∞ and (12) implies n̂∞ =
n∞. The claim is proved.

Then
d+f(ta)

dt
= lim

i→∞

g(xi, vi, ni, ta + si)− g(x∞, v∞, n∞, ta)
si

= lim
i→∞

ni · [σ(xi, ta + si)− vi]− n∞ · [σ(x∞, ta)− v∞]
si

= lim
i→∞

{
ni · [σ(xi, ta + si)− σ(xi, ta)] + ni · σ(xi, ta)

si

+
−ni · vi − n∞ · [σ(x∞, ta)− v∞]

si

}
.

To estimate quantities at (xi, ta + si) and at (x∞, ta) in d+f(ta)
dt , we

interpose quantities at (xi, ta) (see (14) below). By Lemma 12, d(σ(x∞, ta),
Kx∞(ta)) = f(ta) > 0, and hence σ(x∞, ta) /∈ Kx∞(ta). It follows from
Kx(ta) being invariant under parallel translation that for large enough i,
σ(xi, ta) /∈ Kxi(ta). We can choose v∗i ∈ ∂Kxi(ta) and n∗i ∈ Sv∗i

such that
d(σ(xi, ta),Kxi(ta)) = n∗i · [σ(xi, ta)− v∗i ]. Such v∗i and n∗i may not exist at
time ta = t1 since σ(x∞, t1) ∈ Kx∞(t1); this is another reason why we need
Lemma 7.

We claim that there is a sequence of vectors Fi ∈ Vxi such that for any ε >
0 there is an i0 such that for any i ≥ i0 we have v∗i + siFi ∈ Kxi(ta + si) and
|Fi−F (xi, v

∗
i , ta)| ≤ ε. The claim can be proved by studying a family indexed

by i of ODE (4) in Vxi with initial time ta and initial value σxi(ta) = v∗i . We
write the solution σxi(ta + si) = v∗i + siFi. It follows from the assumption of
Theorem 3 that σxi(ta + si) ∈ Kxi(ta + si). Since F (x, σ, t) is Lipschitz in σ,
the inequality |Fi − F (xi, v

∗
i , ta)| ≤ ε follows from the fact that solutions of
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ordinary differential equations depend continuously on their parameters, in
this case the parameters are xi ∈ M and v∗i ∈ ∂Kxi(ta) varying in compact
domain.

Since d(σ(xi, ta),Kxi(ta)) = d(σ(xi, ta), v∗i ) ≤ f(ta) < ∞, we can rule out
the divergence of v∗i to ∞. We may assume that a subsequence v∗i converges
to v∗∞ ∈ Vx∞ , and get d(σ(x∞, ta),Kx∞(ta)) = d(σ(x∞, ta), v∗∞). By the
closedness of the space-time track T we have v∗∞ ∈ Kx∞(ta). Since

d(σ(x∞, ta), v∗∞) = d(σ(x∞, ta),Kx∞(ta)) = d(σ(x∞, ta), v∞)

and Kx∞(ta) is convex, we conclude that v∗∞ = v∞. Our choice of Fi ensures
that limi→∞ Fi = F (x∞, v∗∞, ta) = F (x∞, v∞, ta). Recall that vi ∈ ∂Kxi(ta+
si) and ni is the outward normal direction of the supporting hyperplane at
vi. We have in each fiber Vxi and at time ta + si

ni · [v∗i + siFi − vi] ≤ 0.(14)

Hence

d+f(ta)
dt

= lim
i→∞

{
ni ·

[
σ(xi, ta + si)− σ(xi, ta)

si
− Fi

]
+

ni · [v∗i + siFi − vi]
si

+
ni · [σ(xi, ta)− v∗i ]− n∞ · [σ(x∞, ta)− v∞]

si

}
≤ lim

i→∞

{
ni ·

[
σ(xi, ta + si)− σ(xi, ta)

si
− Fi

]
+

ni · [σ(xi, ta)− v∗i ]− n∞ · [σ(x∞, ta)− v∞]
si

}
≤ lim

i→∞

{
ni ·

[
σ(xi, ta + si)− σ(xi, ta)

si
− Fi

]}
,

where to get the last inequality above we have used

ni · [σ(xi, ta)− v∗i ] ≤ n∞ · [σ(x∞, ta)− v∞].

This is because

ni · [σ(xi, ta)− v∗i ] ≤ |σ(xi, ta)− v∗i | = d(σ(xi, ta),Kxi(ta)),

and at time ta

d(σ(xi, ta),Kxi(ta)) ≤ f(ta) = d(σ(x∞, ta),Kx∞(ta))

= n∞ · [σ(x∞, ta)− v∞]
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by our choice of x∞, v∞, and n∞.

d+f(ta)
dt

≤
[

lim
i→∞

ni

]
·
[

lim
i→∞

σ(xi, ta + si)− σ(xi, ta)
si

− lim
i→∞

Fi

]
= n∞ ·

[
∂

∂t
σ(x∞, ta)− F (x∞, v∞, ta)

]
= n∞ ·

[
∆(ta)σ(x∞, ta) + u(x∞, ta)(∇(ta)σ(x∞, ta))

+ F (x∞, σ(x∞, ta), ta)− F (x∞, v∞, ta)
]

= n∞ · [∆(ta)σ(x∞, ta)] + n∞ · [u(x∞, ta)(∇(ta)σ(x∞, ta))]

+ n∞ · [F (x∞, σ(x∞, ta), ta)− F (x∞, v∞, ta)].

By the same argument as in Section 3 we conclude that

n∞ · [∆(ta)σ(x∞, ta)] ≤ 0,

n∞ · [u(x∞, ta)(∇(ta)σ(x∞, ta))] = 0.

So
d+f(ta)

dt
≤ n∞ · [F (x∞, σ(x∞, ta), ta)− F (x∞, v∞, ta)]

≤ |F (x∞, σ(x∞, ta), ta)− F (x∞, v∞, ta)|
≤ C · |σ(x∞, ta)− v∞|
= C · f(ta).

Theorem 3 is proved.

5. Proof of Theorem 4.

First we prove a version of Proposition 10 subject to an avoidance set.

Proposition 13. Let U ⊂ Rn be an open subset, J (t) ⊂ U, t ∈ [0, T ] be
a family of nonempty closed convex subsets and B(t) ⊂ J (t) be avoidance
sets such that the space-time track L and the avoidance space-time track
BL = {(v, t) ∈ Rn × R : v ∈ B(t), t ∈ [0, T ]} are closed. Consider the ODE

dτ

dt
= F (τ, t),(15)

where F : U × [0, T ] → Rn is continuous in t and is Lipschitz in τ . Then
the following two statements are equivalent:

(i) For any t0 ∈ [0, T ) and any solution τ(t), t ∈ [t0, T ] of the ODE (15)
with initial condition τ(t0) ∈ J (t0)\B(t0), either τ(t) ∈ J (t) for all
t ≥ t0, or there is a time t1 > t0 such that τ(t) ∈ J (t)\B(t) for all
t ∈ [t0, t1) and τ(t1) ∈ B(t1).

(ii) (F (v, t), 1) ∈ C(v,t)L for all (v, t) ∈ (∂L)\(BL).
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Proof. This proposition can be proved as Proposition 10 except for the fol-
lowing issue which arises in proving (ii) =⇒ (i): In the proof of Proposi-
tion 10 we have used the property (F (v, t), 1) ∈ C(v,t)L for all (v, t) ∈ ∂L,
however here this property holds only for (v, t) ∈ (∂L)\(BL). We need to
ensure that (v, t) can be chosen in (∂L)\(BL) when we use this property in
the proof of Proposition 10.

We adopt the notations used in the proof of Proposition 10 and resolve
the issue. Since BL is closed and the solution τ(t), t ∈ [t1, t2] in the proof of
Lemma 11 does not enter in BL, there is a constant ε > 0 such that

inf
t∈[t1,t2]

d(τ(t),B(t)) ≥ 3ε.

Since (vt1 , t1) = (τ(t1), t1) ∈ (∂L)\(BL), l(t) is right-continuous at t1 by the
proof of Lemma 11. Hence there is t3 ∈ (t1, t2) such that f(t) ≤ ε for all
t ∈ (t1, t3). For any t ∈ (t1, t3)

d(vt,B(t)) ≥ d(τ(t),B(t))− d(vt, τ(t)) ≥ 2ε,

hence (vt, t) ∈ (∂L)\(BL) for all t ∈ (t1, t3) and again l(t) can be shown to
be left lower semi-continuous and right-continuous on [t1, t3].

For any t ∈ (t1, t3), choose the points (v∞, t) in ∂L as in the proof of
Proposition 10. These points are at least 2ε away from BL, so by Statement
(ii) we still have the property (F (v∞, t), 1) ∈ C(v∞,t)L, which was use in
the proof of Proposition 10. We may now repeat the rest of the proof of
Proposition 10 to conclude that there is a constant C < +∞ such that
d+f(t)

dt ≤ C · f(t) for all t ∈ (t1, t3). By Lemma 7 we get l(t) = 0 on [t1, t3],
which is the required contradiction. �

The intuition behind the proof of Theorem 4 is as follows: Outside the
avoidance set (where the solution is assumed not to enter) the reaction term
of the PDE (i.e., corresponding to the associated ODE) wants to push the
solution back into the convex set. The diffusion part wants to keep the
solution in the convex set, possibly trying (but not succeeding) to push it
into the avoidance part.

Proof of Theorem 4. We will prove it by contradiction. As in the proof of
Theorem 3, suppose we have a solution σ(x, t) of PDE (3) on [t0, T ] which
starts with σ(x, t0) ∈ Kx(t0)\Ax(t0) for all x ∈ M and which goes out of
the space-time track T at some time t2. Since T is closed, there is a time
t1 ≥ t0 such that σ(x, t1) ∈ Kx(t1) for all x and for any t ∈ (t1, t2] there is x
such that σ(x, t) /∈ Kx(t). Below we will focus on the time interval [t1, t2].

We define function

f(t) = sup
x∈M

d(σ(x, t),Kx(t)) for t ∈ [t1, t2]



MAXIMUM PRINCIPLE FOR SYSTEMS 221

where d is the distance on Vx defined by the metric h. It is clear that
f(t1) = 0 and f(t) > 0 for t > t1.

Since the avoidance space-time track AT is closed and σ(x, t) /∈ AT for
all x ∈ M and t ∈ [t1, t2], there is an ε > 0 such that

inf
x∈M,t∈[t1,t2]

d(σ(x, t),Ax(t)) ≥ 3ε.

By Proposition 13 we have (F (x, v, t), 1) ∈ C(v,t)(Tx) for all (v, t) ∈
(∂Tx)\(AT x), however we have used the property (F (x, v, t), 1) ∈ C(v,t)Tx

for all (v, t) ∈ ∂Tx in the proof of Lemma 12, we need to modify the
proof of Lemma 12 to show that f(t) is left lower semi-continuous and
right-continuous. We adopt the notations used in the proof of Lemma 12
and replace σ̂(x, t) by σ(x, t). When ta = t1, (v∞, t1) = (σ(x, t1), t1) ∈
(∂Tx∞)\(AT x∞), f(t) is right-continuous at t1 by the same proof. Hence
there is t3 ∈ (t1, t2) such that f(t) ≤ ε for all t ∈ (t1, t3). For any ta ∈ (t1, t3)

d(v∞,A(ta)) ≥ d(σ(x∞, ta),A(ta))− d(v∞, σ(x∞, ta)) ≥ 2ε,

so (v∞, ta) ∈ (∂Tx∞)\(AT x∞) for all ta ∈ (t1, t3) and f(t) is left lower semi-
continuous and right-continuous on [t1, t3].

We will prove that there is a constant C < +∞ such that d+f(t)
dt ≤ C ·f(t)

for all t ∈ (t1, t3), then by Lemma 7 we get f(t) = 0 for all t ∈ [t1, t3], which
is the required contradiction.

For any t ∈ (t1, t3) since f(t) = supx∈M d(σ(x, t),Kx(t)) < ε, all the points
in T we choose in the proof of Theorem 3 are at least 2ε away from AT , so
we can repeat the proof of Theorem 3 to conclude that d+f(t)

dt ≤ C · f(t) for
all t ∈ (t1, t3). Hence Theorem 4 is proved. �
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